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Overview 

 

This document is divided into a software-related section and an experiment-related section.  The 

software-related section provides explanation of the image restoration and particle tracking 

algorithms. The experiment-related section provides results of extra control experiments and 

derivations of fit equations for the binding residence time distributions. 
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Part A.  Logic behind STAWASP image restoration. 

   Here we explain the mechanism behind STAWASP noise removal process. We first define the 

intensity of a pixel (I) as the summation of the signal (S) and noise (N). 
),,(),,(),,( tcrNtcrStcrI 
 

where r is the row location, c is the column location, and t is the time or frame number of the 

pixel. We can break up the noise into spatial and temporal components.  
   )(),,(),,(),,( tNtcrNtcrStcrI tm   

where, Nm = mean noise that varies only in space (Nm is a positive number), and Nt = fluctuation 

intensity around the mean noise (Nt can be negative or positive).  

The spatial noise can be removed using a background subtraction whereas the temporal noise 

can be removed using a temporal averaging scheme. As the time span of averaging goes to 

infinity, Nt(t) approaches 0. However, this works only when there is no particle signal. If there is 

a particle signal, then temporal averaging must be done carefully in segments. The STAWASP 

algorithm creates these segments based on where and when synced pixels are found. Ideally, 

synced pixels should only be found when particles appear, disappear, or move. However, noise 

can generate synced pixels by coincidence. We can estimate the percentage of falsely synced 

pixels using a binomial distribution. 
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Psync : probability a cluster of pixels are in sync due to random shot noise 

Q : Number of pixels in the neighbor mask for determining a synced cluster 

M : Number of pixels within the neighbor mask that actually must be in sync 

p : Probability intensity increases or decreases between adjacent frames (p ≈ 0.50) 

 

Our default setting generates a 5-pixel diameter circular neighbor mask consisting of 15 pixels 

(Q = 13), in which 80% of the pixels must be synced (M = 10). The probability random noise 

causes synced pixels is roughly 0.0349. The lower the Psync value the stronger the noise reduction 

scheme. However, Q and M are capped by the smallest size of the particles’ airy rings in the 

videos. To reduce the number of falsely synced pixels, one could impose more stringent rules 

about what to consider as a pixel intensity change. For example, a rule can be imposed 

specifying that the intensity of a pixel must change by at least a minimum value between 

adjacent frames to be counted as an increase or decrease in intensity for the STAWASP 

algorithm.   
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Part B.  STAWASP GUI usage. 

Installation: 

Option 1) The standalone STAWASP.exe file requires the MATLAB Runtime Compiler to 

be installed prior to running the stawasGUI.exe. The MRC installer can be found in the 

MathWorks website, and the required version is for MATLAB R2015a (8.5).  

Option 2) The stawasp GUI can be installed using the STAWASP_WebInstall.exe file 

instead, which will automatically download the necessary MRC file required to run the 

program.  

Option 3) If MATLAB is installed, the source code can be used directly. Save the source 

code files into a folder. Open MATLAB, set the folder path to the saved folder, and 

then enter “stawaspGUI” in the command line. Note that the Image Processing Toolbox 

is required.  

 

Basic Usage: 

1) Open STAWASP.exe for the stand-alone version or run stawaspGUI.m in the 

MATLAB console. 

 
Fig S1   Graphical User Interface for STAWASP Image Restoration. 

2) Open the video to be processed. Note: limited video file types are supported, and we 

recommend processing videos with the uncompressed AVI format. 

3) Configure the STAWASP algorithm parameters. 

Nsmooth: Maximum number of frames that can be averaged together. Generally, a 

larger Nsmooth will get rid of noise better. 

Pradius: The radius, in pixels, of the neighborhood mask. Ideally, this will be 

slightly larger than a pixel, and smaller than the particle of interest. EX: If 

particles have radius of 3, Pradius should be set between 1 and 2. 

SyncPerc: The percentage of the pixels inside the neighborhood mask that actually 

need to be synced. Generally, a higher SyncPerc will remove noise better. 
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4) Once the parameters are set, click “Enhance Video” to begin the STAWASP image 

restoration process. Note that this can take a few minutes depending on the video size 

and computer. A video of size 512x512 pixels and 1200 frames takes 250 sec to process 

with a single core CPU 1.8 GHz and 6 GB ram. 

5) Optional: Adjust the image brightness to the desired setting and push “Keep View” to 

make the intensity changes permanent. 

6) Save the video. The output will be an uncompressed AVI file.  
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Part C.  Generation of simulated videos. 

   Simulated videos are helpful for testing the performance of image restoration and particle 

tracking software. We highlight the main steps and codes used to generate these videos. 

Step 1: Generate particle information [Code: GenerateParticles.m] 

The particles’ locations, intensities, and appearance/disappearance times were created 

using random number generators or manually, depending on the type of video to be 

generated. Particle data was stored in MATLAB structure variable called “tracker”. Inside 

the tracker structure is a field called “History”, which contains a 5-column matrix storing 

the following data per particle: Col 1) video frame numbers in which the particle exists, 

Col 2) the particle image pixel row locations, Col 3) the particle image pixel column 

location, Col 4) particle intensity, and Col 5) particle area.    

Step 2: Create a video without noise [Code: CreatePureVideo.m] 

Particles were drawn onto the blank video (which is an HxWxZ matrix) according to the 

particle data stored in the “tracker” variable. We made the particle intensities follow a 

Gaussian shape with a sigma width of 1.5 pixels around each particle’s centroid location.  

Step 3: Add shot noise to the simulated video [Code: CreateNoiseVideo.m] 

Noise was added to the video made in Step 2. We first studied the background noise of 

real SPT videos and then chose an appropriate noise model. The background noise is 

consistent with shot noise that follows a Poisson distribution (Fig S2). 

 

 
Fig S2   Background noise intensity distribution from real SPT video. The pixel intensities in the image background 

area (yellow box) were sorted and plotted as an intensity distribution, which reflects that of shot noise. Therefore we 

used the logarithmic model to mimic shot noise in simulated videos next.  

 

Noise intensities were added to simulated videos using on the following equation: Noise = 

-MeanNoise*log(R), where R is a uniform random number from 0 to 1and MeanNoise is a 

user-set constant number between 0 and 1. Noise was added to every pixel in the video, 

and pixels with an intensity greater than 1 were capped at an intensity of 1 (Fig S3).  

y = -0.14ln(x) + 1.59
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Fig S3   Generating movie of particle binding. A) Image of just the particles (without noise) was created using 

particle data. B) A pure noise image was generated separately. C) The noise was added to the pure image to create 

the final image for testing purposes.  
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Part D.  Particle detection. 

There are many particle detection algorithms in existence to choose from. Since we deal with 

particles in high densities, we avoided using Gaussian fitting methods for particle detection that 

are computationally expensive. To detect particles, we find regions that lack local intensity 

minima clusters, which normally correspond to a particle region. A particle is then found by 

searching for the local intensity maxima that reside in these regions lacking a high cluster of 

local intensity minima. In the last step, particles that do not fit the user-defined intensity and 

particle size threshold values are removed. The step-by-step particle detection process is 

portrayed in Fig S4-5, and it is implemented by the file code named ParticleFilter_V5.m. 

   
Fig S4   Flow chart of particle detection process. The “Minima” treatment finds the local minimal amongst 3 

adjacent pixels in the direction specified after the dash. Note that for Y12, the area of the particle that will be 

excluded can be adjusted by the user (here, it is set to 4).  
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Fig S5   Automatic determination of Noise Level based on the intensity values of Y4 that overlaps Y9. Pixel 

intensities are first sorted and then are plotted (Int of BG). A diagonal line is drawn next (Diag.. Line). The two lines 

are then subtracted to yield the difference (Int of BG – Diag. Line), and the maximum point of the line is used to 

determine the NoiseLevel. 
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Part E.  Particle linking. 

After finding the location of the particles in each frame, each particle’s trajectory must be 

linked through time. For this task, we use a simple nearest-distance particle linking algorithm 

due to the rapid speed and computational simplicity. Particles that are roughly in the same place 

(within a cutoff radius or 3 pixels = 480 nm) in adjacent images are tracked as a single particle. If 

a particle in one frame is not found in the next frame, then this particle’s trajectory is ended.  The 

particle trajectories can sometimes be ended prematurely due to the failed detection of the 

particle. This is usually caused by extreme shot noise or blinking particles. Intermittent detection 

error of stationary particles generates multiple trajectories that overlap the same spot but at 

different times. We automatically link these trajectories into one because the probability that 3 or 

more trajectories overlapping the same spot is rare, unless it is the same stationary particle that 

was intermittently detected. Furthermore, the binding kinetics is more tolerable to accepting 1 

long incorrect binding event as opposed to many short and incorrect binding events. In the final 

step, any remaining errors in tracking results are manually corrected. 
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Part F.  Testing particle detection and linking performance. 

In order to confirm that the image enhancement, particle detection, and tracking algorithm are 

working properly, we calibrated the software on a simulated video containing 1000 particles of 

known locations and unbinding/binding times. The binding residence time distribution of all 

events was set to follow a single exponential decay function N = N0exp(-0.10 F), where F is the 

image frame number (1 frame = 1 sec). The particle intensity was set to 0.44 and noise with a 

mean intensity and standard deviation of 0.2 was added to the video. The final video has a 

particle signal-to-noise ratio of 2.2. The particle detection method described above was used to 

detect particles before and after image restoration. We chose to focus on STAWASP and the 10-

frame moving average method due to their similar temporal filtering processes. Particle detection 

results show how image restoration affects the particle detection performance (Fig S6).  

Compared to detecting particles without any image restoration, the STAWASP-restored video 

reduced the false particles to 41% and missed particles to 5% while the moving-average-restored 

movie reduced the false particles to 45% and missed particles to 19%. False particles are difficult 

to remove using only particle detection algorithms since false particles caused by bright noise 

pixels look fairly similar to particles. Fortunately, false particles do not persist for long durations 

and can be removed during the particle linking step by setting a minimum tracking time duration.  

 
Fig S6   Particle detection results of the simulated particle binding video before or after image restoration. Settings 

for the STAWASP-restored video are Nsmooth = 10, Pradius = 2, and SyncPerc = 80%. The Moving Avg-restored 

video uses a 10-frame moving average. The particle detection was set to filter out particles with area less than 6 

pixels.  

Particle linking was performed to generate particle trajectories and obtain binding on and off 

times. Biased binding events were filtered according to the procedure explained in manuscript 

methods, which will discard roughly half of the particle binding events. The resulting survival 

curves are shown in Fig S7. Without any image restoration, the particle detection and linking 

processes yield inaccurate binding kinetic data. Using only the 10-frame averaging image 

restoration, the particle tracking results yields kinetic data that is horizontally shifted. The 

STAWASP image restoration allows the particle detection and linking process to yield accurate 

data, but only when tres > 5 frames or seconds. The high error rate before 5 frames is caused by 

the false particles. We therefore filter binding events shorter than tcutoff = 5 frames to reduce the 

number of false particle detection errors that must be corrected manually. The close match across 

the data extracted from the test case movie and the actual data shows that the tracking algorithm 

functions sufficiently well to extract unbinding kinetic parameters. This also means that the 

logarithmic decay function of the influenza unbinding kinetics is not likely to be an artifact of the 

tracking software or the method at which we filter out biased data points.  
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Fig S7   Comparison of binding survival curves from the SPT software before and after image restorations. Settings 

for the STAWASP-restored video are Nsmooth = 10, Pradius = 2, and SyncPerc = 80%. The Moving Avg-restored 

video uses a 10-frame moving average. 

  

0

100

200

300

400

500

600

0 10 20 30 40 50

Moving Avg. Restored

Noisy Video

STAWASP Restored

Pure Video

N

tres(s)tcutoff



12 

 

Part G.  Derivation of fit equations. 

We will first define Eq. 0 as the 1
st
-order dissociation equation 

 

Nk
dt

dN
off   Eq. 0 

 

The derivation of Eq. 3 and 5 is shown below. 
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The derivation of Eq. 4 and 6 is shown below. 
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Part H.    Confirming lipid mobility using Fluorescence 

Recovery after Photobleaching (FRAP). 

To ensure that lipids (and glycolipids) in the SLBs are completely mobile and can thus 

promote multivalent binding, we conducted FRAP tests. A solution containing 0.1 mg/mL of 

R18 was flown into the channels containing SLBs for 4 hours. Excess R18 was rinsed away 

using MES buffer. A 561 nm laser with a diameter of 12 μm was focused at the bilayer to 

photobleach the R18 in the bilayer. The average intensity of the bleached spot was measured 

over 10 min, along with a reference spot located far enough away from the photobleached spot 

(sample FRAP images are provided elsewhere [1]). The recovery curve was normalized using the 

following equation: 

 

 

where Fk(t) and Fc(t) respectively are the average fluorescence intensities of the bleached and 

reference spots. Fk,PB and Fc,PB are the fluorescence intensities of the spots before bleaching. The 

bleaching of fluorophores is completed at t = 0. The normalized recovery curve was then fitted 

using the equation derived by Axelrod et al. [2], which has two fit parameters: Mf (mobile 

fraction) and τd (characteristic time of diffusion).  The full equation along with associated terms 

are provided below. 
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diffusivity of 0.77 μm
2
/s [3]. These results also suggest stationary viruses seen in our SPT videos 

are more likely to be held in place due to multivalent binding as opposed to binding to immobile 

glycolipids.   
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Fig S8   Example set of FRAP recovery curves. Black dotted lines are the fits for the recovery curve.  

Table S1   Diffusion coefficient and mobile fractions of bilayers. R18 = octadecyl rhodamine B. Alexa-GM1 is a GM1 

molecule with a fluorescent Alexa 594 probe conjugated to the sugar groups.  

Bilayer Fluorescent 

Probe 

Diff. Coef. 

(μm
2
/s) 

Mobile 

Fraction 

1% aGM1  2% POPG   97% POPC R18 0.40±0.12 0.97±0.06 

1% GM1    1% POPG   98% POPC R18 0.31±0.06 1.04±0.03 

1% GM3    1% POPG   98% POPC R18 0.28±0.01 1.07±0.04 

1% GD1a    0% POPG  99% POPC R18 0.36±0.03 1.04±0.02 

†1% GM1 70%POPC 29% Other Lipids Alexa594-GM1 0.77 N/A 

†Data from Supplemental Materials of work by L. Chao and S. Daniel [3]. 
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