Supplementary information (SI) appendix

Silencing of the potato tuber skin-induced *StNAC103* gene enhances accumulation of suberin and suberin-associated wax

Roger Verdaguer[‡], Marçal Soler[‡], Olga Serra, Aïda Garrote, Sandra Fernández, Dolors Company-Arumí, Enriqueta Anticó, Marisa Molinas, Mercè Figueras^{*}.

⁺ these authors contributed equally to this work

*Author for correspondence: merce.figueras@udg.edu

Supplementary Imformation (SI) contains:

SI Figures 8

SI Table 1

A)

B)

StNAC103			MEENLPPGFRFHPTDEELITYYLNNKVSDFNFTARAITDVDLNKSEPWDL	50
StNAC103	Group	Phureja	MEENLPPGFRFHPTDEELITYYLNNKVSDFNFTARAITDVDLNKSEPWDL	50
StNAC103			PAKASMGEKEWYFFSLKDRKYPTGLRTNRATEAGYWKTTGKDKEIFRGGT	100
StNAC103	Group	Phureja	PAKASMGEKEWYFFSLKDRKYPTGLRTNRATEAGYWKTTGKDKEIFRGGT	100
StNAC103			GVLVGMKKTLVFYRGRAPKGEKTNWVMHEYRIETRFGYKPSKEEWVVCRV	150
StNAC103	Group	Phureja	GVLVGMKKTLVFYRGRAPKGEKTNWVMHEYRIETRFGYKPSKEEWVVCRV	150
StNAC103			FOKSSTVKKPOPTSSSPLSLESPCDTNYTIANELGDIELPFNFNYLTTTP	200
StNAC103	Group	Phureja	FQKSSTVKKPQPSSSSPLSLESPCDTNYTIANELGDIELPFNFNYLTTTP	200
StNAC103			SSTINNISLHNYNNDNINLAAAAAA-TREAAAANTHPLLPWSSNLVSSNL	249
StNAC103	Group	Phureja	SSAINNISLHNYNNDNINLAAAAAAATREAAAANTHPLLPWSSNLLSSNL	250
StNAC103			SSVNSLLFRALQLRGYSPREQATSSTTTTHDYAFMLPQENILTTQFGNDF	299
StNAC103	Group	Phureja	SSVNSLLFRALQLRGYSPREQATSSTTTTHDYAFMLPQENILTTQFGNDF	300
StNAC103			AVNSIGAPSSSMALDNSVQHQQPQEQLYKLDSDIL- 334	
StNAC103	Group	Phureja	AVNSTGAPSSSMALDNSVQNQQPQEQLYKLDSNIW- 335	

StNAC103	1	ATG GAGGAAAATCTTCCTCCAGGGTTCAGG	30
Group Phureja	31	TTCCATCCAACAGATGAAGAACTCATTACT	60
	61	TATTATCTGAATAATAAAGTTTCTGATTTC	90
	91	AACTTCACTGCTAGAGCTATTACTGATGTT	120
	121	GATCTCAATAAGTCTGAGCCTTGGGACCTC	150
	151	CCTGCAAAAGCGTCAATGGGAGAAAAAGAA	180
	181	TGGTATTTCTTCAGTCTAAAAGATCGAAAG	210
	211	TATCCAACAGGACTTCGAACAAACAGAGCT	240
	241	ACAGAAGCAGGCTACTGGAAAACAACAGGG	270
	271	AAGGATAAAGAGATATTTCGTGGTGGAACG	300
	301	GGAGTCCTTGTTGGGATGAAGAAAACCCTA	330
	331	GTTTTCTACAGAGGAAGAGCTCCTAAGGGT	360
	361	GAAAAAACCAATTGGGTTATGCATGAATAC	390
	391	AGAATTGAAACAAGATTTGGTTACAAACCT	420
	421	TCTAAGGAGGAATGGGTAGTCTGCAGGGTG	450
	451	TTCCAAAAGAGTTCAACTGTGAAAAAAGCCA	480
	481	CAACCAACATCATCTTCTCCTCTATCCCTA	510
	511	GAGTCACCTTGTGACACTAATTACACAATA	540
	541	GCAAATGAGCTTGGAGATATTGAGCTACCA	570
	571	TTTAATTTCAACTACCTAACCACTACTCCA	600
	601	TCAAGCACGATCAACAATATTTCCTTGCAT	630
	631	AATTACAACAACGATAATATAAACTTGGGC	660
	661	TGCTGCT GCTGCTGCAACAAGAGAAGCAGC	690
	691	AGCAGCAAACACTCATCCATTACTACCTTG	720
	721	GTCTTCGAACTTGGTAAGCTCTAATCTTTC	750
	751	ATCAGTAAATTCATTGCTTTTTAGGGCATT	780
	781	ACAATTAAGGGGTTATTCGCCAAGAGAACA	810
	811	AGCTACAAGTTCTACTACTACTACGCATGA	840
	841	CTACGCGTTTATGCTCCCACAGGAGAATAT	870
	871	TCTCACAACGCAGTTTGGAAATGATTTTGC	900
	901	TGTGAATAGTATTGGGGGCACCTTCTTCATC	930
	931	TATGGCATTAGATAATTCTGTACAGCATCA	960
	961	ACAGCCACAGGAACAATTGTaCAAAtTGGA	990
	991	CTCCGATATTTTG TGA	1006

Supplementary Fig. 1. (**A**) Amino acid sequence alignment between the sequence obtained of *StNAC103* from *S. tuberosum* Group Tuberosum (KT598221) and from *S. tuberosum* Group Phureja (PGSC0003DMP400009522). The NAC domain is at N-terminal end and is shown shadowed in grey. The TAR region is the remaining protein sequence at the C-terminal end. (**B**) *StNAC103* Group Tuberosum nucleotide sequence showing the sequence used to generate the *StNAC103-RNAi* hairpins is highlighted in orange characters. NAC domain is also shadowed in grey.

Supplementary Fig. 2. *StNAC103* and *FHT* promoter activity in potato primary root. Plants were grown in hydroponics and roots were GUS stained in parallel.

Supplementary Fig. 3. The relative transcript abundance of *StNAC057* in *StNAC103-RNAi* and wild-type periderms was analyzed by microfluidics qPCR. Values are the mean \pm SD of wild-type (four biological replicates) and two independent transformation events for *StNAC103-RNAi*, lines 43 and 45 (five and four biological replicates, respectively). *The StNAC057* transcript accumulation did not show statistically significant differences between *StNAC103-RNAi* and wild-type periderms (t test; p=0.14).

Feruloyl esters of primary alcohols

Supplementary Fig. 4. Chemical composition of wax fatty acids, primary alcohols and feruloyl esters of primary alcohols in *StNAC103-RNAi* and wild-type periderms. Values are the mean \pm SD of wild-type (n=5) and two independent transformation events for *StNAC103-RNAi* (n=4, n=3). Statistical significant differences (p<0.05) are denoted with one asterisk whereas pronounced statistical significant differences (p<0.01) are shown with two asterisks.

StNAC103-RNAi lines

StNAC103-RNAi lines

Supplementary Fig. 5. Wax chemical composition plotted for the different lines of *StNAC103-RNAi* and wild-type analyzed. Values are the mean \pm SD of wild-type (n=5), *StNAC103-RNAi* 43 (n=4), *StNAC103-RNAi* 45 (n=3). Statistical significant differences (p<0.05) are denoted with one asterisk whereas pronounced statistical significant differences (p<0.01 and p<0.001) are shown with two and three asterisks respectively.

л wт StNAC103-RNAi 43 StNAC103-RNAi 45 ug/cm² periderm han dan ŤŤ C18 C22 C24 C26 C2 C21 C23 C25 C27 C29 C16 C18 C20 C22 C23 C24 C25 C26 C27 C28 C29 C30 C16 C18 C22 C24 C26 C28 C21 Fatty acids Feruloyl esters of primary alcohols Primary alcohols Alkanes

Supplementary Fig. 6. Suberin chemical composition for the different lines of *StNAC103-RNAi* and wild-type analyzed. Values are the mean \pm SD of wild type (n=5), *StNAC103-RNAi* 43 (n=4), *StNAC103-RNAi* 45 (n=3). Statistical significant differences (p<0.05) are denoted with one asterisk whereas pronounced statistical significant differences (p<0.01 and p<0.001) are shown with two and three asterisks respectively.

Supplementary Fig. 7. Periderm water permeance in *StNAC103-RNAi* and wild-type lines. Periderms were isolated from 39-d-stored tubers. Values are the mean \pm SD of 3-7 biological replicates.

StNAC103 (99-134)	G	ΤG	V	L	VG	Μ	K	K	Т	L.	VF	Y	R	G	R /	A P	К	G	E	K	Т	N	NV	N	<u>1 H</u>	E	YF	<u> </u>	-	Е
AtNAC2_AT3G15510.1 (111-146)	D	GΝ	IQ	К	VG	۷	Κ	Κ	А	L	VF	Y	S	G	KF	P	K	G	V	K	S	D	NI	Ν	۱H	Е	YF	Ľ	Т	Е
ATAF1_AT1G01720.1 (98-133)	G	LΡ	K	Ρ	VG	I	Κ	Κ	А	L	VF	Y	А	G	K /	A P	K	G	E	K	Т	N١	NI	Ν	۱H	Е	YF	Ľ	A	D
GmNAC20_ACC66314.1 (100-135)	G	ΚP	K	Ρ	V G	I	Κ	Κ	А	L	VF	Y	А	G	K /	A P	K	G	V	K	Т	N١	NI	Ν	۱H	Е	YF	Ľ	A	D
SNAC_LOC_Os01g66120.1 (100-135)	G	SΡ	K	Ρ	V A	I	Κ	Κ	А	L	VF	Y	А	G	K /	٩P	K	G	E	K	Т	N١	NI	Ν	۱H	Е	ΥF	L	A	D
GmNAC11_ACC66315.1 (105-140)	G	ΑÇ	<u></u> E	S	VG	۷	К	Κ	А	L	VF	Y	К	G	RF	P	K	G	V	K	Т	N١	NI	Ν	۱H	Е	YF	Ľ	V	D
RD26_AT4G27410.3 (123-158)	А	DG	R	R	V G	I	К	Κ	А	L	VF	Y	А	G	K /	٩P	K	G	т	K	Т	N١	NI	Ν	۱H	Е	ΥF	L	Т	Е
NST1_AT2G46770.1 (111-146)	S	NG	R	R	١G	Μ	I R	K	Т	L	VF	Y	Κ	G	R /	A P	Н	G	Q	K	S	D	NI	N	۱H	Е	ΥF	L	D	D

Supplementary Fig. 8. Alignment of the NARD-like sequences from StNAC103 (99-134), GmNAC35_ACC66316.1 (101-136), AtNAC2_AT3G15510.1 (111-146), ATAF1_AT1G01720.1 (98-133), GmNAC20_ACC66314.1 (100-135), SNAC_LOC_Os01g66120.1 (100-135), GmNAC11_ACC66315.1 (105-140), RD26_AT4G27410.3 (123-158), NST1_AT2G46770.1 (111-146) proteins. Identical residues identified by Hao *et al.*, (2010) were underlined.

Hao Y-J, Song Q-X, Chen H-W, Zou H-F, Wei W, Kang X-S, Ma B, Zhang W-K, Zhang J-S, Chen S-Y. 2010. Plant NAC-type transcription factor proteins contain a NARD domain for repression of transcriptional activation. Planta 232, 1033–1043.