
1

S1 Text. Supporting Information.

Image restoration and analysis of influenza virions binding

to membrane receptors reveal adhesion-strengthening

kinetics

Donald W. Lee, Hung-Lun Hsu, Kaitlyn B. Bacon, and Susan Daniel

School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York,

United States of America

Overview

This document is divided into a software-related section and an experiment-related section. The

software-related section provides explanation of the image restoration and particle tracking

algorithms. The experiment-related section provides results of extra control experiments and

derivations of fit equations for the binding residence time distributions.

SOFTWARE-RELATED

Part A. Logic behind STAWASP image restoration. 2

Part B. STAWASP GUI usage. 3

Part C. Generation of simulated videos. 5

Part D. Particle detection. 7

Part E. Particle linking. 9

Part F. Testing particle detection and linking performance. 10

EXPERIMENT-RELATED

Part G. Derivation of fit equations. 12

Part H. Confirming lipid mobility using Fluorescence Recovery after Photobleaching

(FRAP). 14

2

Part A. Logic behind STAWASP image restoration.

 Here we explain the mechanism behind STAWASP noise removal process. We first define the

intensity of a pixel (I) as the summation of the signal (S) and noise (N).
),,(),,(),,(tcrNtcrStcrI 

where r is the row location, c is the column location, and t is the time or frame number of the

pixel. We can break up the noise into spatial and temporal components.
)(),,(),,(),,(tNtcrNtcrStcrI tm 

where, Nm = mean noise that varies only in space (Nm is a positive number), and Nt = fluctuation

intensity around the mean noise (Nt can be negative or positive).

The spatial noise can be removed using a background subtraction whereas the temporal noise

can be removed using a temporal averaging scheme. As the time span of averaging goes to

infinity, Nt(t) approaches 0. However, this works only when there is no particle signal. If there is

a particle signal, then temporal averaging must be done carefully in segments. The STAWASP

algorithm creates these segments based on where and when synced pixels are found. Ideally,

synced pixels should only be found when particles appear, disappear, or move. However, noise

can generate synced pixels by coincidence. We can estimate the percentage of falsely synced

pixels using a binomial distribution.

MNM

sync pp
MQM

Q
P 


)1(

)!(!

!

Psync : probability a cluster of pixels are in sync due to random shot noise

Q : Number of pixels in the neighbor mask for determining a synced cluster

M : Number of pixels within the neighbor mask that actually must be in sync

p : Probability intensity increases or decreases between adjacent frames (p ≈ 0.50)

Our default setting generates a 5-pixel diameter circular neighbor mask consisting of 15 pixels

(Q = 13), in which 80% of the pixels must be synced (M = 10). The probability random noise

causes synced pixels is roughly 0.0349. The lower the Psync value the stronger the noise reduction

scheme. However, Q and M are capped by the smallest size of the particles’ airy rings in the

videos. To reduce the number of falsely synced pixels, one could impose more stringent rules

about what to consider as a pixel intensity change. For example, a rule can be imposed

specifying that the intensity of a pixel must change by at least a minimum value between

adjacent frames to be counted as an increase or decrease in intensity for the STAWASP

algorithm.

3

Part B. STAWASP GUI usage.

Installation:

Option 1) The standalone STAWASP.exe file requires the MATLAB Runtime Compiler to

be installed prior to running the stawasGUI.exe. The MRC installer can be found in the

MathWorks website, and the required version is for MATLAB R2015a (8.5).

Option 2) The stawasp GUI can be installed using the STAWASP_WebInstall.exe file

instead, which will automatically download the necessary MRC file required to run the

program.

Option 3) If MATLAB is installed, the source code can be used directly. Save the source

code files into a folder. Open MATLAB, set the folder path to the saved folder, and

then enter “stawaspGUI” in the command line. Note that the Image Processing Toolbox

is required.

Basic Usage:

1) Open STAWASP.exe for the stand-alone version or run stawaspGUI.m in the

MATLAB console.

Fig S1 Graphical User Interface for STAWASP Image Restoration.

2) Open the video to be processed. Note: limited video file types are supported, and we

recommend processing videos with the uncompressed AVI format.

3) Configure the STAWASP algorithm parameters.

Nsmooth: Maximum number of frames that can be averaged together. Generally, a

larger Nsmooth will get rid of noise better.

Pradius: The radius, in pixels, of the neighborhood mask. Ideally, this will be

slightly larger than a pixel, and smaller than the particle of interest. EX: If

particles have radius of 3, Pradius should be set between 1 and 2.

SyncPerc: The percentage of the pixels inside the neighborhood mask that actually

need to be synced. Generally, a higher SyncPerc will remove noise better.

4

4) Once the parameters are set, click “Enhance Video” to begin the STAWASP image

restoration process. Note that this can take a few minutes depending on the video size

and computer. A video of size 512x512 pixels and 1200 frames takes 250 sec to process

with a single core CPU 1.8 GHz and 6 GB ram.

5) Optional: Adjust the image brightness to the desired setting and push “Keep View” to

make the intensity changes permanent.

6) Save the video. The output will be an uncompressed AVI file.

5

Part C. Generation of simulated videos.

 Simulated videos are helpful for testing the performance of image restoration and particle

tracking software. We highlight the main steps and codes used to generate these videos.

Step 1: Generate particle information [Code: GenerateParticles.m]

The particles’ locations, intensities, and appearance/disappearance times were created

using random number generators or manually, depending on the type of video to be

generated. Particle data was stored in MATLAB structure variable called “tracker”. Inside

the tracker structure is a field called “History”, which contains a 5-column matrix storing

the following data per particle: Col 1) video frame numbers in which the particle exists,

Col 2) the particle image pixel row locations, Col 3) the particle image pixel column

location, Col 4) particle intensity, and Col 5) particle area.

Step 2: Create a video without noise [Code: CreatePureVideo.m]

Particles were drawn onto the blank video (which is an HxWxZ matrix) according to the

particle data stored in the “tracker” variable. We made the particle intensities follow a

Gaussian shape with a sigma width of 1.5 pixels around each particle’s centroid location.

Step 3: Add shot noise to the simulated video [Code: CreateNoiseVideo.m]

Noise was added to the video made in Step 2. We first studied the background noise of

real SPT videos and then chose an appropriate noise model. The background noise is

consistent with shot noise that follows a Poisson distribution (Fig S2).

Fig S2 Background noise intensity distribution from real SPT video. The pixel intensities in the image background

area (yellow box) were sorted and plotted as an intensity distribution, which reflects that of shot noise. Therefore we

used the logarithmic model to mimic shot noise in simulated videos next.

Noise intensities were added to simulated videos using on the following equation: Noise =

-MeanNoise*log(R), where R is a uniform random number from 0 to 1and MeanNoise is a

user-set constant number between 0 and 1. Noise was added to every pixel in the video,

and pixels with an intensity greater than 1 were capped at an intensity of 1 (Fig S3).

y = -0.14ln(x) + 1.59
R² = 0.98

0.0

0.2

0.4

0.6

0.8

1.0

0 5,000 10,000 15,000 20,000

In
te

n
s
it
y
 (
a

.u
.)

Pixel

6

Fig S3 Generating movie of particle binding. A) Image of just the particles (without noise) was created using

particle data. B) A pure noise image was generated separately. C) The noise was added to the pure image to create

the final image for testing purposes.

A) Pure Image B) Noise Image C) Pure + Noise Image

+ =

7

Part D. Particle detection.

There are many particle detection algorithms in existence to choose from. Since we deal with

particles in high densities, we avoided using Gaussian fitting methods for particle detection that

are computationally expensive. To detect particles, we find regions that lack local intensity

minima clusters, which normally correspond to a particle region. A particle is then found by

searching for the local intensity maxima that reside in these regions lacking a high cluster of

local intensity minima. In the last step, particles that do not fit the user-defined intensity and

particle size threshold values are removed. The step-by-step particle detection process is

portrayed in Fig S4-5, and it is implemented by the file code named ParticleFilter_V5.m.

Fig S4 Flow chart of particle detection process. The “Minima” treatment finds the local minimal amongst 3

adjacent pixels in the direction specified after the dash. Note that for Y12, the area of the particle that will be

excluded can be adjusted by the user (here, it is set to 4).

Y1: 1x11 min f ilter of Y0 Y2: 11x1 min f ilter of Y0 Y3: 11x11 mean f ilter of

(Y1+Y2)/2

Y4: Subtract BG

Y0-Y3

Y0: Original Image,

post STAWASP

Y9: Combined minima

Y5 & Y6 & Y7 & Y8

Y5: Minima-horizontal

of Y4

Y6: Minima-vertical

of Y4

Y7: Minima-diagonal (\)

of Y4

Y8: Minima-diagonal (/)

of Y4

Y10: Thresholding

Y4 > NoiseLevel

Y11: Dividing regions

Y10-Y9

Y12: Delete regions in

Y11 smaller than 4 pix

Y13: Find local maxima

in regions of Y12

Y14: Result of particle

detection

8

Fig S5 Automatic determination of Noise Level based on the intensity values of Y4 that overlaps Y9. Pixel

intensities are first sorted and then are plotted (Int of BG). A diagonal line is drawn next (Diag.. Line). The two lines

are then subtracted to yield the difference (Int of BG – Diag. Line), and the maximum point of the line is used to

determine the NoiseLevel.

0.0

0.2

0.4

0.6

0.8

1.0

0 5000 10000 15000 20000 25000 30000

In
te

n
s
it
y
 (
a

.u
.)

Number of Pixels

NoiseLevel = 0.06

Int of BG

Diag. Line

Int of BG –Diag. Line

2

1

9

Part E. Particle linking.

After finding the location of the particles in each frame, each particle’s trajectory must be

linked through time. For this task, we use a simple nearest-distance particle linking algorithm

due to the rapid speed and computational simplicity. Particles that are roughly in the same place

(within a cutoff radius or 3 pixels = 480 nm) in adjacent images are tracked as a single particle. If

a particle in one frame is not found in the next frame, then this particle’s trajectory is ended. The

particle trajectories can sometimes be ended prematurely due to the failed detection of the

particle. This is usually caused by extreme shot noise or blinking particles. Intermittent detection

error of stationary particles generates multiple trajectories that overlap the same spot but at

different times. We automatically link these trajectories into one because the probability that 3 or

more trajectories overlapping the same spot is rare, unless it is the same stationary particle that

was intermittently detected. Furthermore, the binding kinetics is more tolerable to accepting 1

long incorrect binding event as opposed to many short and incorrect binding events. In the final

step, any remaining errors in tracking results are manually corrected.

10

Part F. Testing particle detection and linking performance.

In order to confirm that the image enhancement, particle detection, and tracking algorithm are

working properly, we calibrated the software on a simulated video containing 1000 particles of

known locations and unbinding/binding times. The binding residence time distribution of all

events was set to follow a single exponential decay function N = N0exp(-0.10 F), where F is the

image frame number (1 frame = 1 sec). The particle intensity was set to 0.44 and noise with a

mean intensity and standard deviation of 0.2 was added to the video. The final video has a

particle signal-to-noise ratio of 2.2. The particle detection method described above was used to

detect particles before and after image restoration. We chose to focus on STAWASP and the 10-

frame moving average method due to their similar temporal filtering processes. Particle detection

results show how image restoration affects the particle detection performance (Fig S6).

Compared to detecting particles without any image restoration, the STAWASP-restored video

reduced the false particles to 41% and missed particles to 5% while the moving-average-restored

movie reduced the false particles to 45% and missed particles to 19%. False particles are difficult

to remove using only particle detection algorithms since false particles caused by bright noise

pixels look fairly similar to particles. Fortunately, false particles do not persist for long durations

and can be removed during the particle linking step by setting a minimum tracking time duration.

Fig S6 Particle detection results of the simulated particle binding video before or after image restoration. Settings

for the STAWASP-restored video are Nsmooth = 10, Pradius = 2, and SyncPerc = 80%. The Moving Avg-restored

video uses a 10-frame moving average. The particle detection was set to filter out particles with area less than 6

pixels.

Particle linking was performed to generate particle trajectories and obtain binding on and off

times. Biased binding events were filtered according to the procedure explained in manuscript

methods, which will discard roughly half of the particle binding events. The resulting survival

curves are shown in Fig S7. Without any image restoration, the particle detection and linking

processes yield inaccurate binding kinetic data. Using only the 10-frame averaging image

restoration, the particle tracking results yields kinetic data that is horizontally shifted. The

STAWASP image restoration allows the particle detection and linking process to yield accurate

data, but only when tres > 5 frames or seconds. The high error rate before 5 frames is caused by

the false particles. We therefore filter binding events shorter than tcutoff = 5 frames to reduce the

number of false particle detection errors that must be corrected manually. The close match across

the data extracted from the test case movie and the actual data shows that the tracking algorithm

functions sufficiently well to extract unbinding kinetic parameters. This also means that the

logarithmic decay function of the influenza unbinding kinetics is not likely to be an artifact of the

tracking software or the method at which we filter out biased data points.

0

20

40

60

80

100

120

140

160

0 50 100 150 200
0

20

40

60

80

100

120

140

160

0 50 100 150 200

0

20

40

60

80

100

120

140

160

0 50 100 150 200

C
o

u
n

ts

Time (s) Time (s) Time (s)

Moving Avg. Restored

Noisy Video

STAWASP Restored

Pure Video

Correct Particles False Particles Missed Particles

11

Fig S7 Comparison of binding survival curves from the SPT software before and after image restorations. Settings

for the STAWASP-restored video are Nsmooth = 10, Pradius = 2, and SyncPerc = 80%. The Moving Avg-restored

video uses a 10-frame moving average.

0

100

200

300

400

500

600

0 10 20 30 40 50

Moving Avg. Restored

Noisy Video

STAWASP Restored

Pure Video

N

tres(s)tcutoff

12

Part G. Derivation of fit equations.

We will first define Eq. 0 as the 1
st
-order dissociation equation

Nk
dt

dN
off Eq. 0

The derivation of Eq. 3 and 5 is shown below.

1) B
t

t
ANN res 










 lnln)/ln(0 from Fig 9b log plots

2) 


















 B

t

t
ANN reslnlnexp/ 0

3)

A

res

t

t
BNN













 ln)exp(0 [Eq. 3]

4)
res

A

res

t

t

t
BAN

dt

dN

1

0 ln)exp(

















5)























A

res
offoff

t

t
BNkNk

dt

dN
ln)exp(0 [Eq. 0, using N from Eq. 3]

6)
res

A

res
A

res
off

t

t

t
BAN

t

t
BNk

1

0

0

ln)exp(

ln)exp(



 























7)

t

t
t

A
tk

res
res

resoff





ln

)([Eq. 5]

13

The derivation of Eq. 4 and 6 is shown below.

1) BtA
dt

NNd
res

res










 
)ln(

)/(
ln 0

 from Fig 9c log plots

2)
A

res

res

tB
dt

NNd 


)exp(
)/(0

3) 


rest

t
res

A

res

N

N
dttBNNd

00

)exp()/(0

4)  










  AA

res tt
A

B
NN 1

0

1

0
1

)exp(
1 if A ≠ 1 [Eq. 4]











0

0 ln)exp(1
t

t
BNN res

 if A = 1

5)  










  AA

resoffoff tt
A

B
NkNk

dt

dN 1

0

1

0
1

)exp(
1 if A ≠ 1 [Eq. 0, using N from Eq. 4]











0

0 ln)exp(1
t

t
BNkNk

dt

dN res
offoff

 if A = 1

6)

 AA

res

A

res
resoff

tt
A

B

tB
tk











1

0

1

1

)exp(
1

)exp(
)(if A ≠ 1 [Eq. 6]













0

ln)exp(1

)exp(
)(

t

t
Bt

B
tk

res
res

resoff if A = 1

14

Part H. Confirming lipid mobility using Fluorescence

Recovery after Photobleaching (FRAP).

To ensure that lipids (and glycolipids) in the SLBs are completely mobile and can thus

promote multivalent binding, we conducted FRAP tests. A solution containing 0.1 mg/mL of

R18 was flown into the channels containing SLBs for 4 hours. Excess R18 was rinsed away

using MES buffer. A 561 nm laser with a diameter of 12 μm was focused at the bilayer to

photobleach the R18 in the bilayer. The average intensity of the bleached spot was measured

over 10 min, along with a reference spot located far enough away from the photobleached spot

(sample FRAP images are provided elsewhere [1]). The recovery curve was normalized using the

following equation:

where Fk(t) and Fc(t) respectively are the average fluorescence intensities of the bleached and

reference spots. Fk,PB and Fc,PB are the fluorescence intensities of the spots before bleaching. The

bleaching of fluorophores is completed at t = 0. The normalized recovery curve was then fitted

using the equation derived by Axelrod et al. [2], which has two fit parameters: Mf (mobile

fraction) and τd (characteristic time of diffusion). The full equation along with associated terms

are provided below.

 K is the solution for

 is the gamma distribution

 chi-square probability distribution with 2K degrees of freedom at 2v.

The diffusion coefficient can be solved for according to D = R
2
/4τd, where R is roughly 6 μm in

our setup and corresponds to the laser radius at e
-2

 height. Example FRAP images are provided

elsewhere[1]. A sample FRAP recovery curve is shown in Figs S8, and the diffusion coefficient

(D) and fraction of lipids that are mobile (or mobile fraction, Mf) are shown in Table S1. Note

that the mobile fractions and diffusion coefficients are reported for the R18 dye, not the

glycolipids themselves. However, the mobility of R18 in lipids is a good indicator for the

mobility of lipids and glycolipids. Dye-labeled GM1 has already been shown to be mobile with a

diffusivity of 0.77 μm
2
/s [3]. These results also suggest stationary viruses seen in our SPT videos

are more likely to be held in place due to multivalent binding as opposed to binding to immobile

glycolipids.

   
   )0()0(

)0()0()()(
)(

,, ckPBcPBk

ckck

k
FFFF

FFtFtF
tf























)0()(

)0(
)(

,,

,,

,

fitkfitk

fitkfitk

ffitk
FF

FF
Mtf

)2,2()()(, vKvvKtF v

fitk  

1)/21( dtv 

))exp(1()0(1

, KKFF BPkk  

)(v

)2,2(vK

15

Fig S8 Example set of FRAP recovery curves. Black dotted lines are the fits for the recovery curve.

Table S1 Diffusion coefficient and mobile fractions of bilayers. R18 = octadecyl rhodamine B. Alexa-GM1 is a GM1

molecule with a fluorescent Alexa 594 probe conjugated to the sugar groups.

Bilayer Fluorescent

Probe

Diff. Coef.

(μm
2
/s)

Mobile

Fraction

1% aGM1 2% POPG 97% POPC R18 0.40±0.12 0.97±0.06

1% GM1 1% POPG 98% POPC R18 0.31±0.06 1.04±0.03

1% GM3 1% POPG 98% POPC R18 0.28±0.01 1.07±0.04

1% GD1a 0% POPG 99% POPC R18 0.36±0.03 1.04±0.02

†1% GM1 70%POPC 29% Other Lipids Alexa594-GM1 0.77 N/A

†Data from Supplemental Materials of work by L. Chao and S. Daniel [3].

References

1. Lee D, Thapar V, Clancy P, Daniel S. Stochastic fusion simulations and experiments suggest
passive and active roles of hemagglutinin during membrane fusion. BIOPHYS J. 2014;106(4):843-54. doi:
http://dx.doi.org/10.1016/j.bpj.2013.12.048.
2. Axelrod D, Koppel DE, Schlessinger J, Elson E, Webb WW. Mobility measurement by analysis of
fluorescence photobleaching recovery kinetics. BIOPHYS J. 1976;16(9):1055-69.
3. Chao L, Daniel S. Measuring the Partitioning Kinetics of Membrane Biomolecules Using
Patterned Two-Phase Coexistant Lipid Bilayers. J AM CHEM SOC. 2011;133(39):15635-43. doi:
10.1021/ja205274g.

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400 500 600

fk

1% GD1a

1% GM3

1% GM1

1% aGM1

time (s)

http://dx.doi.org/10.1016/j.bpj.2013.12.048

