
6. Supplementary Material

6.1. Numerical Linear algebra

6.1.1. Rank Computation
To compute the rank of a matrix, we employed the sparse LU factorisation package LUSOL

(Gill et al., 1987, 2005). Given a sparse matrix A ∈ Rm×n, LUSOL computes factorisations of the
form

P1AP2 = LDU, (12)

where P1 and P2 are permutations, L is lower trapezoidal with unit diagonals, D is diagonal and
nonsingular, U is upper trapezoidal with unit diagonals, and the rank of each factor L, D, U is
r ≤ min(m, n). This is LUSOL’s estimate of rank(A).

The permutations are chosen to keep L and U sparse, subject to bounds on the off-diagonal
elements of L and U. Threshold Partial Pivoting (Gill et al., 1987) requires |L i j| ≤ τ for some
tolerance τ ∈ (1, 10], where τ = 2 is a reasonable choice. Threshold Rook Pivoting (Gill et al.,
1987) also requires |Ui j| ≤ τ and is likely to be more reliable on general sparse A. We have
observed that net stoichiometric matrices S = R− F have a sharply defined rank that can be esti-
mated reliably by Threshold Partial Pivoting on either S or S T and this is cheaper than applying
Threshold Rook Pivoting. The same is true for estimating the rank of F ||R.

6.1.2. Identification of dependencies
To investigate the rationale for row rank-deficiency of A := F ||R derived directly from a

reconstruction, we used Threshold Partial Pivoting to obtain the factorisation (12). The row
permutation P1 partitions the rows as

P1A =

[
B
C

]
,

where B ∈ Rr×n, C ∈ R(m−r)×n, and rank(B) = r. By definition of rank, the over-determined linear
system BTW = CT is consistent (has a solution W). The nonzero entries of each column of W
reveal the dependencies between rows of B and C. We obtained W by solving min ‖B TW − CT ‖
using sparse QR factorisation (W = B’\C’; in Matlab). The column permutation P 2 further
partitions A as

P1AP2 =

[
B1 B2

C1 C2

]
,

where B1 is r × r. We could obtain W more efficiently by solving BT
1 W = CT

1 , where B1 = L1U1

is already factorised in terms of the first r rows and columns of L and U. The nonzero entries
of W reveal the dependencies between rows of B1 and C1. As each row of B1 and C1 corre-
sponds to a different molecular species, one can use W to investigate the biochemical rationale
for dependency among rows of F ||R if dependency is observed.

1

6.2. Combinatorial dependence in exceptional models derived from genome-scale reconstruc-
tions

Combinatorial dependence among the rows of F ||R implies that F ||R is row rank deficient.
However the reverse implication is not necessarily true. This is because linear dependence de-
pends on the nonzero numerical values of elements in F ||R whereas combinatorial dependence
depends only on the sparsity pattern of F ||R and not the numerical values in F ||R. Nevertheless, it
is of interest to check if an F ||R that is row rank deficient also contains combinatorially dependent
rows.

Only 3 of the 29 reconstructions subjected to the four conditions in Section 3 resulted in a
row rank-deficient F ||R, with rank at most 3 lower than the number of rows. If rank(F ||R) is less
than the number of rows of F ||R then numerical linear algebra (cf. Section 6.1.2) can be used to
test for dependency between rows to identify possible reasons for the row rank deficiency. The
three models with rank-deficient F ||R were from compartmentalised genome-scale models. In
each of the three models, one could find at least one dependency between a dependent molecular
species (one dependent row of F ||R) and a set of independent molecular species within the same
sub-cellular compartment (a set of linearly independent rows of F ||R).

Each dependency in F ||R was due to the existence of two disjoint sets of molecular species,
one having a cofactor moiety in common and one having a non-cofactor moiety in common, with
one cofactor and one non-cofactor always present in reactant complexes within that sub-cellular
compartment. That is, neither the cofactor moiety nor the non-cofactor moiety was synthesised
or degraded within that sub-cellular compartment. This reflected one or more reactions that
were missing from the original reconstruction that would either synthesise or degrade the moiety
within that sub-cellular compartment. Such reactions would give F ||R full row rank, as inevitably
there would be at least one reaction where the cofactor and non-cofactor moiety would not both
be represented within a reaction complex at the same time. Table 1 illustrates a specific example
of such a dependency within a model derived from a Saccharomyces cerevisiae reconstruction
(iMM904). Alternatively, the dependency reflected the omission of a reaction to transport either
the cofactor or non-cofactor moiety into that sub-cellular compartment. Such a reaction would
typically not simultaneously involve both the cofactor moiety and the non-cofactor moiety ren-
dering F ||R of full row rank.

2

Table 1: An example of a set of endoplasmic reticulum reactions within a genome-scale Saccharomyces cerevisiae
reconstruction (iMM904), that results in a rank deficient F||R even when all molecular species are stoichiometrically
consistent and all reactions are net flux consistent (given exchange reactions, assuming each reaction is reversible
and omitting nontrivial rows). Besides the 6 reactions illustrated, Phytosphingosine, Sphinganine, Tetracosanoyl-CoA,
Hexacosanoyl-CoA and Phosphate are not involved in any other reactions within the endoplasmic reticulum. Phytosph-
ingosine and Sphinganine form one set reactions, while Tetracosanoyl-CoA, Hexacosanoyl-CoA and Phosphate form
another set. These sets are disjoint as they do not share a molecular species in common. Observe that the support of
both disjoint sets is identical, i.e., all reactions contain at least one member of both sets in the same reaction complex.
This renders the corresponding rows of F||R row rank deficient. In fact, the rank of these 5 rows is 4, hence leading to
row rank deficiency of F||R. A more comprehensive model would have the 3-ketodihydrosphingosine reductase reaction
(Phytosphingosine + NADPH � 3-Dehydrosphinganine + NADP) that would result a full row rank F||R.

R1 alkaline ceramidase (ceramide-1)
R2 alkaline ceramidase (ceramide-1)
R3 alkaline ceramidase (ceramide-2)
R4 alkaline ceramidase (ceramide-2)
R5 sphingoid base-phosphate phosphatase (sphinganine 1-phosphatase)
R6 sphingoid base-phosphate phosphatase (phytosphingosine 1-phosphate)
A1 CERASE124er
A2 CERASE126er
A3 CERASE224er
A4 CERASE226er
A5 SBPP1er
A6 SBPP1er

Reaction Name R1 R2 R3 R4 R5 R6
Metabolite species name Abbreviation A1 A2 A3 A4 A5 A6

Ceramide-1 (Sphinganine:n-C24:0) cer1 24[r] -1 0 0 0 0 0
Ceramide-1 (Sphinganine:n-C26:0) cer1 26[r] 0 -1 0 0 0 0
Ceramide-2 (Phytosphingosine:n-C24:0) cer2 24[r] 0 0 -1 0 0 0
Ceramide-2 (Phytosphingosine:n-C26:0) cer2 26[r] 0 0 0 -1 0 0
Coenzyme A coa[r] -1 -1 -1 -1 0 0
Proton h[r] -1 -1 -1 -1 0 0
Water h20[r] 0 0 0 0 -1 -1
Sphinganine 1-phosphate sph1p[r] 0 0 0 0 -1 0
Phytosphingosine 1-phosphate psph1p[r] 0 0 0 0 0 -1
Phytosphingosine psphings[r] 0 0 1 1 0 1
Sphinganine sphgn[r] 1 1 0 0 1 0
Tetracosanoyl-CoA ttccoa[r] 1 0 1 0 0 0
Hexacosanoyl-CoA (n-C26:0CoA) hexccoa[r] 0 1 0 1 0 0
Phosphate pi[r] 0 0 0 0 1 1

3

6.3. Reproduction of numerical results

All of the reconstructions and code required to reproduce the numerical results referred to
in this paper are publicly available within the COBRA toolbox (Schellenberger et al., 2011) via
https://github.com/opencobra/cobratoolbox. The steps are as follows:

1. Install Matlab version 8.4.0.150421 (R2014b) or above. Earlier versions of Matlab may
also suffice, but have not been tested for this purpose.

2. Install the latest version of The COBRA toolbox (more recent than December 1, 2015).
From a unix command line, enter the command:
git clone https://github.com/opencobra/cobratoolbox.git

3. Optionally install a 64-bit Unix implementation of LUSOL
http://stanford.edu/group/SOL/software/lusol/.
From a Unix command line, enter the command
git clone https://github.com/nwh/lusol.git.
Installation is optional as otherwise the sparse LU factorization provided in Matlab is
employed.

4. The folder cobratoolbox/testing/testModels/modelCollectionFR contains each
of the reconstructions in COBRA Toolbox format (one Matlab .mat file for each recon-
struction). Each .mat file was derived from the original SBML file that was published with
the respective papers or provided as published updates to the original SBML file, as de-
tailed within the function
cobratoolbox/testing/testModels/modelCitations.m.

5. All numerical results can be reproduced by calling the Matlab function
cobratoolbox/papers/Fleming/FR_2015/checkRankFRdriver.m.
This driver file passes each reconstruction to checkRankFR.m, which generates the cor-
responding model as detailed in Section 2.4.4 and uses numerical linear algebra to check
rank(F ||R), as described in Section 6.1.1.

Supplementary references

Gill, P. E., Murray, W., Saunders, M. A., Wright, M. H., Apr. 1987. Maintaining LU factors of a general sparse matrix.
Linear Algebra and its Applications 88–89, 239–270.

Schellenberger, J., Que, R., Fleming, R. M. T., Thiele, I., Orth, J. D., Feist, A. M., Zielinski, D. C., Bordbar, A., Lewis,
N. E., Rahmanian, S., Kang, J., Hyduk, D., Palsson, B. Ø., 2011. Quantitative prediction of cellular metabolism with
constraint-based models: the COBRA Toolbox v2.0. Nature Protocols 6 (9), 1290–1307.

4

