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Text S1:  

Supplementary Methods  

(a) Genome-scale metabolic networks and their phenotypic representations 

The set of genomically encoded biochemical reactions proceeding inside a given organism 

constitutes an organism’s metabolic genotype [1–3]. This genotype enables an organism to extract 

energy and produce small biomass building blocks, such as amino acids, from extracellular 

nutrients. Reconstruction of this genotype from genomic and biochemical information has been 

successful for multiple organisms [4–7].  

Each metabolic network contains a subset of the “reaction universe” of all biochemical reactions 

that take place in the biosphere (See Text S1b). We have curated a representation of this universe, 

which comprises 5906 reactions and is based on current metabolic knowledge [8–12]. We represent 

an organism’s metabolic genotype as a binary vector of length 5906. Each entry of this vector 

corresponds to a given reaction in the reaction universe, and is equal to one if the corresponding 

reaction is present in the metabolic network, and zero otherwise. Thus, each genotype can be 

thought of as a single member of a vast space of all possible metabolic networks, which contains 
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25906 distinct genotypes. We define the phenotype of a given metabolic genotype based on its 

viability on 50 distinct minimal environments that differ only in the carbon source (See Text S1c). 

We consider that a genotype is viable on a given carbon source, if it can produce all the essential 

biomass precursors from the given carbon source, and we use Flux Balance Analysis (FBA, See 

Text S1d) to determine viability [12–14]. We represent the phenotype of a given metabolic 

genotype as a binary vector of length 50. Each entry of this vector corresponds to a given carbon 

source, and it is equal to one if the genotype is viable on this carbon source, and zero otherwise.  

 

(b) Reaction universe  

The reaction universe is a set of metabolic reactions known to occur in some organism. For the 

construction of this universe, we used data from the LIGAND database [9,15]of the Kyoto 

Encyclopedia of Genes and Genomes [11,16]. Briefly, the LIGAND database, which is comprised 

of the REACTION and the COMPOUND databases, provides information on reactions, associated 

stoichiometric information, chemical compounds involved, and the Enzyme Classification (E.C.) 

identifier of each reaction. We used the REACTION and the COMPOUND databases to construct 

our universe of reactions, and excluded (i) all reactions involving polymer metabolites of 

unspecified numbers of monomers, or general polymerization reactions with uncertain 

stoichiometry, (ii) reactions involving glycans, due to their complex structure, (iii) reactions with 

unbalanced stoichiometry, and, (iv) reactions involving complex metabolites without chemical 

information about their structure [8]. The published E. coli metabolic model (iAF1260) consists of 

1397 non-transport reactions [12]. We merged all reactions in the E. coli model with the reactions 

in the KEGG dataset, and retained only the unique (non-duplicate) reactions. This resulted in a 

universe of reactions consisting of 682 transport, 5906 non-transport reactions and 5030 

metabolites. 

 

(c) Chemical environments 

We consider 50 minimal growth environments, each of which included oxygen, ammonium, 

inorganic phosphate, sulfate, sodium, potassium, cobalt, iron (Fe2+ and Fe3+), protons, water, 

molybdate, copper, calcium, chloride, magnesium, manganese, zinc, and a specific carbon source 

Importantly, to represent different chemical environments, we vary the carbon source while 

keeping all other nutrients constant. We consider a metabolic network viable on a given carbon 

source, if it can synthesize all essential biochemical precursors when this carbon source is provided 

as the sole carbon source in a minimal medium.  

We used 50 carbon sources for our analysis of randomly sampled metabolic networks, including 

the following 27 glycolytic carbon sources: D-Glucose, D-Glucose 6-phosphate, Trehalose, 
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Maltose, Lactose, D-Fructose 6-phosphate, D-Fructose, D-Mannose, D-Mannitol, D-Glucose 1-

phosphate, D-Sorbitol, Maltotriose, D-Allose, D-Ribose, D-Xylose, D-Gluconate, 5-dehydro-D-

Gluconate, L-Rhamnose, L-Fucose, L-Arabinose, L-Lyxose, D-Galactose, Melibiose, D-

Galactonate, N-Acetyl-D-glucosamine, N-Acetyl-D-mannosamine, N-Acetylneuraminate.  

 

In addition, we used the following 23 gluconeogenic carbon sources: Pyruvate, L-Alanine, L-

Lactate, D-Alanine, D-Malate, Acetate, L-Serine, L-Malate, D-Serine, Glycine, Glycolate, L-

Aspartate, Succinate, Fumarate, 2-Oxoglutarate, D-Galacturonate, D-Galactarate, D-Glucarate, L-

Galactonate, D-Glucoronate. 

 

And we used 3 nucleosides carbon sources: Adenosine, Deoxyadenosine, Inosine. 

 

For the analysis of prokaryotic metabolic networks in the BiGG database, we used the following 

137 carbon sources: 

Acetaldehyde, Acetate, Acetoacetate, Adenine, Adenosine, Allantoin, Bicarbonate, Biotin, Butyrate 

(n-C4:0), Carbonic acid, Choline, Citrate, Cyanate, Cytidine, Cytosine, D-Alanine, D-Fructose, D-

Galactarate, D-Galactonate, D-Galactose, D-Galacturonate, D-Glucarate, D-Gluconate, D-

Glucosamine, D-Glucose, D-Glucose 6-phosphate, D-Glucuronate, D-Glyceraldehyde, D-Lactate, 

D-Mannitol, D-Mannose, D-Mannose 6-phosphate, D-Methionine, D-Ribose, D-Serine, D-Sorbitol, 

D-Xylose, Deoxyadenosine, Deoxycytidine, Deoxyguanosine, Deoxyinosine, Deoxyuridine, 

Dihydroxyacetone, Dimethyl sulfide, Dimethyl sulfoxide, Ethanol, Folate, Formate, Fumarate, 

Galactitol, Gamma-butyrobetaine, Glycerol, Glycerol 3-phosphate, Glycine, Glycine betaine, 

Glycolate, Guanine, Guanosine, Hexadecanoate (n-C16:0), Hypoxanthine, Indole, Inosine, L-

Alanine, L-Arabinose, L-Arginine, L-Asparagine, L-Aspartate, L-Carnitine, L-Cysteine, L-Fucose, 

L-Fucose 1-phosphate , L-Glutamate, L-Glutamine, L-Histidine, L-Idonate, L-Isoleucine, L-

Lactate, L-Leucine, L-Lysine, L-Malate, L-Methionine, L-Phenylalanine, L-Proline, L-Rhamnose, 

L-Serine, L-Threonine, L-Tryptophan, L-Tyrosine, L-Valine, L-tartrate, Lactose, Maltohexaose, 

Maltopentaose, Maltose, Maltotetraose, Maltotriose, Melibiose, Meso-2,6 Diaminoheptanedioate, 

Methanol, N-Acetyl-D-glucosamine, N-Acetyl-D-mannosamine, N, Acetylneuraminate NMN, 

Nicotinamide adenine dinucleotide, Octadecanoate (n-C18:0), Ornithine, Phenylpropanoate, 

Pimelate, Protoheme, Putrescine, Pyruvate, Riboflavin, Spermidine, Succinate, Sucrose, Taurine, 

Tetradecanoate (n-C14:0),Thiamin, Thymidine,Trehalose, Trimethylamine, Trimethylamine N-

oxide, Uracil, Urea, Uridine, Xanthine, Xanthosine, AMP, (R)-Pantothenate, S)-Propane-1,2-diol, 

1,5-Diaminopentane, 2-Dehydro-3-deoxy-D-gluconate, 2-Oxoglutarate, 3-(3-hydroxy-

phenyl)propionate, 3-hydroxycinnamic acid. 
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(d) Flux balance analysis  

Flux balance analysis (FBA) is a computational method that is widely used for the quantitative 

analysis and modeling of metabolic networks [13]. Based on the stoichiometric coefficients of the 

metabolites participating in the reactions of a given metabolic network, FBA predicts the metabolic 

flux through each reaction. Stoichiometric coefficients are stored in a stoichiometric matrix S, 

which is of dimension m×n, where m and n, respectively, denote the number of metabolites and the 

number of reactions in a metabolic network. FBA constrains the flux through each reaction based 

on the assumption that a metabolic network is in a steady state where metabolite concentrations do 

not change, i.e., 𝑆𝑣 = 0, where v is the vector of metabolic fluxes vi through reaction i. The 

solutions of the equation 𝑆𝑣 = 0, that is, the nullspace of matrix S, comprises all flux vectors that 

are allowable in steady state. The null space is further constrained by physicochemical information 

regarding the maximum and minimum possible flux through each reaction. FBA relies on an 

optimization procedure called linear programming to identify those flux vector(s) among the 

allowable ones that maximize an objective function Z. This task can be formulated as finding a flux 

vector v* with the property 

v*=maxv Z(v)= maxv { cTv | Sv=0, a≤v≤ 𝑏}, 

where the vector c contains a set of scalar coefficients representing the maximization criterion, and 

each entry ai and bi of vectors 𝑎 and 𝑏, respectively, indicates the minimally and maximally 

possible flux through reaction i. The vector c represents the proportions of each small biomass 

molecule in a cell’s biomass. Therefore v* maximizes the biomass growth flux, that is, the rate at 

which a metabolic network can produce biomass [14]. Here we use FBA to predict qualitatively 

whether a given metabolic network is viable in a given environment, and we consider a metabolic 

network viable if it can produce all essential biomass precursors. In a free-living bacterium like 

E.coli, there are approximately 60 such molecules including 20 amino acids, DNA, and RNA 

precursors, lipids and cofactors. We used the biomass composition of the E. coli metabolic model 

iAF1260 to define the vector c [12]. Moreover, we used the packages CPLEX (11.0, ILOG; 

http://www.ilog.com/) and CLP (1.4, Coin-OR; https://projects/coin-or.org/Clp) to solve the linear 

programming problem of FBA.  

The major limitation of FBA is that it neglects regulatory constraints that can arise through 

suboptimal expression or regulation of enzymes. Newly horizontally transferred genes cannot easily 

establish regulatory interactions with their host genes, and it may thus take considerable adaptive 

evolution until they become expressed at a maximal or optimal level [17]. Such regulatory 

constraints would be especially important if we focused on quantitative predictions of biomass 

growth [18]. However, we use FBA solely for qualitative prediction of viability. This focus on 

qualitative phenotypes is biologically sensible. The reason is that many organisms grow slowly in 

their native environment [19–21], implying that regulation for maximal biomass production is far 
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from universal. Moreover, we note that regulatory constraints can easily be broken in evolution, 

even on the short time scales of laboratory evolution experiments [18,22,23].  

(e) Generation of random metabolic networks 

We here employ a previously described in silico process which relies on Markov Chain Monte 

Carlo (MCMC) random walks to generate metabolic networks that comprise random sets of 

metabolic reactions that are viable on a given carbon source [8,24]. This procedure can produce 

metabolic networks that are sampled uniformly from the set of all metabolic networks viable on a 

given carbon source [8,24]. Briefly, in each step of such a random walk we perform a reaction 

swap, which is defined as altering a metabolic network by adding a randomly chosen reaction from 

the reaction universe, and then deleting a reaction randomly chosen from the set of reactions present 

in the metabolic network. If the reaction swap disrupts the metabolic network’s viability on the 

given carbon source (as determined by FBA) we reject it, and perform another reaction swapping 

until we find a reaction swap that does not disrupt viability. This procedure also ensures that the 

total number of reactions remains constant. For the MCMC method to produce random samples of 

metabolic networks, it is essential to carry out enough reaction swaps to “erase” the random 

walker’s similarity to the initial metabolic network. Previously, it has been shown that 3 × 103 

reaction swaps are sufficient for this purpose [8,24]. Each of our random walks starts from E. coli’s 

metabolic network and performs 104 reaction swaps before storing the final metabolic network for 

further analysis. We used 104 independent random walks conducted in this way to create 104 

random metabolic networks viable on glucose. We used the same procedure to generate 104 random 

metabolic networks viable on acetate. 

(f) Generation of parental metabolic network pairs 

Our analyses required us to recombine pairs of “parental” metabolic networks with particular 

features, such as (i) their genotypic distance (D), defined as the number of reactions differing 

between the parents, (ii) their phenotypic complexity (||P||), that is, the number of carbon sources 

on which they are viable, (iii) their phenotypic distance (ΔP), that is, the number of carbon sources 

on which only one but not the other member of a parental pair is viable, and (iv) their genotypic 

complexity (||G||, or metabolic network size), defined as the number of reactions in each metabolic 

network pair.  

To identify parental metabolic networks with a given ΔP and ||P|| we first selected, among all 

10!
2

 possible random metabolic network pairs that can be formed from 104 MCMC-sampled 

metabolic networks, those pairs that are viable on exactly ||P|| carbon sources and that have a given 

ΔP. We then randomly chose from them a set of 1000 pairs for further analysis.  
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Less straightforward than identifying parental metabolic networks with a given ΔP and ||P|| is to 

identify those with a given genotypic distance (D), because the random metabolic networks 

generated by MCMC sampling generally have genotypic distances sufficiently large (D≈2000) to be 

biologically unrealistic for modeling frequently recombining prokaryotic genomes. To create less 

diverse metabolic network pairs, we took two different MCMC random walk approaches that 

yielded similar results. The first revolves around a reaction-swapping random walk starting with a 

pair of randomly chosen metabolic networks from our sample of 104 sampled metabolic networks. 

In each step of this random walk, we subjected each parental metabolic network to a reaction swap, 

and we accepted each reaction swap if it (i) preserved the original phenotype, and (ii) did not 

increase the genotypic distance of the two metabolic networks after the swap, otherwise we rejected 

the reaction swap. We continued this procedure until the genotypic distance between the metabolic 

networks became equal to a desired distance D. This approach is very time-consuming. The second 

approach is much faster and uses a more biologically inspired mechanism to generate metabolic 

networks (see Text S2 [24,25]), but it also suffers from a technical limitation (Text S2), which is 

why we report mostly on the first approach.  

Finally, to generate parental metabolic networks with a given number of reactions ||G|| we started 

from a random viable metabolic network generated by MCMC sampling, as described in the Text 

S1e. All such metabolic networks have the same number of reactions as E.coli (2079). We then 

applied a sequence of reaction deletions that preserved viability on glucose (or acetate, depending 

on analysis) until we reached the desired ||G||. Then, we sampled pairs of metabolic networks with 

a given D, ΔP and ||P|| among the metabolic networks with ||G|| reactions in the manner described 

above. 

(g) Modeling recombination and mutation in metabolic networks 

Prokaryotic genomes undergo recombination via horizontal gene transfer [26], whose incidence is 

large and greater than that of point mutations [27–29]. It changes the organization and gene content 

of genomes on short evolutionary time scales [26,30,31], and can involve very distantly related 

organisms [32,33]. Various mechanisms of horizontal gene transfer add genes unidirectionally from 

a donor to a recipient, but incorporating such genes into the recipient genome relies on 

recombination [26]. The genomes of many prokaryotes frequently undergo homologous 

recombination, that is, a reciprocal exchange of DNA segments between DNA sequences [34]. 

Because such recombination can also delete genes, and because of a general deletion bias in 

prokaryotic genomes [35], prokaryotic recombination involves gene loss as well as gene gain. What 

is more, the majority of newly acquired genes obtained via horizontal gene transfer reside in the 

genome only for short amounts of time [36]. Motivated by these observations, we here model 

prokaryotic recombination as a process where the transfer of reactions from a donor to a recipient 

metabolic network is compensated by deletion of other reactions from the recipient.  



	 	
	

	 7	

To model recombination for each parental metabolic network pair, we generated 1000 recombinant 

offspring by (i) adding to the recipient metabolic network a given number n/2 of randomly chosen 

reactions that were present in the donor and absent in the recipient, followed by (ii) deleting n/2 

reactions randomly chosen from the recipient. Thus, the total number of reactions changed by a 

recombination event in the recipient is equal to n. For reasons of computational feasibility, we 

analyzed only recombinant pairs where the probability that a recombination event preserves 

viability exceeded 10-3. Text S3 and figure S1 show that this is the case for values of n up to 60, 

which is why we chose n=60 as the highest amount of reaction changes during a recombination 

event. Empirical observations also suggest that this number of reactions would not be unrealistically 

large, because horizontal gene transfer can affect long DNA regions[44]. Transferred material that 

is integrated into the host genome by recombination can constitute stretches of non-coding DNA, 

fragments of genes [37,38], entire genes [39], multiple adjacent genes [40,41], operons, 

transposable chromosomal elements, plasmids, as well as other naturally occurring 

extrachromosomal elements [42]. The length of contiguous transferred stretches may range from a 

few nucleotides [43] to more than 3 Mbp [44], i.e., some two thirds of the length of the E.coli 

genome, which encodes more than 1300 reactions. In addition, some megabase-scale horizontally 

transferred genes can become incorporated into a chromosome in the form of hundreds of smaller 

fragments [45]. 

To implement an amount of random mutational metabolic change that is comparable to the same 

amount of recombinational change, for a given number of altered reactions (n) we created a 

“mutational” offspring of a metabolic network by adding n/2 randomly chosen reactions from the 

reaction universe, and deleting n/2 randomly chosen reactions among the set of reactions present in 

the metabolic network. Note the key difference between mutation and recombination: In 

recombination the n/2 reactions that are added to the recombinant offspring are chosen randomly 

from another viable metabolic network (the donor), whereas in mutation they are taken from the 

whole reaction universe.  

(h) Genomic recombination in prokaryotic metabolic networks from the BiGG 

database 

We validated our observations based on randomly sampled viable metabolic networks by 

considering the genome-scale metabolic networks of 61 bacterial species available at the BiGG 

database [46], using the R-package Sybil [47]. For this analysis, we generated a reduced universe of 

reactions comprised of the union of the sets of reactions present in the 61 metabolic networks. This 

universe altogether contains 3404 internal reactions, 3156 transport reactions, and a different 

biomass reaction for each organism. As potential carbon sources, we used all 137 carbon-containing 

metabolites that occurred as metabolites external to at least one organism in the database, and thus 

assigned a phenotype vector of length 137 to each metabolic network using FBA.  
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To model recombination among the metabolic networks of these 61 organisms, we used one main 

approach, which incorporates information about the linkage of the genes encoding metabolic 

reactions. To this end, we used the gene-reaction association rules defined in the BiGG database for 

each organism (in MAT files, grRules) [46], and ordered the genes in each organism based on their 

genomic position, as obtained from the RefSeq microbial genome database [48].  

For a specific recombination event between a donor and a recipient organism, we first chose at 

random a stretch of DNA from the donor organism that contains a given number of metabolic 

genes. To generate a recombinant offspring we added this stretch of DNA to the recipient, and 

subsequently deleted a randomly selected stretch of DNA from the recipient genome. We translated 

the added and deleted genes into reactions based on the gene-reaction rules for the donor and 

recipient organism. We set the number of genes in every donor DNA stretch such that on average 

(among all recombination events between all metabolic network pairs) a given number of n 

reactions are added to the recipient metabolic network, and an equal number n of reactions are 

deleted from it. Because gene-reaction associations are not generally one-to-one and can be very 

complicated, and because most of the reactions that are encoded in a given stretch of DNA may 

already be present in the recipient metabolic network, the number of metabolic genes in donor DNA 

required for adding n reactions will be higher than n (usually ≈2n). In contrast, we found that 

including ≈0.9n metabolic genes into a DNA stretch to be deleted from the recipient genome 

usually sufficed to eliminate n reactions from the recipient metabolic network, because deletion of a 

single metabolic gene often causes elimination of multiple reactions 

In a second approach for recombining prokaryotic genomes, we neglected linkage between 

metabolic genes and added or deleted reactions randomly, just as we had done for randomly 

sampled viable metabolic networks, irrespective of the genomic position of metabolic genes 

encoding these reactions.  

Text S2: 

An alternative MCMC approach to generate parental metabolic 

networks with a given genotypic distance (D) 

In addition to our first and main approach (see text S1f) for creating metabolic networks with a 

given genotypic distance D, we also pursued a second approach. This second approach starts from a 

parental metabolic network M1 and generates a recombination partner M2 through a sequence of 

MCMC random walks, which preserves the phenotype of M1 but increases the genotypic distance to 

M2, until a desired D between M1 and M2 is reached. Because this method resembles the divergence 

of species from a common ancestor, it is biologically motivated, but it has a technical limitation that 

is associated with inactive (blocked) reactions – reactions having zero metabolic flux for 

stoichiometric reasons [24,25]. Probably due to the shorter MCMC random walks in this second 
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approach, a greater percentage of the D reactions that are not shared between two metabolic 

networks are blocked reactions in the second approach (90.09%) compared to the first one (66.78% 

of reactions). The innovation potential of inactive reactions is almost negligible in comparison to 

active reactions (Figure S2), and the fraction of innovative offspring is thus considerably (almost an 

order of magnitude) lower for the second approach than for the first approach.  

To render results from the two approaches comparable, one can adjust the ratio of inactive reactions 

in the D non-shared reactions between metabolic network pairs, as illustrated in the following 

example. Let us assume a given parental metabolic network pair obtained with the second method 

has D=1000 non-shared reactions, and since ≈90% of these reactions are inactive (blocked), only 

around 100 of them will be active. To make the ratio of active to inactive reactions among these 

non-shared reactions equal to the 66.78% (≈2/3) that are characteristic of parental metabolic 

network pairs obtained with the first method, one would require almost 200 inactive reactions 

(200/(100+200)= 2/3). Thus, whenever one wants to transfer a given number of reactions (n) from 

donor to recipient, one can first select 200 inactive reactions from the 900 inactive reactions and 

then select the n reactions to be recombined from a set that includes these 200 inactive reaction and 

100 active reactions. This ensures that a comparable proportion of active reactions are transferred 

from donor to recipient in the two approaches. After this adjustment, the two approaches yield 

virtually identical observations (Compare figure1 with figure S3). However, the manipulations 

required in the second approach make it less useful. We therefore chose to rely on the first approach 

throughout this study.                                                                                      

Text S3:  

Robustness of genome-scale metabolic networks decreases exponentially 

with increasing the number of deleted reactions 

Recombination that involves both the addition and deletion of reactions has the potential to create 

inviable recombinant offspring. The greater the number of reactions that are deleted in a 

recombination event, the greater will be this fraction of inviable offspring. Before embarking on a 

systematic analysis of recombination’s effects, we needed to find out how large the number of 

reactions deleted in a recombination event (n/2) can become, before the number of viable offspring 

becomes too small for computational analysis.  To this end, we generated 1000 random genome-

scale metabolic networks that we required to be viable only on glucose as the sole carbon source. 

For each of these randomly sampled viable metabolic networks and for each value of n between 

one and sixty, we created 1000 offspring in which we deleted n/2 randomly chosen reactions. 

Figure S1 shows a box plot of the fraction of metabolic networks that remain viable on glucose as 

the sole carbon source after this procedure.  



	 	
	

	 10	

The fraction of viable metabolic networks declines exponentially with the number of deleted 

reactions. For (n/2)>30 the fraction of metabolic networks that retain viability becomes very low, 

e.g., it declines below 0.001 for viability on glucose, such that fewer than one of 1000 offspring 

would be viable on glucose. At numbers beyond (n/2)>30, the number of recombination events 

needed to create any viable metabolic networks becomes computationally prohibitive.  For this 

reason, we chose n=60 as the highest value of n for our recombination analysis.    

Text S4:  

The rate of recombination between bacterial species decreases 

exponentially by increasing metabolic distance  

We wanted to obtain a crude estimate of the relationship between the metabolic distance of two 

bacterial species and the likelihood that such species undergo a successful homologous 

recombination event. To estimate this relationship, we pursued a three-step procedure. 

In the first step, we estimated the DNA-based genotypic distance between two bacterial species 

whose metabolic networks differ by a given number of reactions. To this end, we used curated 

metabolic networks from 51 bacterial species, which had been obtained through state-of-the art 

techniques for genome annotation, generation of biomass reactions, reaction network assembly, and 

thermodynamic analysis of reaction reversibility [49]. We define the normalized metabolic 

genotype distance d of two prokaryotes as the number D of reactions differing between their 

metabolic networks, divided by the total number of reactions present in at least one of the two 

metabolic networks and computed this distance for all pairs of the 51 metabolic networks. On 

average, a relative metabolic distance of d=0.1 corresponds to an absolute difference of D≅150 in 

reaction number, but we note that the relationship between d and D depends on the total number of 

reactions in each metabolic network.  

We then aimed to relate metabolic divergence to DNA sequence divergence between these species. 

To this end, we used the housekeeping gene rpoB, which encodes the β-subunit of RNA 

polymerase. We obtained the rpoB coding sequences for these 51 species from NCBI 

(http://www.ncbi.nlm.nih.gov), and aligned them with the PAL2NAL web server, which provides 

robust alignment of DNA sequences based on the corresponding protein sequences [50]. We then 

computed all pairwise Hamming distances from the aligned rpoB sequence alignment for these 51 

species, normalized these quantities to the interval (0,1), and used them as our measure of sequence 

divergence.  

We note that even species with modest sequence divergence can have considerable metabolic 

distance. For example, the species pair Buchnera aphidicola and Yersinia pestis have an rpoB DNA 

sequence distance of 0.29, but a metabolic distance d of 0.65, which corresponds to an absolute 
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difference of 1004 reactions. Examples of moderately high metabolic divergence exist even from 

strains of the same organisms, such as Streptococcus pneumoniae TIGR4 and R6, which differ in 

64 reactions or a fraction d=0.068 of their metabolic networks. At greater sequence distances of 

0.45, metabolic distances reach values up to d=0.69 (e.g., Yersinia pestis and Rickettsia prowazekki 

have rpoB DNA sequence divergence 0.45 and a metabolic distance of d=0.684, corresponding to 

1066 reaction differences.) Metabolic distance and sequence divergence are significantly correlated 

(Pearson’s r=0.60, P<10-40), and a linear regression analysis (red line in figure S4a) yields a 

regression coefficient of 0.82 with an intercept of 0.1. We use this regression analysis to translate 

metabolic distance into sequence divergence and vice versa. 

In the second step, we took advantage of experimental data on the exponential relationship between 

the likelihood of a successful recombination event and (rpoB-based) sequence divergence between 

recombining species [33,51]. Specifically, we used such data for 19 species pairs in the genera 

Bacillus and Streptococcus. Figure S4b shows that the logarithm of the relative recombination rate 

decreases linearly with increasing sequence divergence between the donor and recipient species. A 

linear regression analysis (black line in the figure) yields a regression coefficient of -18.40 with an 

intercept of 0.11. 

In the third step, we integrated data from step one and two to relate metabolic distance to the 

likelihood of a successful recombination event (Figure S4c). The figure shows that the logarithm of 

the relative recombination rate linearly decreases with increasing metabolic distance between the 

donor and recipient species. A linear regression analysis (red line in the figure) yields a regression 

coefficient of -22.57 with an intercept of 0.62. In sum, sequence and recombination data suggests 

that the likelihood of a successful recombination event between two species would decrease 

exponentially with their metabolic distance. This also holds if we exclude endosymbiotic or host-

associated pathogens from our analysis.  

Importantly, we note that metabolic distance will not be the only determinant of successful 

recombination between bacteria of different species. Part of the reason is that only a minority of 

genes in any bacterial genome are typically involved in metabolic network (e.g., 31% in E.coli). In 

addition, other incompatibilities, such as those between restriction-methylation systems [52] or 

DNA repair mechanisms [53] may hinder recombination. Our analysis merely goes to show that the 

minimal recombination distances of D=100 we use are not unrealistically low. Many bacteria that 

would successfully recombine in the wild have greater metabolic distances (Figure S4c). 
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Text S5: 

Phenotypically more diverse parental metabolic networks are more likely 

to generate metabolically innovative offspring 

We asked whether the phenotypic diversity of recombining parents influences the incidence of 

innovative offspring. On the one hand, recombining parents viable on the same combination of 

carbon sources might create a greater fraction of viable offspring, which might also increase the 

incidence of offspring with novel metabolic abilities. On the other hand, recombining parents viable 

on different combinations of carbon sources might produce recombinant offspring with a greater 

number of novel reaction combinations, and thus a greater number of metabolic innovations. 

To find out whether one of these hypotheses is correct, we created pairs of metabolic networks at a 

fixed genotypic distance (D=100), but with different metabolic phenotypes P1 and P2 and with 

identical phenotypic distances (ΔP), that is, identical number of carbon sources on which one parent 

is viable but the other isn't, or vice versa. To prevent confounding our analysis by the number of 

carbon sources ||P|| on which a metabolic network is viable, we kept ||P|| constant and required that 

each parent was viable on exactly 10 carbon sources. (In other words, all metabolic networks in this 

analysis are viable on glucose and on nine other carbon sources.) We then varied ΔP in four steps 

between 0 and 16, created 1000 metabolic network pairs for each value of ΔP, and from each pair 

we created 1000 recombinant offspring in which n reactions were altered through recombination. 

We then determined for each offspring whether it was viable on any carbon source that neither of 

the parents were viable on. Figure 2c (main text) shows that regardless of the number n of altered 

reactions, the fraction of innovative offspring (finnov) increases with the phenotypic distance ΔP 

among parents.  

The increase of innovation with parental phenotypic diversity cannot just be explained by a greater 

fraction of viable offspring, because parental phenotypic diversity does not influence this fraction 

(Figure S10a and S10b). In contrast, as ΔP increases, so does the fraction of reactions with ISE >0.5 

that can potentially be transferred from donor to recipient (Figure 2d (main text)), once again 

highlighting the role of this process in innovation. Parental phenotypic diversity ΔP does have no 

impact on the number of carbon sources on which innovative offspring gain viability. Specifically, 

we observed that innovative offspring typically gains viability on two to three additional carbon 

sources, and shows an average phenotypic distance between four and five, regardless of whether it 

arose through recombination or mutation, and independent of parental genotypic or phenotypic 

features. 

We complemented these analyses by focusing on an alternative way of defining phenotypic 

heterogeneity that is based on viability on two specific classes of carbon sources, namely those 
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involved primarily in glycolysis, and those involved primarily in gluconeogenesis (See Text S1c). 

We found that offspring of parents viable on different classes of carbon sources display a greater 

incidence of innovation, compared to offspring of parents that are viable on the same class of 

carbon sources (Text S6).  

Text S6:  

Parental metabolic networks viable on different classes of carbon sources 

are more likely to generate innovative offspring than parents that are 

viable on the same classes of carbon sources 

In this analysis, we focused on two specific classes of carbon sources, namely those involved 

primarily in glycolysis, and those involved primarily in gluconeogenesis (Text S1c). In a previous 

contribution, we had shown that metabolic networks required to be viable on one glycolytic 

(gluconeogenic) carbon source tended to be viable also on other glycolytic (gluconeogenic) carbon 

sources [54]. We wanted to find out whether parental viability on either glycolytic, 

gluconeogenesis, or both kinds of carbon sources influenced the incidence of novel metabolic traits 

in the offspring. To this end, we created 1000 pairs of donor – recipient metabolic networks 

(genotype distance D=100) with each of the following properties (i) both parents are viable on five 

glycolytic carbon sources, (ii) both parents are viable on five gluconeogenic carbon sources, (iii) all 

donor metabolic networks are viable on five gluconeogenic carbon sources, and all recipient 

metabolic networks are viable on five glycolytic carbon sources, and (iv) all donor metabolic 

networks are viable on five glycolytic carbon sources, and all recipient metabolic networks are 

viable on five gluconeogenic carbon sources. To exclude parental phenotypic diversity as a 

confounding factor, we ensured that it had a constant value of ΔP=10 for all parents in all three 

categories. Aside from these constraints, we chose glycolytic and gluconeogenic carbon sources at 

random. 

For each pair of metabolic networks we created 1000 offspring with a fixed number of altered 

reactions, and found that recombinants of parents viable on different kinds of carbon sources (i.e. 

gluconeogenic-glycolytic) display a greater incidence of innovation (Figure S11a). This greater 

incidence of innovation cannot solely be explained by a greater fraction of viable offspring, because 

parental viability on different classes of carbon sources does not influence the fraction of viable 

offspring (Figure S11b).  Thus, we conclude that phenotypically more heterogeneous parental 

metabolic networks are more likely to generate innovative recombinants.  
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Text S7:  

Phenotypically less complex parental metabolic networks are more likely 

to generate metabolically innovative offspring 

We also investigated the impact of phenotypic complexity on metabolic innovation. We define the 

complexity of a phenotype P as the number ||P|| of carbon sources on which it is viable. For this 

analysis, we generated parental metabolic networks with the same genotypic distance D=100 but 

with varying phenotypic complexity. In addition, we required that both metabolic networks in a pair 

are viable not only on the same number of carbon sources, but also on the exact same carbon 

sources. Specifically, we analyzed 1000 pairs of random parental metabolic networks viable on 

||P||=1, 5, or 10 carbon sources. For each of the 1000 pairs at each value of ||P||, we created 1000 

recombinant offspring with n altered reactions. Figure 2e (main text) shows that the fraction of 

innovative offspring (finnov) decreases with increasing phenotypic complexity. The more carbon 

sources a metabolic network is viable on, the smaller the likelihood that recombination creates 

viability on further carbon sources. This difference is not simply caused by a decrease in the 

fraction of viable offspring with increasing phenotypic complexity (Figures S12a and S12b). Also, 

||P|| does not impact the number of additional carbon sources that an innovative offspring gains 

viability on. The fraction of exchangeable reactions with ISE >0.5 (fsuper) decreases with increasing 

phenotypic complexity (Figure 2f (main text)).  

We also wished to analyze the effect of phenotypic complexity on metabolic innovation for 

metabolic networks viable on more than 10 carbon sources (i.e., ||P||=20, 30, 40). However, 

creating 1000 metabolic network pairs with these values of ||P|| that were viable on the exact same 

combination of carbon sources was computationally infeasible. We thus created 1000 metabolic 

network pairs whose phenotype vectors differed in a fixed number of 10 non-zero entries. For 

example, in such a pair with ||P||=30, both members would be viable on the same 25 carbon 

sources. In addition one member would be viable on five carbon sources that the other one is not 

viable on, and vice versa. Furthermore, we required a fixed genotypic distance D=100 for all 

metabolic network pairs in this analysis.  For each value of ||P|| subject to these constraints, we 

created 1000 recombinant offspring with n altered reactions for each of the 1000 parental metabolic 

network pairs. Consistent with data from figure 2e (main text), the fraction of innovative offspring 

(finnov) decreases with increasing phenotypic complexity (Figure S13a). Figures S13b and S13c 

show that this difference is not simply caused by a decrease in the fraction of viable offspring with 

increasing phenotypic complexity. Figure S13d shows that fraction of reactions with 

superessentiality higher than 0.5 (fsuper) decreases with increasing phenotypic complexity.  
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Text S8:  

Larger parental metabolic networks are recombinationally more robust 

and so more likely to generate metabolically innovative offspring 

We define the genotypic complexity of a metabolic network as the number of reactions (||G||) 

present in this metabolic network. We wanted to find out whether it affects recombinational 

robustness and the incidence of novel phenotypes among recombinant offspring. To this end, we 

analyzed metabolic networks with sizes that vary between ||G||=1500 and ||G||=2000 reactions. 

Specifically, we created 1000 random viable donor recipient pairs with constant genotype distance 

D=100 for each size class, where we required the parental metabolic networks to be viable only on 

glucose. We then created from each parental pair 1000 recombinant offspring with a specific 

number n of altered reactions. 

Figure S14a shows that recombinational robustness increases with increasing genotypic complexity 

of the parents. For example, at n=10 recombined reactions the fraction of viable offspring is three 

times higher for parental metabolic networks with ||G||=2000 reactions than for parental metabolic 

networks with ||G||=1500 reactions (0.3 vs. 0.1, Figure S14a). We observe the same result, when 

we use parental metabolic networks viable on acetate for this analysis (Figure S14b).  Moreover, we 

observed that the fraction of innovative offspring (finnov) also increases with increasing metabolic 

network size ||G|| (Figure S14c). Again this result does not change if parental metabolic networks 

are viable on acetate instead of on glucose (Figure S14d).  

In sum, unlike other quantities such as genotypic distance and phenotypic diversity of parents, 

which do not impact recombinational robustness, and thus influence innovation directly, parental 

genotypic complexity (||G||) increases recombinational robustness, and can thus enhance innovation 

indirectly by increasing robustness. 

Text S9:  

Effects of genotypic and phenotypic features of prokaryotic parental 

metabolic networks on recombinational robustness and innovation 

Unlike our analyses of random viable metabolic networks, where we were able to control genotypic 

parameters such as the number of reactions, and phenotypic parameters such as phenotypic 

complexity by sampling genotype space appropriately, these parameters are fixed properties of the 

61 specific prokaryotic metabolic networks we analyzed. Moreover, when analyzing random viable 

networks we could sample metabolic network pairs that varied in only one parameter, which is not 
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possible for prokaryotic metabolic networks. However, to control relevant parameters to some 

extent, we took the following steps.  

First, to prevent size variation in metabolic networks from confounding our analysis, we observed 

that the majority (47 of 61) of prokaryotic metabolic networks show a narrow size range between 

1250 and 1350 internal reactions (Figure S16a), and focused our analysis on these metabolic 

networks.  (278 among all 472  possible pairs of these metabolic network pairs have at least one 

offspring that is viable on a new carbon source.)  

Second, we observed that the distribution of parental genotypic distance (D), phenotypic distance 

(ΔP), and phenotypic complexity (||P||) is distinctly bimodal for these 278 parental metabolic 

networks (Figures S16b, S16c, and S16d). No parental metabolic network has intermediate values 

for any of these parameters, such that metabolic networks can be subdivided into “high” and ”low” 

categories for each parameter. Moreover, metabolic networks with high ΔP have low ||P|| (Figure 

S16e). Based on these observations, we subdivided parental metabolic network pairs into 4 

categories: i) high D and low ΔP (high ||P||), ii) low D and low ΔP (high ||P||), iii) high D and high 

ΔP (low ||P||), iv) low D and high ΔP (low ||P||). The number of parental metabolic networks in 

categories (i) through (iv) was 96, 106, 12, and 64, respectively.  Recombinational robustness 

differs little among metabolic networks in these four categories (Figures S17b and S17c), and so 

these parameters do not strongly influence robustness, which is consistent with our observations 

from random viable metabolic networks. In contrast, the fraction of innovative offspring of parental 

metabolic networks in the fourth category (with low D and high ΔP (low ||P||)) is highest, and it is 

lowest for metabolic networks in the first category (with high D and low ΔP (high ||P||)) (Figures 

3c and S17a). This is again consistent with our observations from random viable metabolic 

networks, where parents with low genotypic distance, high phenotypic distance, and low phenotypic 

complexity are more likely to generate innovative offspring. 

 

Text S10:  

Superessential reactions can explain the effect of parental genotypic and 

phenotypic diversity and complexity on metabolic innovation. 

Superessential reactions that are involved in recombination events can explain a series of patterns in 

our data. The first is that a given number of reaction changes can elicit more metabolic innovation 

when caused by recombination rather than by mutation. While recombination adds reactions to a 

recipient that already occur in a (viable) donor, random mutations add reactions unrelated to the 

metabolic network of the donor. Because this reaction universe contains fewer highly super-
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essential reactions than any donor, adding reactions from it is less likely to yield innovations 

(electronic supplementary material, figure S18).  Put differently, when recombination introduces 

new metabolic reactions into an organism, it preferentially introduces reactions that have been 

“pretested” by evolution, because they form part of a related viable genotype. In contrast, mutations 

may introduce reactions that are incompatible with this genotypic background, in the sense that they 

cannot interact productively with it. This observation is consistent with observations from other 

systems, such as proteins [55,56] and model gene regulatory networks [57,58].  

Super-essential reactions can also help explain that the incidence of metabolic innovation rises with 

the number of transferred reactions (Figure 1a, main text). As we showed in the main text, addition 

of a single reaction is usually sufficient to cause metabolic innovation.  By increasing the number of 

transferred reactions, the probability increases that at least one highly superessential reaction is 

transferred, and so the incidence of metabolic innovation increases.  

In addition, the transfer of superessential reactions can help explain that increasing genotypic 

distance between donor and recipient decreases the incidence of metabolic innovation (figure 2a, 

main text). Since the number of highly superessential reactions is limited [59], increasing the 

genotypic distance between donor and recipient decreases the fraction of such reactions that are not 

already in the recipient. In consequence, the incidence of innovative offspring decreases as well.  

Superessential reactions can also help explain why the incidence of innovation increases with 

increasing parental phenotypic diversity ΔP – an increasing number of carbon sources on which one 

but not the other parent is viable. Any phenotypic difference between parents must be caused by the 

set of D reactions that are not shared between the parents. As ΔP increases, an increasing number of 

these non-shared reactions would be involved in viability on at least one of the carbon sources on 

which the parents are viable, and such reactions tend to have a higher super-essentiality index [59]. 

These are also the reactions that will lead to innovation when affected by a recombination event 

(figure S7). Therefore, parents with higher ΔP are expected to have a higher fraction of 

exchangeable reactions with high super essentiality index (Figure 2d in main text), and 

consequently higher fraction of innovative offspring (Figure 2c in main text).     

 

Finally, with increasing phenotypic complexity ||P|| – the number of carbon sources on 

which a metabolic network is viable – of parental metabolic networks with the same 

phenotype, the incidence of innovation by recombination decreases. To explain this 

pattern, consider two genotypically distinct metabolic networks with the same phenotype. 

Their non-shared reactions are less likely to be essential for viability than their shared 

reactions, and so the superessentiality index of the non-shared reactions is expected to be 

low. As ||P|| increases, the fraction of non-shared reactions with high superessentiality 

index is expected to decrease further, exactly as we observed (Figures 2f (main text) and 

S13d), which leads to a lower incidence of innovation (Figures 2e (main text) and S13a). 
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Supplementary figures: 

 
            Figure S1: Distribution of the fraction of randomly sampled viable metabolic networks 

(boxes) that retain viability on glucose (y-axis, note the logarithmic scale) as compared with 

that of E. coli (cyan circles) after deleting a given number of reactions (x-axis). All boxes 

span the 25-th to 75-th percentile. Horizontal bars in a box indicate the median, and 

whiskers indicate maxima and minima. Red asterisks indicate outliers.      
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Figure S2: Mean (bar), and standard error (vertical line) of the fraction of innovative offspring 

(finnov) generated from 1000 random parental metabolic networks viable only on glucose with a fixed 

genotype distance D=100, by adding 5 randomly chosen i) inactive (blocked), ii) active reactions, 

iii) highly superessential, and iv) mixed (including all types) reactions from a donor metabolic 

network to the recipient, followed by deleting 5 randomly chosen reactions from the recipient 

metabolic network. 
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Figure S3: Vertical axes in panels (a), (b), and (c) show mean (bars) and standard error (vertical 

lines) of the fraction of innovative offspring (finnov) generated by recombination (red) versus 

mutation (black), as a function of the number of reaction changes (n, x-axis) among those offspring 

retaining viability respectively on (a) glucose, (b) acetate, and (c) acetate. Parental metabolic 

network pairs are sampled based on the (a) second, (b) second, and (c) first approach (See texts S1e, 

and S2). Vertical axes in panels (d), (e), and (f) show recombinational robustness (red) versus 

mutational robustness (black) , that are defined as the fraction of recombinant (or mutant) offspring 

retaining viability respectively on (d) glucose, (e) acetate, and (f) acetate. Parental metabolic 

network pairs are sampled based on the (d), second (e) second, and (f) first approach (See texts S1f, 

and S2). All boxes span the 25-th to 75-th percentile, horizontal bars in a box indicate the median, 

and whiskers indicate maxima and minima. 
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Figure S4: Relative recombination rates. (a) Metabolic divergence, defined as the normalized 

Hamming distance between the genotype vectors of two metabolic networks, is correlated 

(Pearson’s r=0.60, P<10-40) with sequence divergence, defined as the normalized Hamming 

distance between rpoB (RNA polymerase) sequences of the corresponding pair of species. Each 

point corresponds to one of 512  possible species pairs chosen from 51 distinct species (inset) 

whose pairwise rpoB sequence divergence lies below 0.5 [49]. (b) Relative rate of recombination, 

for a range of related donor species as a function of sequence divergence for a variety of bacterial 

recipients: Bacillus subtilis (blue), Bacillus mojavensis (red), and Streptococcus pneumoniae 

(green). The best log-linear fit is shown (black line), with an intercept of 0.11 and a slope of -18.40. 

Data is based on [50,51]. (c) Relative recombination rate (logarithmic scale, y-axis) as a function of 

metabolic divergence (x-axis) for metabolic network pairs with metabolic divergence lower than 

0.3, chosen among the set of all possible metabolic network pairs (inset). The red line is the result 

of a linear regression with a regression coefficient of -22.57, and an intercept of 0.62. Data in (c) is 

based on the linear relationship from (b), and the metabolic divergence of (a).   
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Figure S5: Phenotypic diversity among innovative offspring. Vertical axis shows mean (bars) 

and standard error (vertical lines) of the phenotypic distance among all pairs of innovative offspring 

generated by recombination (red) versus mutation (black), as a function of the number of reaction 

changes (n, x-axis). Phenotypic distance (ΔP) between a given pair of innovative offspring is 

measured as the number of carbon sources on which only one offspring but not the other is viable 

on. 
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Figure S6: Mean (bar) and standard error (vertical line) of the biomass growth flux of innovative 

offspring (blue), and non-innovative offspring (red), divided by the parental growth rate, as a 

function of the number of recombined reactions (n). For this analysis, we created 1000 random 

metabolic network pairs viable only on glucose and with a difference in growth rate less than 0.25 

percent. Regardless of n, the relative growth rate of non-innovative offspring is approximately equal 

to one, meaning that their growth rate is equal to the parental growth rate. In contrast, the relative 

growth rate for innovative offspring exceeds 1.4 for all n, and so innovative offspring even on the 

original carbon source can grow more than 40 percent faster than their parents.  
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Figure S7: Superessential reactions and metabolic innovation. (a) Mean (bars) and standard 

error (vertical lines) of the superessentiality index of reactions that (i) cause innovation in more than 

100 innovative offspring (left), (ii) cause innovation in fewer than 100 innovative offspring 

(middle), and (iii) never cause innovation (right). (b) Scatterplot of superessentiality index (ISE; y-

axis) versus number of innovations (x-axis) caused by innovation-causing reactions (positive 

correlation: (Pearson’s r=0.47, P<10-9)). Horizontal axis in the inset is shown in logarithmic scale 

to improve visual clarity. (c) The fraction of innovative recombinant offspring (finnov, y-axis) is 

significantly correlated   (Pearson’s r=0.18, P<10-8) with the fraction of reactions with 

superessentiality index higher than 0.5 (fsuper, x-axis) among reactions that can potentially be 

transferred from donor to the recipient.  

When studying metabolic innovation, it is important to distinguish two classes of reactions with 

high superessentiality index. The first comprises reactions with superessentiality index ISE=1, which 

are needed in all viable metabolic networks [59]. These reactions are crucial for retaining viability 

on parental carbon sources, but they play no role in metabolic innovation, because all metabolic 

networks must have them. The second class includes reactions where 0.5< ISE <1. These reactions 

are less crucial for retaining viability on parental carbon sources, but important for gaining viability 

on novel carbon sources. They can be absent in some metabolic networks, because metabolic 

pathways that by-pass them exist, which means that they can be involved in recombinational 

exchange, and thus in the origin of novel phenotypes. Our analysis above highlights the special 

importance of these reactions for metabolic innovation.  
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Figure S8: Effect of parental genotypic diversity on recombinational robustness. The vertical 

axis shows recombinational robustness, that is, the fraction of offspring that retain viability on 

glucose and that are generated by recombination between parental metabolic networks with 

genotypic distance (D), where D is color-coded according to the legend. The horizontal axis shows 

the number of recombined reactions (n). All boxes span the 25-th to 75-th percentile, horizontal 

bars in a box indicate the median, and whiskers indicate maxima and minima. 
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Figure S9: Effect of parental genotypic diversity on recombinational innovation and 

robustness (parental metabolic networks are required to be viable on acetate). (a) the mean 

(bar) and standard error (vertical line) of the fraction of innovative offspring (finnov), generated by 

recombination between parental metabolic networks viable on acetate with genotypic distance (D), 

where D is color-coded according to the legend. The horizontal axis shows the number of 

recombined reactions (n). (b) The vertical axis shows recombinational robustness, that is, the 

fraction of offspring that retain viability on acetate and are generated by recombination between 

parental metabolic networks with genotypic distance (D), where D is color-coded according to the 

legend of panel (a). The horizontal axis shows the number of recombined reactions (n). (c) The 

fraction of reactions with superessentiality index higher than 0.5 (fsuper, x-axis) among reactions that 

can potentially be transferred from the parental donor to the recipient metabolic network, with 

genotypic distance (D, x-axis). Note that parental metabolic networks are required to be viable on 

acetate instead of glucose. All boxes span the 25-th to 75-th percentile, horizontal bars in a box 

indicate the median, and whiskers indicate maxima and minima. 
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Figure S10: Effect of parental phenotypic diversity on recombinational robustness. The 

vertical axes show (a) the fraction of recombinant offspring retaining viability on glucose (i.e. 

robustness), and in (b) the fraction of recombinant offspring retaining viability on all carbon 

sources (not only glucose) on which the corresponding recipient parental metabolic network is 

viable. Offspring were generated by recombination between parental metabolic networks with 

phenotypic complexity ΔP (color-coded as shown in the legend in panel (a)). The horizontal axes 

show the number of recombined reactions (n). Boxes  span the 25-th to 75-th percentile, and 

whiskers indicate maxima and minima. 
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Figure S11: Effect of parental carbon source classes on metabolic innovation. The vertical axes 

in  (a)  show the mean (bar) and standard error (vertical line) of the fraction of innovative offspring 

(finnov), and in  (b) the fraction of recombinant offspring retaining viability on glucose (for those 

recipients viable on glycolytic carbon sources) or acetate (for those recipients viable on 

gluconeogenic carbon sources).  The horizontal axes show the number of recombined reactions (n). 

For this analysis we generated offspring by recombination between parental metabolic networks in 

which (i) the donor was viable on 5 glycolytic carbon sources and the recipient was viable on 5 

other glycolytic carbon sources (blue), (ii) the donor was viable on 5 gluconeogenic carbon sources 

and the recipient was viable on 5 other gluconeogenic carbon sources (green), (iii) the donor was 

viable on 5 gluconeogenic carbon sources and the recipient was viable on 5 glycolytic carbon 

sources (yellow), and (iv) the donor was viable on 5 glycolytic carbon sources and the recipient 

was viable on 5 gluconeogenic carbon sources (red). All boxes span the 25-th to 75-th percentile, 

horizontal bars in a box indicate the median, and whiskers indicate maxima and minima. 
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Figure S12: Effect of parental phenotypic complexity on metabolic robustness (for | 𝑷 | ≤ 𝟏𝟎, 

and ΔP=0). The vertical axes show (a) the fraction of recombinant offspring retaining viability on 

glucose (i.e. robustness), and in (b) the fraction of recombinant offspring retaining viability on all 

carbon sources (not only glucose) on which the corresponding recipient parental metabolic network 

is viable. Offspring were generated by recombination between parental metabolic networks with 

phenotypic complexity ||P|| (color-coded as shown in the legend in panel (a)). The horizontal axes 

show the number of recombined reactions (n). All boxes span the 25-th to 75-th percentile, 

horizontal bars in a box indicate the median, and whiskers indicate maxima and minima  
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Figure S13: Effect of parental phenotypic complexity on metabolic innovation (for 𝑷 > 𝟏𝟎, 

and ΔP=10). The vertical axes show in (a) the mean (bar) and standard error (vertical line) of the 

fraction of innovative offspring (finnov), in (b) the fraction of recombinant offspring retaining 

viability on glucose (i.e. robustness), and in (c) the fraction of recombinant offspring retaining 

viability on all carbon sources (not only glucose) on which the corresponding recipient parental 

metabolic network is viable. Offspring were generated by recombination between parental 

metabolic networks with phenotypic complexity ||P|| (color-coded as shown in the legend in panel 

(a)). The horizontal axes show the number of recombined reactions (n). (d) Distribution of the 

fraction of reactions with superessentiality index exceeding 0.5 (y-axis) among the reactions that 

can potentially be transferred from the parental donor metabolic network to the recipient, with 

phenotypic complexity (||P||, x-ais). All boxes span the 25-th to 75-th percentile, horizontal bars in 

a box indicate the median, and whiskers indicate maxima and minima. 
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Figure S14: Effect of genotypic complexity (metabolic network size (||G||)) on recombinational 

innovation. Vertical axes in panels (a), and (b) show the fraction of recombinant offspring 

retaining viability (i.e. robustness, vertical axis), on (a) glucose, and (b) acetate, are shown as a 

function of the number of recombined reactions (n). All boxes span the 25-th to 75-th percentile, 

horizontal bars in a box indicate the median, and whiskers indicate maxima and minima. Panels (c), 

and (d) show mean (bar) and standard error (vertical line) of the fraction of innovative offspring 

(finnov), generated by recombination between parental metabolic networks required to be viable on 

(c) glucose, and (d) acetate, with size (||G||) color-coded as in the legend, are shown as a function 

of the number of recombined reactions (n). 
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Figure S15: (a) Fraction of robust recombinant offspring, i.e., offspring retaining viability on all 

the carbon sources that the recipient parental metabolic network is viable on (y-axis), as a function 

of the number of recombined reactions (x-axis). Offspring were generated by i) linkage-based 

recombination between prokaryotic metabolic networks (black), and ii) free recombination between 

prokaryotic metabolic networks (gray). All boxes span the 25-th to 75-th percentile, horizontal bars 

in a box indicate the median, and whiskers indicate maxima and minima. (b) Mean (bar) and 

standard error (vertical line) of the fraction of innovative offspring (finnov) generated by (i) linkage-

based recombination (black), and (ii) free recombination between prokaryotic metabolic networks 

(gray). (c) Mean (bars) and standard error (vertical lines) of the superessentiality index of reactions 

that cause innovation (left) as compared with those never causing innovation (right). (d) The 

fraction of innovative recombinant offspring (finnov, y-axis) is significantly associated (Pearson’s 

r=0.13, P<10-5) with the fraction of reactions with superessentiality index higher than 0.5 (x-axis) 

among the set of reactions that can potentially be transferred from the parental donor to the 

recipient metabolic network. 
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Figure S16: Distribution of parental genotypic and phenotypic features among prokaryotic 

metabolic networks. (a) Histogram of the number of metabolic networks with a given metabolic 

network size (approximated by the number of internal reactions) specified on the x-axis. Vertical 

axes in panels (b), (c), and (d) show the number of parental metabolic network pairs with a given b) 

genotypic distance (D), c) phenotypic distance (ΔP), and d) phenotypic complexity (||P||), as 

specified on the x-axes. (e) Each circle represents a given parental metabolic network pairs with a 

given phenotypic distance (ΔP, x-axis), and phenotypic complexity (||P||, y-axis). 
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Figure S17: The vertical axes show (a) mean (bar) and standard error (vertical line) of the fraction 

of innovative offspring (finnov), (b) robustness to linkage-based, and (c) robustness to 

“free”recombination. Here we define robustness as the fraction of recombinant offspring retaining 

viability on at least one of the carbon source(s) on which the parental recipient metabolic networks 

are viable. Offspring are generated by recombination between prokaryotic parental metabolic 

networks with i) high genotypic distance (D>40), low phenotypic distance (ΔP<30), and high 

phenotypic complexity (||P||>60) (blue, N=96 parental pairs), ii) high genotypic distance (D>40), 

high phenotypic distance (ΔP>40), and low phenotypic complexity (||P||<40) (green, N=12 parental 

pairs),  iii) low genotypic distance (D<30), low phenotypic distance (ΔP<30), and high phenotypic 

complexity (||P||>60) (yellow, N=106 parental pairs), and iv) low genotypic distance (D<30), high 

phenotypic distance (ΔP>40), and low phenotypic complexity (||P||<40) (red, N=64 parental pairs). 
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Figure S18: The fraction of reactions with superessentiality index higher than 0.5 (fsuper, x-axis) 

among the set of reactions that can potentially be transferred to the recipient metabolic network via 

recombination (red box) versus random mutation (black box). Boxes span the 25-th to 75-th 

percentile, horizontal bars in a box indicate the median, and whiskers indicate maxima and minima.  

 

 


