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Appendix A. Approximate dynamics of growth rate in terms of maladaptation x(t)584

Our equation (2) shows the Malthusian growth rate r(t) is the sum of the maximum Malthusian growth585

rate rmax, the variance load LG, and the lag load LL with rmax = log Wmax, LG = log
��

S(εc(t))ω2
�
,586

and LL = S(εc(t))
2 x(t)2,587

log W̄ (t) = rmax + LG(t) + LL(t). (A.1)

Below, we derive an approximation to this where the only time dependence is through the squared588

maladaptation x(t)2 = (z̄(t) − θ(εs(t)))2.589

Appendix A.1. Strength of selection590

The strength of selection, S(εc(t)), appears in both the variance load LG and lag load LL but depends591

inversely on the phenotypic variance, which changes due to stochastic variation in the environmental592

cue, which affects the phenotype. Therefore, we approximate the expectation of the strength of selection593

using a Taylor series:594

E[S(εc(t))] =
�
E

�
σ2

z(εc(t))
�

+ ω2
�−1

− Var(σ2
z )

2E[σ2
z ]3 + O(Var(σ2

z )3

E[σ2
z ]4 )

≈
�
E

�
σ2

z(εc(t))
�

+ ω2
�−1

.

Expanding σ2
z using equation (1) of the main text and taking expectations, we get the approximate595

expected strength of selection Sδ, assuming δ � σ2, which we denote596

Sδ = E[S(εc(t))] ≈
�
σ2

a + σ2
b (δ2 + σ2

c ) + σ2
e + ω2

�−1
. (A.2)

Where we use the E[εc(t)2] = Var[εc(t)] + E[εc]2 and the mean environmental shift δ.597
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Appendix A.2. Variance load598

The first term of equation (A.1) is the phenotypic variance load at time t599

LG(t) = 1/2 log S(εc(t)) + 1/2 log ω2.

Taking expectations, and using Taylor series:600

E[LG] = 1/2 log ω2 + 1/2E [log S(εc(t))]

≈ 1/2 log ω2 + 1/2 log (E [S(εc(t))]) − Var(σ2
z )

2E[σ2
z ]2

≈ 1/2 log ω2 + 1/2 log (E [S(εc(t))])

≈ 1/2 log ω2 + 1/2 log Sδ

where the right hand side of the last line is the approximate expected variance load after using601

E [S(εc(t))] ≈ Sδ from (A.2).602

Appendix A.3. Lag load603

The second term of equation (A.1) is the lag load at time t, LL(t). Here we show that in expectation,604

this load has two components, a stochastic load and a shift load. To derive expressions for these, we605

take the expectation of the entire second term:606

E[LL(t)] =E
�

S(εc(t))
2 x(t)2

�
,

=E
�

S(εc(t))
2

�
E

�
x(t)2

�
+ Cov

�
S(εc(t))

2 , x(t)2
�

,

where we used the identity Cov [ab] = E[ab] − E[a]E[b]. The covariance in the final line represents how607

stochastic changes in environment (and optimum) that cause maladaptation also cause either larger or608

smaller phenotypic variance, depending on the direction, due to our assumption that genetic variance609

in plasticity increases with δ. Furthermore, under weak stabilizing selection, variance in z contributes610

little to the strength of selection S. For both these reasons, we expect this covariance to be small.611

If we neglect the covariance term and use the approximate variance load from Appendix A.2 (Sδ in612

main text) the expectation is E[LL(t)] ≈ Sδ
2 E

�
x(t)2�

. Removing the expectation, we use this as to613

approximate the dynamics of the lag load614

LL(t) = Sδ

2 x(t)2.
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Appendix A.4. Full dynamics615

Bringing together the approximations developed above, we have an expression for the growth rate,616

where all components except the maladaptation are averaged over the fluctuations,617

r(t) ≈ rmax + 1/2 log(ω2Sδ) − Sδ

2 x(t)2. (A.3)

From this, we can obtain both the average long-run growth rate, by taking an expectation to obtain618

r̄(t) ≈ rmax + 1/2 log(ω2Sδ) − Sδ
2 (x̄(t)2 + σ2

x(t)) (because E[x2] = x̄2 + σ2
x). This shows the lag load619

consists of two loads. The first, expected load from reduction in log mean fitness due to maladaptation620

of the mean trait relative to the mean optimum in the new environment, is “shift load” −Sδ
2 x̄(t)2.621

The second, expected load due to reduction in log mean fitness due to random fluctuations in the622

environment, is “stochastic load” −Sδ
2 σ2

x(t). We can also analyse the variance in trajectories of r(t),623

and thus population growth because log N(t + 1) = r(t) + log N(t).624

Both of our subsequent analyses require computing the dynamics of mean squared maladaptation x̄(t)2625

and the variance in maladaptation σ2
x(t).626

Appendix B. Dynamics of shift load depend on mean maladaptation x̄(t)2627

In this section, we derive the dynamics of the shift load −Sδ
2 x̄(t)2 under the approximation introduced628

by Lande [9] that separates adaptation into a fast Phase 1 and a slow Phase 2. We demonstrate that629

the population is approximately perfectly adapted in mean trait value by the end of Phase 1. We first630

write down the mean trait dynamics without the approximation, then describe the timescales of the631

two phase approximation, and derive approximate dynamics of the shift load owing to maladaptation in632

the mean trait.633

Appendix B.1. Mean trait634

Trait dynamics follow the standard equation Δy = Gβ, where y = (ā, b̄)T , G is the additive genetic635

variance-covariance matrix, and β is the selection gradient. The selection gradient on reaction norm636

height and slope obtained by taking the log-gradient of W̄ [from the equation for fitness above eq. (2)637

of main text; 9] is638

β = −S(εc(t))




ā(t) − A + b̄(t)εc − B�s�
ā(t) − A + b̄(t)εc − B�s

�
εc


 . (B.1)
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With a constant additive genetic variance-covariance matrix (G matrix), the change per generation in639

ā(t) and b̄(t) is given by640

Δ




ā(t)

b̄(t)


 =




σ2
a 0

0 σ2
b


 β.

In the new environment, the expectation of the change per generation conditional on ā and b̄ is641

Δ



E(ā(t))

E(b̄(t))


 = E[Gβ]

≈ −SδG




ā − A + b̄δ − Bδ

E[(ā − A)εc(t)] + E[b̄ε2
c(t)] − BE[εcεs]


 ,

where the approximation comes from the treating E[S(εc(t))] as a constant. We assume no environmental642

tracking by phenotypic plasticity, i.e., Cov[b̄t, εc(t)2(t)] = 0 so E[b̄tε
2
c ] = E[b̄t]E[εc(t)2(t)], or by reaction643

norm elevation, i.e., Cov[āt, εc(t)] = 0 so E[āt, εc(t)] = E[āt]E[εc(t)]. Note that the tracking of the644

environment by the reaction norm elevation could be included, reducing the expected mean plasticity645

[28], but we neglect it here. However, we do allow for environmental tracking when computing the lag646

load (below). Then, using E[ε2(t)] = δ2 + σ2 and E[εc(t)εs] = δ2 + ρσ2, the expectation of the change is647

approximately648

E


Δ




ā(t)

b̄(t)





 ≈ −SδG







1 δ

δ δ2







ā(t) − A

b̄(t) − B


 +




0

(b̄(t) − ρB)σ2





 . (B.2)

The approximation is exact if Cov[b̄t, εc(t)2(t)] = Cov[āt, εc] = 0. Note that this differs from Lande [9],649

where this relation was treated as exact [28].650

We solve for the explicit trait dynamics relative to the long-run equilibrium state [9]. Setting selection651

gradient β in equation (B.1) to zero, solve for long run trait values652




ā∞

b̄∞


 =




A + Bδ(1 − ρδ)

Bρδ


 (B.3)

One can show, with some algebra [9], the one-generation change (B.2) is the product -SδG̃z(t), where653

z(t) is the difference between mean trait values and their long-run equilibrium values computed above654

and655

G̃ =




σa
2 σa

2δ

σb
2δ σb

2δ2
�
1 + σ2

δ2

�


 .
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The expected dynamics can then be expressed in terms of the eigenvectors and eigenvalues of the matrix656

G̃ [9, 16],657

z(t) = c1e1 (1 − Sδλ1)t + c2e2 (1 − Sδλ2)t , (B.4)

where ei and λi are eigenvectors and eigenvalues of G̃ respectively and ci terms are constants determined658

by initial conditions.659

Appendix B.2. Approximation for a large environmental shift660

As in earlier work, we consider the case where the shift in the mean environment is very large relative to661

background noise, σ2

δ2 � 1. Here, we initially write down the eigenvalues and eigenvectors of G̃ to first662

order in this small term, but thereafter follow Chevin and Lande [16] in deriving approximate dynamics663

to leading order. To first order in σ2

δ2 , the eigenvalues are664




λ1

λ2


 =




�
σ2

a + δ2σ2
b

�
+ δ2σ2

b
σ2

δ2 φ

σ2
a

σ2

δ2 φ


 ,

and the eigenvectors are665

e1 =




δ (1 − φ)
�
1 − σ2

δ2 φ
�

φ


 , e2 =




δ
�
1 + σ2

δ2 φ
�

−1


 .

These match the calculations of [9] up to a constant of Sδ (equivalent to γ in Lande [9]).666

Assuming the population has long evolved in an environment with predictability ρ, the initial trait667

values are (ā0, b̄0) = (A, ρB). Using (B.3), the initial conditions in the re-centred trait x are668

z0 =




−Bδ(1 − ρδ)

B(ρ − ρδ)




To leading order, the constants are669




c1

c2


 =




−B(1 − ρ)

−B(ρ(1 − φ) − ρδ + φ)




Appendix B.2.1. Timescales of phases 1 and 2670

If most phenotypic variation in the new environment is due to variance in plasticity, φ ≈ 1, and the shift671

in the mean environment is large (relative to background variability as in our approximation above),672

the trait change takes place in two phases that occur at very different timescales [9]. When selection is673
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weak, geometric terms in (B.4) can be replaced by exponential terms e−tSδλi , indicating the relative674

timescales of change along the eigenvectors ei are given by ti ≈ 1
λi

. The ratio t1/t2 ≈ φ(1 − φ)σ2

δ2 , and675

when much of the additive genetic variation is due to variation in plasticity so φ ≈ 1, then t1/t2 ≈ σ2

δ2 ,676

which is small in the approximate case we treat. Then, change along e1 occurs very fast relative to677

change along e2 [9]. At the end of Phase 1, e−tSδλ1 ≈ 0 while e−tSδλ2 ≈ 1 Thus, the approximate state678

of the system relative to its final state, i.e., (B.3), is c2e2. The trait values, at the end of Phase 1 are,679

to leading order,680

E







āO(t1)

b̄O(t1)





 ≈




A + Bδ(1 − ρ)(1 − φ)

B(ρ + φ(1 − ρ))


 (B.5)

The effect of the initial environment occurs through predictability ρ, which under our assumption that681

the population is adapted initially also determines the initial mean plasticity b̄0 = ρB. We see the682

initial plasticity has a strong influence at the end of Phase 1 only if φ is small. When φ is large, the683

plasticity at the end of Phase 1 is close to “perfect” i.e. bO(t1) ≈ B. Note also that to first order, the684

mean phenotype is perfectly adapted z̄O(t1) ≈ A + Bδ.685

Where the extinction risk is calculated at half of the characteristic timescale of Phase 2, i.e., tbef = φδ2

2σ2
aσ2686

Appendix B.2.2. Trait dynamics during Phase 1687

Throughout Phase 1, the term (1 − Sδλ2)t ≈ 1, so the dynamics are given by688

z(t) = c2e2 + c1e1 (1 − Sδλ1)t .

We again replace the geometric term with an exponential (valid for weak selection) and re-normalize.689

To leading order, after some rearranging, the right hand side of the expected dynamics is690

E







ā(t)

b̄(t)





 =

�
1 − e−tSδλ1

�
B(1 − ρ)




δ(1 − φ)

φ


 +




A

Bρ


 , (B.6)

which is analogous to the result of Chevin and Lande [Supporting Information, eq A6; 16]. As in that691

paper, we compute the eigenvalue only to leading order in σ2

δ2 so λ1 ≈ σ2
a + δ2σ2

b which is equivalent to692

the expression σ2
a

1−φ used in Chevin and Lande [16].693

Appendix B.2.3. Trait dynamics during Phase 2694

During Phase 2, the term (1 − Sδλ1)t ≈ 0, so the dynamics are given by695

z(t) = c2e2 (1 − Sδλ2)t .
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Then, using (B.3) and again replacing the geometric term with an exponential (valid for weak selection)696

and re-normalizing, the expected dynamics to leading order in σ2

δ2 during Phase 2 are697

E







ā(t)

b̄(t)





 =




A + Bδ(1 − ρδ)

Bρδ


 − B(ρ − ρδ + φ(1 − ρ))




δ

−1


 e−tSδσ2

a
σ2

δ2 φ, (B.7)

where we have used λ2 ≈ σ2
a

σ2

δ2 φ. Note that for t = O(t1), this exponential term equals 1 and this698

equation agrees with (B.5).699

Appendix B.3. Dynamics of expected maladaptation during Phase 1700

We derive the expected maladaptation of the mean trait during an initial phase of evolutionary rescue,701

focusing on a case where the size of the environmental shift is large and much of the additive genetic702

variance in the new environment owes to genetic variance in reaction norm slope. The shift load703

(computed in Appendix A) is Sδ
2 x̄(t)2. After we compute the dynamics of the mean maladaptation704

x̄(t)2, we will have an approximation for dynamics of the shift load,705

x̄(t)2 = E[x(t)]2 =
�
E[ā(t)] − A + E[b̄(t)εc(t)] − BE[εs]

�2

≈
�
E[ā(t)] − A + δ(E[b̄(t)] − B)

�2
.

The last equation comes from assuming the covariance between reaction norm slope and the cu-706

ing environment is small relative to the mean value of the new environment. Then, E[b̄(t)εc(t)] ≈707

E[b̄(t)]E[εc(t)] = δE[b̄(t)] in the new environment. This is reasonable when σ2

δ2 � 1. After using (B.6)708

and some algebra, we obtain709

x̄(t)2 ≈ B2δ2(1 − ρ)2e
−2tSδ

σ2
a

1−φ . (B.8)

Where we use φ to represent the proportion of additive genetic variation in the new environment due to710

variation in plasticity,711

φ = δ2σ2
b

σ2
a + δ2σ2

b

.

Equation (B.8) indicates the shift load goes to zero as t increases.712

Appendix C. Stochastic load: variance in maladaptation σ2
x at stationarity713

Appendix C.1. Perceived environment with fixed plasticity714

A tactic from Michel et al. [35] aids in calculating the variance as a function of fixed plasticity. We define715

the perceived optimum ψ(t) as the difference between the optimum and the mean trait after accounting716
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for the plastic response ψ(t) = Bεs(t) − b̄∗εc(t) so that x(t) = ā(t) − ψ(t). Then, the perceived variance717

in the optimum is718

σ2
ψ(b̄∗, ρδ) = σ2(B2 + b̄∗(b̄∗ − 2Bρδ)), (C.1)

and autocorrelation in the perceived optimum is719

Tψ(b̄∗, ρδ) = − log
�
ρ

1/τ
δ

�
1 − Bb̄∗(ρ−1

δ − ρδ)
B2 + b̄∗(b̄∗ − 2Bρδ)

��−1

(C.2)

[35]. We can then express maladaptation in terms of the intercept and perceived environment as720

x(t) = ā(t) − ψ(t).721

Appendix C.2. Variance at stationarity722

We derive an approximation for variance in maladaptation under stationarity, which we denote σ2
x.723

In practice, this means we solve for the effect of fluctuations on maladaptation after a long time, we724

assume the mean maladaptation is zero, and we also assume fixed mean plasticity b̄∗. We are interested725

in finding an asymptotic expression for the variance of this term.726

Assuming fixed plasticity, all change in the trait occurs through change in the reaction norm height,727

Δz̄ = Δā(t) = −Sδσ2
ax(t).

When selection is weak relative to genetic variance in reaction norm height, and the fluctuations in the728

perceived environment are not large, evolution can be approximated in continuous time [22, 35] as729

dx

dt
+ Sδσ2

ax = −dψ

dt
,

where x = ā(t) − ψ. For t � t1 and constant genetic variance σ2
a, the solution to this differential730

equation is731

ā(t) = Sδσ2
a

� ∞

0
exp

�
−Sδσ2

aτ
�

ψ(t − τ)dτ. (C.3)

What remains is to compute Var[x(t)]. Using our quasi-stationarity assumption, we need only compute732

E[x(t)2] = −2E[ā(t)ψ(t)] + E[ā(t)2] + E[ψ(t)2]. The last of these expectations is simply the variance of733

the perceived environment σ2
ψ. The first and second expectations integrate over time (from eq. C.3),734

−2E[ā(t)ψ(t)] = −2Sδσ2
a

� ∞

0
exp

�
−Sδσ2

aτ
�
E[ψ(t)ψ(t − τ)]dτ

E[ā(t)2] = S2
δ σ4

a

� ∞

0

� ∞

0
exp

�
−Sδσ2

a(τ1 + τ2)
�
E[ψ(t − τ1)ψ(t − τ2)]dτ1dτ2.
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Because ψ is a linear combination of autoregressive Gaussian processes εc(t) and εs, we can ex-735

press the expectations involving ψ in terms of autocovariance E[ψ(t), ψ(t − τ)] = σ2
ψ exp(−τ/Tψ) and736

E[ψ(t − τ1), ψ(t − τ2)] = σ2
ψ exp(−|τ1 − τ2|/Tψ). In both of these expressions, Tψ is the characteristic737

autocorrelation time of the perceived environment ψ.738

The first expectation is739

−2E[ā(t)ψ(t)] = −2Sδσ2
aσ2

ψ

� ∞

0
exp

�
−τ(Sδσ2

a + 1/Tψ)
�

dτ,

= −2
TψSδσ2

aσ2
ψ

(TψSδσ2
a + 1) .

The second expectation involves an absolute value term, meaning the integral must be taken in two740

parts, and evaluates to741

E[ā(t)2] =S2
δ σ4

a

� ∞

0

� ∞

0
exp

�
−Sδσ2

a(τ1 + τ2)
�

σ2
ψ exp(−|τ1 − τ2|/Tψ)dτ1dτ2,

=Sδσ2
aσ2

ψ

Tψ

(TψSδσ2
a + 1)

Combining these expressions,742

E[(ā(t) − ψ(t))2] = σ2
ψ

�
−2 TψSδσ2

a

(TψSδσ2
a + 1) + Sδσ2

a

Tψ

(TψSδσ2
a + 1) + 1

�

=
σ2

ψ

(TψSδσ2
a + 1)

�
TψSδσ2

a + 1 − 2TψSδσ2
a + TψSδσ2

a

�

σ2
x(b̄∗, δ, ρδ) :=

σ2
ψ

(TψSδσ2
a + 1) ,

where the last line defines the variance we sought to calculate. As our notation emphasizes, this load743

depends primarily on the level of plasticity b̄∗ and the size of the shift δ. Note that this formula matches744

Lande and Shannon [22].745

Appendix C.3. Quasi-stationary variance over Phase 1746

The variance in maladaptation σ2
x depends on variance σ2

ψ(b̄∗, ρδ) from eq. (C.1) and characteristic747

timescale Tψ(b̄∗, ρδ) from eq. (C.2) of perceived fluctuations in the perceived optimum (given autocorre-748

lation ρδ at timescale τ in the true optimum), as749

σ2
x(b̄∗, δ, ρδ) =

σ2
ψ(b̄∗, ρδ)

�
Sδσ2

aTψ(b̄∗, ρδ) + 1
� . (C.4)
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After a long time, on the timescale of Phase 1, t1, the mean maladaptation is zero, as shown in eq. (B.8),750

and the variance in maladaptation is stationary. At this point, as shown in Appendix B, plasticity is at751

its approximate maximum bmax = B(ρ + φ(1 − ρ)). It remains as this value for a long time (on the scale752

of Phase 1; although eventually decays to the predictability ρδ according to the dynamics in Appendix753

B.2.3) and so we evaluate (C.4) at bmax to determine persistence in (3). Using the “quasi-stationary”754

approximation that fluctuations achieve stationarity while b̄∗ = bmax, we evaluate σ2
x(bmax, δ, ρδ).755

Note that we could also evaluate (C.4) at any time t during Phase 1,756

σ2
x(t) = σ2

x(b̄(t), δ, ρδ), (C.5)

by using dynamics for reaction norm slope b̄(t) from eq. (B.6). Doing so assumes for each change in b̄757

over Phase 1 the stochastic variance in maladaptation achieves stationarity. No doubt this is inaccurate758

in some cases, but it is a tractable analytical approximation for the variance. Using this approximation759

over the parameter ranges we examine in this paper, the stochastic load does not change much with760

changes in plasticity (Figure S5). Accordingly, we use the simpler approximation above, and evaluate761

the variance at bmax for all time.762

Appendix D. Simulation763

In simulation, we implement the autocorrelated environment as an autoregressive function with cor-764

relation κ on a timescale with n = ceiling[ 1
τ ] time units in a generation. The process simulated765

is766

xi = κxi−1 +
�

1 − κ2ξσ,

where ξ is a unit normal random variable. If x and ξ are independent (as generally assumed in767

autoregressive functions) and the process is stationary, it has variance σ2 (and mean 0). Further, the768

covariance of observations one time unit apart is κσ2 and the correlation of such pairs of observations is769

κ. For observations n time units apart, the correlation becomes κn. Thus, using the n time steps per770

generation, the simulated process relates to the exponential autocovariance function given above as771

κn = ρ1/τ . Accordingly we set the correlation within simulations equal to that of the environmental772

predictability at timescale τ , i.e., κ = ρ.773
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Appendix E. Alternative assumptions of reaction norm shape774

If, instead of assuming phenotypic variance in the reference environment is minimal, we assume the775

environment is shifted to an environment where the variance is minimal, then the additive genetic776

variance of the expressed trait z(t) increases quadratically away from the novel environment εc(t) = δ.777

Without the assumption that variance is minimized in the reference environment, the additive genetic778

covariance between a and b is non-zero in the reference environment [9]. From that paper, the full form779

of (1b) is σ2
z(εc(t)) = σ2

a + 2σabεc(t) + σ2
b ε2

c(t) + σ2
e , where σab is the additive genetic covariance between780

reaction norm slope and variance in the reference environment. (With the assumption of variance781

minimized at εc = 0, σab = 0, and the covariance in any other environment is Cov(a, b) = σ2
b εc.) Then782

σ2
z(εc(t)) is minimized in the environment ε∗

c = −σab/σ2
b [9].783

Thus, assuming minimal variance in the new environment implies σab = −δσ2
b . The mean of the784

expressed trait value z(t) before selection is the same as in (1), but the variance differs, giving785

z̄(t) = ā(t) + b̄(t)εc(t) (E.1a)

σ2
z(εc(t)) = σ2

a − 2σ2
b δεc(t) + σ2

b ε2
c(t) + σ2

e , (E.1b)

which assumes the additive genetic variances are constant in time.786

In this case, the expressed trait z and the slope b have covariance Cov(z, b) = (εc(t) − δ)σ2
b and so, with787

εc(t) ≈ δ there is approximately zero covariance between the trait and reaction norm slope, and so788

direct selection on the trait results in very weak selection on reaction norm slope.789

Consequently, the transient increase in plasticity should not be expected without the assumed increase790

of genetic variance in novel environments. Given the uncertainty described by McGuigan and Sgro [12]791

concerning the effects of stress (i.e., novelty) on additive genetic variance, theory could usefully outline792

empirical possibilities. The derivation of (E.1) is just the beginning. It does show, however, that the793

theory presented in the main text is not completely general. No theory is unless it thoroughly considers794

the possible relationships between additive genetic variance and environmental shifts. In the main text,795

we analyse only one set—where many are possible—of assumptions on how plasticity, demography,796

and evolution interact during evolutionary rescue. However, this set of assumptions appears met by797

empirical reality in at least some cases (see main text, "Assumptions and Caveats").798
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Appendix F. A small shift and large additive variance in plasticity σ2
b799

We expect our approximation to perform best when a large proportion of additive variance in the novel800

environment is due to variance plasticity (i.e., φ ≈ 1). This occurs in our model either when σ2
b (GxE)801

is large in the reference environment, or when a large shift in the mean environment causes quadratic802

increases in additive genetic variance (as δ2σ2
b ).803

In the former case, the population has inherently high genetic variability in plasticity, and our assumptions804

imply a relatively large changes in additive genetic variance for even small shifts in the mean environment.805

In the latter case, increased additive genetic variance is driven by the novelty of the environment.806

Simulations reveal that despite both cases increasing φ, the approximation does not perform equiva-807

lently well. If the mean shift is small then the approximation for the threshold between decline and808

persistence performs poorly as additive variance in plasticity increases (δ = 1.5, Figure S4). In fact, the809

approximation appears to perform better for lower values of φ.810

Appendix G. Stochastic House of Cards Approximation811

Figure S3 shows effects of genetic variance changing with population size according to a modified812

Stochastic House of Cards (SHC) approximation: σSHC(σ2
g) = σ2

g/(1+ ω2+σ2
e

µ2Ne
) and Ne ≈ 2R0N/(2R0−1).813

Parameters and panels are as in Figure 2 with the additional parameter µ2, which is the variance814

of the effect of new mutations, fixed at µ2 = 0.005. For the un-modified SHC the numerator, σ2
g , is815

replaced by a term that includes the per-generation total mutation rate Vm and the strength of selection:816

2Vm(ω2 + σ2
e) [see 23, who used α2 instead of µ2]. Thus, the modified version we use effectively assumes817

that larger initial values of σ2
a and σ2

b reflect populations with larger mutation rates.818

Appendix H. Supplementary Figures819
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Figure S1: Dynamics of growth rate (log W̄ , A-C), and population size (log N , D-F) versus time (in generations, log scale)

under evolutionary rescue for three scenarios of environmental shift δ and predictability ρδ following the shift: a modest

shift and low predictability (δ =2.5, ρδ =0.3: A,D), a modest shift and high predictability (δ =2.5, ρδ =0.7: B,E), and a

large shift and high predictability (δ =5, ρδ =0.7: C,F). Each panel shows 10 replicate simulations of 1500 generations

(thin black lines), the mean of these simulations (thick grey line), and predicted trajectories of the mean (solid black line);

also shown for comparison are predictions without amplifying effect of plasticity on stochastic fluctuations (dash-dot line).

The dashed vertical lines indicate the time during Phase 1 at which we compute quasi-extinction before rescue (tbef ; see

Figure 1). Parameters: initial predictability ρ = 0.5, additive genetic variance in plasticity σ2
b = 0.05; other parameters as

in Figure 2. Greater shift size implies larger increase of additive genetic variance in the new environment; for a modest

shift (A,B, D,E) our model assumes additive genetic variance increases by a factor of 4, for a large shift, (C,F) the

increase is by a factor of 14.
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Figure S2: Top row: Stochastic load with plasticity plotted against ρδ for various values of relative plasticity α. Bottom

row: Stochastic load without plasticity (i.e., load component for “positively auto-correlated fluctuations" from Table 1

of Lande and Shannon 1996) plotted against ρδ for equivalent values of total additive genetic variance. Specifically, the

additive genetic variance in reaction norm elevation is adjusted to value σ̂2
a, set either to its intial value (σ̂2

a = σ2
a, grey line)

or to the total additive genetic variance in the new environment with plasticity in the top row (σ̂2
a = δ2σ2

b + σ2
a, black line).

Also, note that relative plasticity α has no effect in the bottom row). Other parameters are σ2
b =0.05, S̃(δ) =0.0446429,

B =2, σ2 = 1, σ2
a =0.1.
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Figure S3: Figure 2 but with genetic variance changing with population size according to a modified Stochastic House

of Cards (SHC) approximation: σSHC(σ2
g) = σ2

g/(1 + ω2+σ2
e

µ2Ne
) and Ne ≈ 2R0N/(2R0 − 1). Parameters and panels are as

in Figure 2 with the additional parameter µ2, which is the variance of the effect of new mutations, fixed at µ2 = 0.005.

For the un-modified SHC the numerator, σ2
g , is replaced by a term that includes the per-generation total mutation rate

Vm and the strength of selection: 2Vm(ω2 + σ2
e) [see 23, who used α2 instead of µ2]. Thus, the modified version we use

effectively assumes that larger initial values of σ2
a and σ2

b reflect populations with larger mutation rates.
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Figure S4: Potential for evolutionary rescue over a range of values for post-shift predictability ρδ versus genetic variance

in plasticity the reference environment σ2
b (A,B). Within panels, columns show low (ρ = 0.3) and high (ρ = 0.7) initial

predictability. A Growth rates at the end of rescue are computed from numerical simulations as the stochastic growth rate

λs between tbef and taft spanning Phase 1 and 2 (diverging heatmap: white 0, blue positive, and red negative). Black

lines indicate the threshold between decline (-) and persistence (+) based on the analytical approximation (r̄1 = 0, eqn 3

; solid line) and stochastic simulations (λs = 0, dotted black line). B Simulated probability of quasi-extinction before

rescue. Quasi-extinction is defined at tbef as illustrated in Figure 1. Shift size is set to δ = 2.5 (so that additive variance

increases by a factor of 4 in the new environment when σ2
b =0.05). Other parameters: initial population size N(0) = 104,

selection strength ω2 = 20, developmental delay τ = 0.2, additive genetic σ2
a = 0.1 and environmental σ2

e = 0.5 variances,

and maximum fitness ermax = 1.1.
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Figure S5: Quasi-stationary stochastic load plotted against time during Phase 1 (up to the characteristic timescale of

Phase 2 t2) for the same values of relative plasticity α as Figure S2. While changes in the magnitude of stochastic load

over Phase 1 are not large, and in some cases not apparent, when the change reduces (or increases) the mismatch the

stochastic load follows (e.g., bottom right or top right panel). Other parameters are σ2
b =0.05, S̃(δ) =0.0446429, B =2,

σ2 = 1, σ2
a =0.1.
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Figure S6: Variance load plotted against σ2
b for various values of δ. Other parameters are B =2, σ2 = 1, σ2

a =0.1. Note

predictability after shift ρδ does not affect variance load.
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