

Expanded View Figures

Figure EV1. LincGET and Dyei are ERV-associated transcripts.

A Gene loci of 36 novel transcripts in mouse preimplantation embryos (GenBank accession numbers are shown in Table EV2). Twenty-three are GLN-associated, 5 are MERVL-associated, 4 are LINE-associated, 1 is in the intergenic region between Gm7627 and NR2F2, 1 is located in the intron of Ak045672, 1 is 5' UTR-associated, and 1 is an antisense transcript of *Serpinc1*.

B Gene locus of LincGET and Dyei. Primers and TaqMan probes are shown. RACE, rapid amplification of cDNA end. AATAAA is the polyadenylated signal site.

Figure EV2.

Figure EV2. LincGET depletion results in developmental arrest at the late G2 phase of two-cell stage, while Dyei depletion has no effect on the preimplantation development.

- A siRNA or dsRNA do not efficiently interfere with nuclear *LincGET* and *Dyei*. siRNA or dsRNA was injected at phCG 25 h, and embryos were collected at phCG 48 h at the late two-cell stage for TM-qPCR analysis. The error bars represent s.e.m. Three experimental replicates were performed, and about 50 embryos were used for each time.
- B Dyei-LNA can efficiently deplete nuclear Dyei. LNA was injected at phCG 25 h, and embryos were collected at phCG 48 h at the late two-cell stage for TM-qPCR analysis. The error bars represent s.e.m. Three experimental replicates were performed, and about 50 embryos were used for each time.
- C–E *LincGET* depletion leads to developmental arrest at the late G2 phase of two-cell stage and the co-injection of full-length of *LincGET1* lacking *LincGET1*-LNA2 target site, but not that of partial sequences can partially rescue the embryonic development. *Dyei* depletion has no effect on the preimplantation development. 2C, two-cell stage; 4–8C, four- to eight-cell stage; BL, blastocyst stage; 6,248no, full-length *LincGET1* with LNA target sites mutation; 2,900no, 1–2,900 nt of *LincGET1* with LNA target sites mutation; 2,620–6,248, 2,620–6,248 nt of *LincGET1*. High, 400 ng/µl; low, 150 ng/µl. Different letters in same panel indicate significant difference (*P* < 0,001).
- F Injection of *Dyei*-LNA has no significant impact on preimplantation development. LNA was injected at phCG 25 h, and photographs were taken at phCG 114 h at the late blastocyst stage. Scale bar, 50 μm.

Figure EV3. LincGET depletion results in developmental arrest at the late G2 phase of two-cell stage with no effect on ZGA initiation and pericentric rings reorganization.

- A *LincGET* depletion results in developmental arrest at the G2 phase of two-cell stage without affecting DNA integrity and replication. We used BrdU to visualize S and G2 phases, CAF-1 to visualize S phase, and PI to visualize the M phase. Cyclin B1 and histone H3 serine 10 phosphorylation (H3S10ph) are markers of the G2 stage, and H2AX is a marker of DNA damage. Aphidicolin-treated embryos arrested at S phase without DNA replication. LNA was injected at phCG 25 h, and embryos were collected at phCG 48 h at late two-cell stage for IF analysis. Scale bar, 50 µm. Three experimental replicates were performed, and about 15 embryos were used in each group.
- B Embryos injected with *LincGET*-LNA were arrested at the G2 phase, and no DNA replication was observed. Results showed that embryos injected with control-LNA were BrdU positive and reached the four-cell stage, while embryos injected with *LincGET*-LNA were BrdU negative and arrested at the two-cell stage. BrdU was added at the late two-cell stage (phCG 48 h) and measured at the late four-cell stage (phCG 62 h). Scale bar, 50 μm. Three experimental replicates were performed, and about 15 embryos were used in each group.
- C EU staining indicated the normal major ZGA process after *LincGET* depletion. EU was added to the culture medium at phCG 40 h, and EU signals were detected at phCG 48 h. Scale bar, 50 µm. Three experimental replicates were performed, and about 15 embryos were used in each group.
- D DNA-FISH analysis of major transcripts shows that the pericentric domain reorganization toward chromocenters is not affected by *LincGET* depletion. Scale bar, 50 μm. Three experimental replicates were performed, and about 15 embryos were used in each group.

Figure EV3.

2	Α	1	•					_		19	
3		2	•						L_L 18		
4 IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		3	╺───			н шн				 17	
5		4					_ _	<u> </u>		16	
6		5		La constante de			- 🚚			15	
7 Internet in the initial initinitial initinitial initial initial initinitial initial initinitia										— 14	
8 1 1 12 9 1 1 11 11 10 1 1 1 11 10 1 1 11 11 10 1 1 11 11 10 1 1 11 11 10 1 1 11 11 10 1 1 11 11 10 1 1 11 11 10 1 1 11 11 10 1 1 11 11 10 1 1 11 11 10 1 1 11 11 10 1 1 11 11 11 10 1 10 <td< th=""><th></th><th>7</th><th>╺╶╢┶╿┶╿┻╢┶</th><th></th><th></th><th></th><th></th><th></th><th></th><th>└└└─● 13</th></td<>		7	╺╶╢┶╿┶╿┻╢┶							└└└─● 13	
 9 9 11 10 11 10 11 10 11 10 11 10 11 10 11 11 10 11 11<		8 ●┸╼┸┛┸╌┙╴┛┚┚┚┚┚┚┚							 12		
10 11 <td< th=""><th></th><th>9</th><th>●┴┴╢╢╿─┤</th><th></th><th></th><th>ш</th><th colspan="4">1011 0011 11 101 101 101 101 10 11</th></td<>		9	●┴┴╢╢╿─┤			ш	1011 0011 11 101 101 101 101 10 11				
X Image: Construction of the second seco		10									
 B Exon Skipping (Exs) Intron Retaintion (InR) Alter-5' Splicing (A5S) C IPR002290 Serine/threonine/dual specificity protein kinase, catalytic domain SM00220 Protein kinase, ATP binding site Protoin kinase, active sisite Protoin kinase, active site<		Х									
Exon Skipping (ExS) Intron Retaintion (InR) Alter-5' Splicing (A5S) C IPR002290 Serine/threenine/dual specificity protein kinase, catalytic domain > SM00220 IPR002290 Serine/threenine/dual specificity protein kinase, catalytic domain > SM00220 IPR007441 Protein kinase, ATP binding site > PS00107 IPR008271 Serine/threenine protein kinase, active site > PS00108 D Predicted motifs for skipping exons in LincGET-depleted 2C (p < 10 ⁻¹⁰) LincGET binding LincGET not binding SEXAGCESESEVEG Secure Assass Secure Assass GAGCCCCUGGG Secure Assass Secure Assass UCCAUUUC Secure Assass Secure Assass GENECUCE Secure Assass Secure Assass Secure Assass Secure Assass Secure Assass Secure Assass Secure Assass Secure Assass Secure Assass Secure Assass Secure Assass	в			~ ^			~		~ ~		
Exon Skipping (ExS) Intron Retaintion (InR) Alter-5' Splicing (ASS) C IPR002290 Serine/threonine/dual specificity protein kinase, catalytic domain IPR002290 Serine/threonine/dual specificity protein kinase, catalytic domain > SM00220 IPR017441 Protein kinase, ATP binding site > PS00107 IPR008271 Serine/threonine protein kinase, active site > PS00108 D Predicted motifs for skipping exons in <i>LincGET</i> -depleted 2C (p < 10 ⁻¹⁰) LincGET binding LincGET not binding SAGGSESSUS SAGGSESSUS SAGGSESSUS QCCSUSCUS Serine/three Saga Saga Saga Saga Saga Saga Saga Saga		-						-			
Exon Skipping (ExS) Intron Retaintion (InR) Alter-5' Splicing (ASS) C IPR002290 Serine/threonine/dual specificity protein kinase, catalytic domain Serine/threonine/dual specificity protein kinase, catalytic domain > SM00220 IPR017441 Protein kinase, ATP binding site > PS00107 IPR008271 Serine/threonine protein kinase, active site > PS00108 D Predicted motifs for skipping exons in LincGET-depleted 2C (p < 10 ⁻¹⁰) > PS00108 LincGET binding LincGET not binding Serine/threonine group active site Serine/threeonine protein kinase, active site > PS00108 D Predicted motifs for skipping exons in LincGET not binding LincGET not binding Serine/threeonine group active site Serine/threeonine group active site > PS00108 CAGCCCUGGS Serine/threeonine group active site Serine/threeonine group active site > PS00108 GAGCCCUGGS Serine/threeonine group active site Serine/threeonine group active site > PS00108 Serine/threeonine group active site Serine/threeonine group active site > PS00108 Serine/threeonine group active site Serine/threeonine group active site > Ps00108 Serine/threeonine group active site S		-			-			-			
C IPR002290 Serine/threonine/dual specificity protein kinase, catalytic domain > SM00220 Protein kinase, ATP binding site > PS00107 S IPR008271 Serine/threonine protein kinase, active site > PS00108 D Predicted motifs for skipping exons in LincGET-depleted 2C (p < 10 ⁻¹⁰) LincGET binding LincGET not binding SAGSCCCUGSS SAGSCCCUGSS GAGSCCCUGSS SAGSSSAGG CAGSCACU USUCUGAGG SGAGGCUGSU Sagware 0% 15% 0% 15% 0% 15% 0% 15% 0% 15% 0% 15% 0% 15% 0% 15% 0% 15% 0% 15% 0% 15% 0% 15% 0% 15% 0% 15% 0% Base on skipping exons Base on control exons			Exon Skipp	ing (ExS)	Intro	on Retaintio	n (InR)	Alte	er-5' Splicing (A5S)	ļ	
 IPR002290 Protein kinase, ATP binding site Protein kinase, ative site Predicted motifs for skipping exons in <i>LincGET</i>-depleted 2C (p < 10⁻¹⁰) <i>LincGET</i> binding <i>LincGET</i> binding <i>LincGET</i> binding <i>LincGET</i> hot binding <i>CAGCCACU</i> <i>CAGCCCACU</i> <i>CAGCCACU</i> <i>CAGCCCACU</i>	С			Serine/threonin	e/dual specifi	citv protein l	kinase. catalvti	c domain			
 Protein kinase, ATP binding site PS00107 Serine/threonine protein kinase, active site Predicted motifs for skipping exons in <i>LincGET</i>-depleted 2C (p < 10⁻¹⁰) <i>LincGET</i> binding <i>LincGET</i> binding <i>LincGET</i> not binding <i>SCUSAASASG</i> <i>SCUSAASASAGASA</i> <i>SCUSAASASAGG</i> <i>SCUSAASASAGG</i> <i>SCUSAASASAGG</i> <i>SCUSAASASAGG</i> <i>SCUSAASASAGG</i> <i>SCUSAASASAGG</i> <i>SCUSAASASAGG</i> <i>SCUSAASASAGG</i> <i>SCUSAASASAGG</i> <i>SCUSAASSAGG</i> <i>SCUSAASSAGG</i> <i>SCUSAASSAGG</i> <i>SCUSAASSAGG</i> <i>SCUSAASSAGG</i> <i>SCUSAASSAGG</i> <i>SCUSAASSAGG</i> <i>SCUSAGG</i> <i>SCUSAGG</i> <i>SCUSAASSAGG</i> <i>SCUSAGG</i> <i>SCUSAGG</i>		D	IPR002290							► SM00220	
IPR017441 > PS00107 Serine/threonine protein kinase, active site > PS00107 Predicted motifs for skipping exons in LincGET-depleted 2C (p < 10 ⁻¹⁰) > PS00108 LincGET binding LincGET not binding SEXECUSES Serine/threonine protein kinase, active site > PS00107 LincGET binding LincGET not binding SECUSAASASS SEXECUSES SECUSAASASS SECUSAASASS SEXECUSES SECUSAASASS SECUSAASASS SEXESS SECUSAASASS SECUSAASASS SEXESS SECUSAASASS SECUSAASASS SEXESS SECUSAASASS SECUSAASASS SEXESS SECUSAASASSS SECUSAASASSS SEXESS SECUSAASASSS SECUSAASASSS SEXESS SECUSAASSSS SECUSAASSSS SECUSASS SECUSAASSSS SECUSASSS SEXESSSSS SECUSASSS SECUSASSSS SECUSASS SECUSASSS SECUSASSS SECUSASSS SECUSASSSSS SECUSASSS SECUSASS SECUSASSS SECUSASSS SECUSASSS SECUSASSSS SECUSASSSS SECUSASSSSS SECUSASSSSSSS			100047444	Protein kinase,	ATP binding	site					
Serine/threeonine protein kinase, active site > PS00108 D Predicted motifs for skipping exons in LincGET-depleted 2C (p < 10 ⁻¹⁰) LincGET binding LincGET not binding CQCQCQCQCQC CACCCCACU CCQQCQCQCQC CACCCCACU CCQQCQCQCQC CACCCCACU CCQQCQCQCQC CACCCCACU CCQQCQCQCQC CACCCCQCQCQC CQCQCQCQCQC CACCCCQCQCQC CQCQCQCQCQC CACCCCQCQCQC CQCQCQCQCQC CQCQCQCQCQC CQCQCQCQCQC CQCQCQCQC CQCQCQCQCQC CQCQCQCQC CQCQCQCQCQC CQCQ		S	IPR017441							▶ PS00107	
 ▶ PS00108 ▶ Predicted motifs for skipping exons in <i>LincGET</i>-depleted 2C (p < 10⁻¹⁰) <i>LincGET</i> binding <i>LincGET</i> not binding <i>SCUSAASASS</i> <i>SCUSAASASS</i> <i>SCUSAASSAGS</i> <i>SCUSCUGGGG</i> <i>SCUSCUGGGG</i> <i>SCUSCUGGGG</i> <i>SCUSCUGGGG</i> <i>SCUSCUGGGG</i> <i>SCUSCUGGGG</i> <i>SCUSCUGGGGG</i> <i>SCUSCUGGGGG</i> <i>SCUSCUGGGGG</i> <i>SCUSCUGGGGG</i> <i>SCUSCUGGGGG</i> <i>SCUSCUGGGGG</i> <i>SCUSCUGGGGG</i> <i>SCUSCUGGGGG</i> <i>SCUSCUGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG</i>				Serine/threonin	e protein kina	se, active s	ite			-	
D Predicted motifs for skipping exons in <i>LincGET</i> -depleted 2C (p < 10 ⁻¹⁰) LincGET binding LincGET not binding GAGCCCCUGGGS GAGCCCCUGGS GAGCCCCUGGS GAGCCCCUGGS GAGCCCCUGGS GAGCCCCUGGS GAGCCCCUGG GAGCCCCUGG GAGCCCCUGG GAGCCCCUGG GAGCCCCUGG GAGCCCCUGG GAGCCCCUGG GAGCCCCUGG GAGCCCCUGG GAGCCCCUGG GGAGCCCCCUGG GGAGCCCCCUGG GGAGCCCCUGG GGAGCCCCUGG GGAGCCCCUGG GGAGCCCCUGG GGAGCCCCUGG GGAGCCCCUGG GGAGCCCCUGG GGAGCCCCUGG GGAGCCCCUGG GGAGCCCCUGG GGAGCCCCUGG GGAGCCCCUGG GGAGCCCCUGG GGAGCCCCUGG GGAGCCCCUGG GGAGCCCCUGG GGAGCCCCCCUGG GGAGCCCCCCUGG GGAGCCCCCUGG GGAGCCCCCUGG GGAGCCCCCUGG GGAGCCCCCCUGG GGAGCCCCCUGG GGAGCCCCCCUGG GGAGCCCCCCUGG GGAGCCCCCUGG GGAGCCCCCCUGG GGAGCCCCCCUGG GGAGCCCCCUGG GGAGCCCCCUGG GGAGCCCCCCUGG GGAGCCCCCUGG GGAGCCCCCUGG GGAGCCCCCUGG GGAGCCCCCUGG GGAGCCCCCUGG GGAGCCCCCUGGA GGAGCCCCCUGG GGAGCCCCCUGG GGAGCCCCCUGG GGAGCCCCCUGGA GGAGCCCCCUGG GGAGCCCCCUGG GGAGCCCCCUGGA GGAGCCCCCUGGA GGAGCCCCCUGAGC GGAGCCCCCUGGA GGAGCCC		8	IPR008271							► PS00108	
LincGET binding LincGET not binding CAGECCUGES CAGECACU SCUCAASASC CAGECACU SCUCCUGGGG SCUCCUGGGG CCEUGCUCUC COUCUCUCG SCUCCUGGGG CCEUCAUUUC FUBP1 binding 0% GEOUCLUCA Base on skipping exons O% 15% 30% Percentage of target sequences with motif	n								2 (, , 4 2 10)		
LincGET binding LincGET not binding CACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	U	Predicted motifs for skipping exons in <i>LincGET</i> -depleted 2C (p < 10 ⁻¹⁰)									
SCUGAASAGG GAGCCCUGGG GAGCCCUGG CAGCCACU CCEUGCUGG CCEUGGG CCEUGCUGG CCEUGG CCEUGCUGG CCEUGCUGG CCEUGCUGG CCEUGCUGG CCEUGCUGG CCEUGCUGG CCEUGCUGG CCEUGCUGG CCEU				LincGET binding			LincGET not binding				
GAGCCCUGGG GCAGGCCACU CCCUGCUCUG CCCUCCUG GCACUUCC GCAUUUC CCAUUUUC CCAUUUC CCAUUUUC CCAUUUUC CCAUUUUC CCAUUUUUUUU		g									
GRAGGESEVUG CAGCCACU CCVUGCUCUG UCUCUCUG UCCAUUUC UCUCUCUG GEUUCUCA UCUCUCUG 0% 15% 0% 15% 0% 15% 0% 15% 0% 15% 0% 15% 0% 15% 0% 15% 0% 15% 0% 15% 0% 15% 0% 15% 0% 15% 0% 30% Base on skipping exons Base on control exons											
CAGGCACU CCAUGCOCO CCAUGCOCO CCAUGCOCO CCAUCOCO CCAUCOCO CCAUCOCO CCAUCOCO CCAUCOCO CCAUCOCO CCAUCOCO CCAUCOCO COCAUCOCO CCAUCOCO COCAUCOCOCO COCAUCOCO COCAUCOCOCO COCAUCOCOCOCO COCAUCOCOCO COCAUCOCOCOCOCOCO COCAUCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC			GCACG	SCUUG =							
CACCECACO F CCEUGCUCUG F FUBP1 binding 0% CCAUUUC F CEAUUCUCA F CEAUUCUCA F CEAUUCUCA F Deceauucuca Base on skipping exons 0% 15% 0% 15% 0% 15% 0% 15% 0% 15% 0% 15% 0% 15% 0% 15% 0% 15% 0% Base on control exons					J						
CCECCUCUC FOBP1 binding 0% 15% 30% Percentage of target sequences with motif Percentage of target sequences with motif CECCUCUCA Image: Constraint of the sequence of target sequences with motif CECCUCUCA Image: Constraint of target sequences with motif CECCUCUCA Image: Constraint of target sequences with motif CECCUCUCA Image: Constraint of target sequences with motif O% 15% 30% Image: Constraint of target sequences with motif Image: Constraint of target sequences with motif											
Percentage of target sequences with motif						FUBP1 bi	nding	0% 159	% 30%		
GEOUCUCA Base on skipping exons 0% 15% 30% Base on control exons Base on control exons Percentage of target sequences with motif						Percentage of target sequences with motif					
GGAGGUGGUU Image: Second Sec			GEU								
0% 15% 30% Base on control exons Percentage of target sequences with motif			<u>GGAGG</u>	U <u>G</u> GUY F					Base on skinning	exons	
Percentage of target sequences with motif				ر ۵%	15%	30%			Base on control e	xons	
		Percentage of target sequences with motif									

Figure EV4.

Figure EV4. Some features of DEGs and splicing events in LincGET-depleted 2C.

- A Loci of DEGs and GLKLTRs. Red lines represent upregulated genes; blue lines represent downregulated genes; green blots represent GLKLTRs.
- B Three types of alternative splicing events were observed and different between control-LNA L2C and LincGET-depleted 2C.
- C CDK1 protein domain prediction by InterPro (http://www.ebi.ac.uk/interpro/). An ATP binding domain is located at the N-terminus.
- D Predicted motifs for skipping exons in *LincGET*-depleted 2C. We analyzed the sequences of skipping exons in *LincGET*-depleted 2C with flanked 200-bp intron sequences, and 12 motifs that were enriched in these skipping exons relative to random control exons ($P < 10^{-10}$) were detected. Eight of these 12 motifs (left) are affiliated to *LincGET*. One of the other 4 *LincGET*, which are not binding motifs (right, the UGUGUGUG motif), is the FUBP1 targeting sequence in Dmd intron 38 (UUGUGUGUGU) required for exon 39 skipping splicing.

Figure EV5. Model representing LincGET function.

In normal two-cell mouse embryos, *LincGET* works as a transcription factor, mediating the *cis*-regulatory activity of GLKLTRs, and an inhibitor of exon skipping, partially through decreasing hnRNP U, FUBP1, and ILF2 protein levels (up). However, when *LincGET* is depleted, disordered transcription and disordered RNA splicing would result in disordered ZGA, MAPK signaling inhibition, and exon skipping of some M-phase-associated genes, including *Cdk1*, leading to G2/M block (down).