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A comparison of automated static dark stimuli with
the Humphrey STATPAC program in glaucomatous
visual field loss

Erkan Mutlukan

Abstract
Visual field examination is conventionally
performed with bright stimuli on a dark back-
ground. Dark stimuli on a bright background,
however, may provide different information as
light increases and decreases are subject to
parallel processing in the visual pathway.
Twenty five eyes with primary open angle
glaucoma and visual field loss were examined
with the Humphrey visual field analyser thres-
holding program 30-2 and the computer
assisted moving eye campimeter (CAMEC)
using static dark stimuli at four different
Weber contrast levels of -10 (n=9), -22
(n=25), -37 (n=14), and -76% (n=25) on a
cathode ray tube with a background luminance
of 10 cd/m2. The cumulative results obtained
with STATPAC 'pattern deviation' empirical
probability maps and the results from each
contrast of the dark stimulus at identical test
locations were compared at eccentricity annuli
bands of 4-9, 10-20, and 21-28 degrees. Dark
stimuli of lower contrast provided higher
abnormal point detection rates. Furthermore,
visual field defects to the low contrast dark
stimuli were more extensive than those to the
luminous stimuli. In conclusion, dark stimuli
allowed the delineation between glaucomatous
field defects and the normal regions in the
central visual field.
(BrJ Ophthalmol 1994; 78: 175-184)
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Visual field examination is universally per-
formed with luminous stimuli on a relatively dim
background. However, the visual system is
thought to have differential sensitivity to both
increases and decreases in light intensity as the
end result of parallel processing in 'on' and 'off'
pathways respectively. These pathways start at
the bipolar cell layer' and project to central visual
structures through the on centre and off centre
retinal ganglion cells2-7 to provide a maximum
contrast sensitivity function.89 'On' and 'off'
pathways display several morphophysio-
logical,'5-'8 psychophysical,'9123 and electro-
physiological asymmetries.2425 The smaller
number of off centre retinal ganglion cells49 1126 27

suggests a smaller functional reserve (photo-
receptor ganglion cell cortical neuron channels)
in the visual system. Low contrast dark stimuli
on low photopic and mesopic backgrounds
may have higher affinity to the magnocellular
system28 29 which processes achromatic con-
trast.333 As the magnocellular system is
more vulnerable to glaucomatous neuronal
damage,36 visual field examination with dark

(negative contrast) stimuli may provide informa-
tion which cannot be obtained using light
stimuli.3738
The high contrast black stimulus has pre-

viously been used for blind spot detection and
fixation monitoring on a hand held tangent
screen test chart.39 The black stimuli may reveal
glaucomatous visual field abnormalities.' The
low, intermediate, and high contrast kinetic dark
stimuli have been experimented with on a white
Bjerrum screen in the diagnosis of cone dysfunc-
tion.4' The oculokinetic perimetry chart has also
been described with a black stimulus.42 Multiple
dark (negative contrast) stimuli on a tangent
screen have been further developed in screening
for neurological and glaucomatous visual field
defects.43 Suprathreshold testing with kinetic
black stimulus" 45 and, 'delay campimetry'"
which involves the recording of patient reaction
times to static black stimuli at a number of
locations in the visual field are known to yield
additional clinical information especially in
retinal inflammatory disorders and retrobulbar
neuritis, respectively. However, computerised
suprathreshold and threshold testing with low
contrast static dark stimuli have not been
reported until recently.47"

In this study, static dark perimetric stimuli of
varying contrast on a cathode ray tube are
compared with conventional light stimuli of the
Humphrey visual field analyser in glaucomatous
eyes, using the STATPAC empirical probability
maps as the standard.

Materials and methods
Twenty five glaucomatous eyes (17 right and
eight left) of 25 perimetrically experienced
patients with primary open angle glaucoma
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Figure I The cumulativefrequency distribution ofabnormal
points in the central visualfields of25 glaucomatous eyes
according to the Humphrey autoperimeter STATPAC 'pattern
deviation' results. All significant deviationsfrom the normal
(outsie 95% confidence interval) constitute the abnormal
points with decreased senstttitty.
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Right
Age 69
Questions asked 566
Fixation losses 3/28
False pos errors 1/14
False neg errors 1/15
Test time 00:17:23
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Fig 2A

Figure 2 The glaucomatousfield loss in the superior Bjerrum area was evident to both (A) conventional threshold light stimuli
and (B) allfour contrasts ofsingle intensity suprathreshold dark stimuli in the right eye ofthis 69-year-old woman. Interestingly,
a subtle inferonasal defect became more pronounced with the lower contrasts (lighter grey) ofthe CAMEC stimuli.

(POAG) (13 male and 12 female), aged between
35-82 years (mean 68 years) were included in the
study. All eyes had 6/6, N5, or better visual acuity
with correction less than ±7 00 dioptres
spherical equivalent, no media opacities, and
normal (3-6 mm) pupils. None of the patients
suffered from non-glaucomatous ocular dis-
orders or systemic disease.
The conventional perimetry was performed

using the Humphrey visual field analyser
program 30-2 with Goldmann stimulus size III
(4 mm2) and a stimulus duration of 0-2 seconds.
The patients were also tested with the computer
assisted moving eye campimeter (CAMEC)
which employs a moving fixation technique.49
The CAMEC technique requires an IBM com-

patible desktop computer with a joystick or

mouse and a high resolution monitor. Static
stimuli are presented automatically in relation to

a randomly moving fixation target at predeter-
mined locations in the central visual field. The
patient signals awareness of the stimulus by
pressing a button. Missed stimuli are presented a
second time and repeatable misses are recorded
as abnormal points in the visual field. Patient
responses are processed, analysed, printed, and
saved at the end of the test. The full details of
computer assisted moving eye fixation are des-
cribed elsewhere (Damato B E, et al, in press).
The test grid designed for this study was identi-
cal to the test grid of Humphrey program 30-2.
The CAMEC stimulus size was compensated for
eccentricity, with a surface area of 1-8 mm2 up to
10 degrees, 3-1 mm' between 10 and 20 degrees,
and 4-9 mmx beyond 20 degrees from fixation.
These sizes of dark stimuli, in a pilot study with
10 normal subjects, were detectable along the
nasal horizontal meridian of the normal visual
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field (Mutlukan, unpublished data). The static
dark stimuli were presented for the default
duration of 0-2 seconds. For calibration, the
luminances of the test stimuli and background
were measured at 36 different locations using a
luminance meter (Minolta nt-i) and average
luminance (Weber's) contrasts (Cw) calcu-
lated.5"' Dark stimulus contrasts of -76%
(2 dB=20 log Cw; the darkest grey), -37%
(9 dB), -22% (13 dB), and -10% (20 dB, the
lightest grey) were the only suitable grey tones of
the EGA graphics software ofCAMEC in giving a

useful stimulus range. These dark stimulus
contrasts were presented on a 10 cd/m2 back-
ground. Tests were performed with single
intensity stimuli as separate examinations

in a random order either before or after the
Humphrey 30-2 threshold test. All patients had
prior demonstration/training for 15 minutes
which involved the recognition ofthe dark stimuli
for each test. TheCAMEC (each) and Humphrey
tests took an additional average of 10 and 15
minutes to complete, respectively. Patient fatigue
was minimised by a few minutes of rest after each
test session. All tests for each individual were per-
formed with full aperture near correction at a
30 cm test distance and completed on the same

day.
The Humphrey STATPAC 'empirical prob-

ability (p) values' as well as the dark stimulus
detection status ('seen' or 'missed') for each
contrast at the corresponding test locations were

CAMEC2
Visual field plot
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t3 Seen on retest

* Missed
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Figure 3 (A) The nasalfield loss to the light stimuli ofthe Humphrey thresholdingprogram appeared more extensive when
compared with (B) the lowest contrast (- 10%) dark stimuli, which also revealed double arcuate scotomas.

compared at eccentricity annuli bands of 4-9
degrees, 10-20 degrees, and 20-28 degrees using
the 'Minitab' statistical software package. The
sensitivity and specificity of the different dark
stimulus contrasts were studied by performing
point by point comparisons between the
Humphrey 'total deviation' (TD), 'pattern
deviation' (PD) plots, and CAMEC results,
except the test locations above and below the
physiological blind spot. The threshold results
showing significant depression in 'TD' and 'PD'
plots beyond 95% confidence interval (shown
with STATPAC symbols representing p<5%, 2%,
1%, and 0-5%) were categorised as representing
the visual field abnormality, and the remaining
locations (inside 95% confidence interval,
p>5%) were considered healthy parts of the
visual field.52 The TD result of STATPAC
indicated the areas with both homogeneous and

localised reduction in sensitivity, whereas the
PD result showed only the localised component
of any field defect.52

Results
STATPA* evaluation of the decibel threshold
values revealed relative scotomas in 11 eyes
(Aulhorn-Karmeyer classification, stage 1),
small isolated absolute scotomas in 10 eyes (stage
2) and absolute scotomas connected to the blind
spot in four eyes (stage 3) with the mean global
visual field indices of -5 2 dB mean defect
(MD); 6-1 dB pattern standard deviation (PSD);
5-4 dB corrected pattern standard deviation
(CPSD); and 2-2 dB short term fluctuation
(STF).53 5 The reliability indices from all
Humphrey threshold results were within the
normal range (that is, fixation losses <20%, false
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answers <33% of total attempts). The cumula-
tive frequency of involvement of the test loca-
tions in the PD plots is shown in Figure 1.

All four contrasts of static dark stimuli
indicated the abnormal areas in the central visual
fields of glaucomatous eyes (Fig 2). In general,
lower contrasts of dark stimuli delineated more
extensive visual field abnormalities, and dis-
played abnormal areas which were not detected
by the light stimulus and STATPAC (Fig 3). The
highest contrast (-76%, black) stimuli and the
lowest contrast (- 10%, light grey) stimuli
identified the normal and abnormal points
respectively with the best accuracy at all eccen-

tricity bands (Fig 4). For instance, the black

(-76% contrast) stimulus identified 93% of the
normal locations (true negative rate= specificity)
in PD plots as such with a false positive rate of
7% within 10 degrees from fixation; however, its
true positive rate (detection of abnormality=
sensitivity) for glaucomatous loss was only 49%
in the same area. Both the true and false positive
rates increased with increase in eccentricity.
The true positive rate improved with lowering
dark stimulus contrast and reached 86% at
-10% contrast with a higher 'false positive' rate
of 35% within 10 degree eccentricity. That
relation between the dark stimulus contrast and
the detection rates was evident at all eccentrici-
ties. The average true and false positive detection
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Figure 4 The percentage sensitivity (true positive result rate)
and specificity (true negative result rate= I -false positive rate)
ofthe dark perimetric stimuli ofvarying contrast against
STATPAC pattern deviation results at eccentricity annuli bands
of4-9 degrees, 10-20 degrees, and beyond 20 degrees within
the glaucomatous central visualfield at4741 test locations.

rates obtained against the PD plots within the
whole central field were higher than those against
the TD results.

Discussion
At present, automated thresholding perimetry
with light stimulus is the most sophisticated
approach. It has the best sensitivity and
specificity available especially in experienced
patients. Indeed, the Humphrey visual field
analyser with STATPAC has a wide acceptance for
the standardised evaluation of glaucomatous
patients. STATPAC automatically compares the
measured light threshold decibel (dB) values with
the age-expected normal dB values and indicates
the deviations from normal. STATPAC considers a
given dB light sensitivity value abnormal (out-
side 95% confidence interval) if that value is 5 dB
or lower than the expected sensitivity. It enabled
the identification and classification of the normal
and abnormal areas in the glaucomatous visual
fields according to their defect depth and level of
statistical significance.55 The 'total deviation'

plot reflects not only the localised defects but also
the effect of inappropriate refractive correction,
pupil size, and media opacity on visual sensi-
tivity as well as the generalised loss component of
glaucomatous visual field involvement. The con-
cept of a generalised (diffuse, homogeneous)
sensitivity loss component in glaucoma still
remains controversial although it was reported to
be present in nearly half of the eyes with
glaucomatous visual field involvement.""'8 The
frequency of visual field abnormality in the TD
plots from the eyes included in this study were
significantly higher than that in the PD plots
(p<O0OOl). This finding suggests the presence of
glaucomatous diffuse sensitivity loss in these
eyes since the field artefacts which may have
been caused by preretinal factors were
minimised by careful selection of the patients
(Mutlukan and Jay, in preparation). Slightly
higher (an average of 3-6%) false positive rates
against the PD results suggest that the detection
of the dark stimuli, like the light stimuli, is
influenced by the diffuse sensitivity loss in the
visual field.

It was previously demonstrated that the
visibility of the dark perimetric stimulus is
dependent on stimulus parameters such as
stimulus size, contrast, and level of background
luminance.59 Accordingly, eccentricity compen-
sated sizes of dark stimuli follow the slope of the
normal hill of vision at all contrast levels, with
the lower contrast levels requiring higher retinal
sensitivity for their detection. The results from
this study further confirm that, similar to the
conventional incremental threshold examina-
tion, the decremental differential sensitivity in
the visual field can be determined and the
abnormalities can be quantified with successive
presentations of different dark stimulus con-
trasts in increasing or decreasing steps.47
Dark stimuli of low contrast were frequently

missed in apparently normal parts of the glauco-
matous visual fields, especially at the outer
eccentricities. This is partly due to the negative
effect of the peripheral stimuli locations on
patient attentiveness6' as well as the possible

FigSA left FigSA right

Figure 5 (A) Asymmetrical cupping in the right eye ofa 63-year-old man suspected ofhaving glaucoma. Intraocular pressures
were 32 mm Hg in the right eye and 19 mm Hg in the left.
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automated threshold stimulus
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duration) did not show any
significant defect.
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Figure SC Threshold CAMEC22 Visual field plot
detemination with equal size

and duraton ofstatic dark
stimuli revealedfield loss in
the right eye.
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Figure SE Minimum age-expected normal dark stimulus threshold valuesfor 60years ofage in the central visualfield (95%
confidence interval=mean-2 SDfor each test location; n=13).

decrease in the suprathreshold values of the
selected dark stimulus sizes in glaucomatous
visual fields. The true negative rate of 71% from
the lightest grey (- 10%) dark stimuli within 10
degree eccentricity provides evidence that even
the lowest negative contrast value employed in
this study was at least 4 dB above the equivalent
light threshold in the central visual field. There-
fore, seemingly false positive results from dark
stimuli also suggest that negative contrast was
detecting early glaucomatous visual field defects
which were being missed with the luminous
(positive contrast) stimuli of the Humphrey
visual field analyser. Glaucoma is known to
selectively damage retinal ganglion cells with
large somal diameter3'4- and off centre ganglion
cells are included in that morphological
category.3 The results from threshold examina-
tion with static dark on bright stimuli in
glaucoma suspect eyes further support the con-
cept that the dark stimuli may diagnose visual
field abnormalities before they become evident
to equal sizes and durations of conventional
positive contrast stimuli (Fig 5).6'
The differential involvement of the 'off path-

way in glaucoma and other neuro-ophthalmic
disease, the affinity of the dark stimuli to the
magnocellular system, and the diagnostic
advantage of performing threshold determina-
tion with dark on bright stimuli require further
clinical trials.
This study was conducted at Tennant Institute ofOphthalmology,
University ofGlasgow, Scotland.
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