Supporting Information

S1 Text

Equivalence of Eqs. (16) and (13) with complete data. We show that with complete data, i.e. with N = R = U = W and $S = V = \emptyset$, the CERAMIC statistic of Eq. (16) reduces to the CERAMIC_c statistic of Eq. (13). In this case, $G_R = G_Q = G$, $\hat{\Gamma}_W, \hat{\Sigma}_W, \hat{\mu}_W, \hat{\beta}_{W0}$, and $\hat{\xi}_{W0}$ are $\hat{\Gamma}_0, \hat{\Sigma}_0, \hat{\mu}_0, \hat{\beta}_0$, and $\hat{\xi}_0$, respectively, $Z_W = Z$, $\Phi_{RW} = \Phi_R = \Phi, P_Q = P = M, n = q$, and $\check{\sigma}_G^2 = \hat{\sigma}_G^2$. It remains to show that F = Z. To see that this holds, first recall that we obtain $(\hat{\beta}_0, \hat{\xi}_0)$ by solving Eqs. (3) and (4) with γ set to 0, and that $\hat{\Gamma}_0, \hat{\Sigma}_0$, and $\hat{\mu}_0$ are Γ, Σ , and μ , respectively, evaluated at $(\gamma, \beta, \xi) = (0, \hat{\beta}_0, \hat{\xi}_0)$. Then from Eq. (3), we have $X^T Z = X^T \hat{\Gamma}_0^{1/2} \hat{\Sigma}_0^{-1} \hat{\Gamma}_0^{-1/2} (Y - \hat{\mu}_0) = 0$. In particular, since the vector $\mathbf{1}_n$, of length n with every element equal to 1, is one of the columns of X, this implies $\mathbf{1}_n^T Z = 0$.

Then, in the complete data case, $F = M\Phi_{RW}Z_W = P\Phi Z = (I - \Phi^{-1}\mathbf{1}_n(\mathbf{1}_n^T\Phi^{-1}\mathbf{1}_n)^{-1}\mathbf{1}_n^T)Z = Z$. From this, it is clear that Eq. (16) reduces to Eq. (13) in the complete data case.