Supporting Information

S1 Text

Equivalence of Eqs. (16) and (13) with complete data. We show that with complete data, i.e. with $N = R = U = W$ and $S = V = \emptyset$, the CERAMIC statistic of Eq. (16) reduces to the CERAMIC_c statistic of Eq. (13). In this case, $G_R = G_Q = G$, $\hat{\mathbf{\Gamma}}_W, \, \hat{\mathbf{\Sigma}}_W, \, \hat{\boldsymbol{\mu}}_W, \, \hat{\boldsymbol{\beta}}_{W0}, \, \text{and} \, \, \hat{\xi}_{W0} \, \text{ are } \hat{\mathbf{\Gamma}}_0, \, \hat{\mathbf{\Sigma}}_0, \, \hat{\boldsymbol{\mu}}_0, \, \hat{\boldsymbol{\beta}}_0, \, \text{and} \, \, \hat{\xi}_0, \, \text{respectively, } \, \mathbf{Z}_W = \mathbf{Z},$ $\Phi_{RW} = \Phi_R = \Phi, P_Q = P = M, n = q$, and $\check{\sigma}_G^2 = \hat{\sigma}_G^2$. It remains to show that $F = Z$. To see that this holds, first recall that we obtain $(\hat{\beta}_0, \hat{\xi}_0)$ by solving Eqs. (3) and (4) with γ set to 0, and that $\hat{\Gamma}_0$, $\hat{\Sigma}_0$, and $\hat{\mu}_0$ are Γ , Σ , and μ , respectively, evaluated at $(\gamma, \beta, \xi) = (0, \hat{\beta}_0, \hat{\xi}_0)$. Then from Eq. (3), we have $\mathbf{X}^T \mathbf{Z} = \mathbf{X}^T \hat{\mathbf{\Gamma}}_0^{1/2} \hat{\mathbf{\Sigma}}_0^{-1} \hat{\mathbf{\Gamma}}_0^{-1/2} (\mathbf{Y} - \hat{\boldsymbol{\mu}}_0) = 0$. In particular, since the vector $\mathbf{1}_n$, of length

Then, in the complete data case, $\boldsymbol{F} = \boldsymbol{M} \boldsymbol{\Phi}_{RW} \boldsymbol{Z}_W = \boldsymbol{P} \boldsymbol{\Phi} \boldsymbol{Z} = (\boldsymbol{I} - \boldsymbol{\Phi}^{-1} \boldsymbol{1}_n (\boldsymbol{1}_n^T \boldsymbol{\Phi}^{-1} \boldsymbol{1}_n)^{-1} \boldsymbol{1}_n^T) \boldsymbol{Z} = \boldsymbol{Z}$. From this, it is clear that Eq. (16) reduces to Eq. (13) in the complete data case.

n with every element equal to 1, is one of the columns of X , this implies $\mathbf{1}_n^T Z = 0$.