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Figure S1. Root hair development in Azolla. Along the Azolla root, cells that will give rise to root hairs (arrow heads) become
distinguishable already in the meristematic zone (MZ) and fully develop in the elongation zone (EZ).



Figure S2. Amyloplasts line the Azolla stele. Azolla roots
stained with 5% Lugol's iodine reveal several amyloplasts
(arrowheads) lining the stele above the meristematic zone
(right) and accumulating rootwards, but are absent from the
root apex (left). Epidermis (E); Outer Cortex (OC); Innter
Cortex (IC); Stele (S); Apical cell (A).
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Figure S3. Regeneration of the meristematic zone. Graph
depicting the number of meristematic cells in newly forming
roots one to sixteen days after complete removal of the old
roots (days post cut; dpc) from the sporophyte body. For each
data point more than 20 roots were analysed; Error bars depict
the standard deviation. Note that after 16 days most root meris-
tems had terminated.



2T ATARRO ABATI ~AEXPA3  AfEXPA4  AFSLAH2

log,(fold change)
EN o

1
N

00.5 yM CK

0.1 uM I1AA _]_
-4

Figure S4. Conformation of global gene expression trends
through two-step quantitative reverse-transcription PCR.
Relative expression of five genes were analysed using
two-step quantitative reverse transcription PCR (qRT-PCR;
histogram) to confirm the global gene expression trends analy-
sed via RNAseq (graph). All expression data is shown as a
log2(fold change). Two-step qRT-PCR data was retrieved from
biological triplicates and AAct-normalized to mock treatment
and using AfCAM5(AzfiRT00154) and AfTUA2(AzfiRT00021)
as reference genes. Error bars indicate standard deviation for
the biological triplicates.
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Figure S5. Ranked Gene Ontology analysis of global gene expression in Azolla roots. Gene ontology (GO) enrichment analysis
(p<10-3) based on the Arabidopsis annotation (e value<10-7) of a ranked list of the expressed genes in roots comparing 0.1 uM
IAA vs. mock, 0.5 uM CK vs. mock and 0.5 yM CK vs. 0.1 uM IAA treatments. GO-term enrichment based ranked upregulation
is shown on the top, downregulation is shown at the bottom. Sizes of the GO-terms are based on log2(enrichment), see key in
right corner.



Figure S6. Evolution of expansins.
(A) Phylogenetic analyses of the expansin
family. The maximum likelihood-based
phylogeny shows a clear distingtion of four
major expansin subfamilies (a): a-expanins
(green), a-like expansins (purple), B-expan-
sins (orange) and B-like expansins (brown).
Bootstrap values >70 are given on the
branches. Most of the expansin orthologous
sequences retrieved from the Azolla root
transcriptome were a-expansins. y-expan-
sins were not included due to absence in the
transcriptome. Within the a-expanins one
strongly supported clade consisting of only
fern-expansin orthologs and two strongly
supported clades containing only fern and
moss expansin-orthologs are formed (light
green). These three clades contain the
maijority of the potential orthologous a-expan-
sin sequences retreived from the Azolla
transcriptome. A list of the used sequences
can be found in Table S6.
B (B) Conservation of expansin sequences.
Consensys [AHATFVGGSD | ascu- JocA CaYGNLY- sa ovaTNTAALS TALFNNGLSC sAcrEikew ----or---- anci-e--- | € CONSENSUS sequences of the sequence
corseraion. [T Tnef] pfln (1] Hﬂﬂﬂ n HHHHHHHHHH HHHHHHHHHH Mhredln - 0 Apdla alignment (Table S6) used for the phyloge-
=y BIGAs. <o ST6wntARES wxlFitaBeel GhCferelen . —on il st netic analyses is given above the conserva-
v & e e s e e s s Vel s tion signal of those consensus amino acids
Gl i (ranging from 0-100%). The sequence logo
* below shows the relative distribution of amino
acids per postion. Highly conserved areas
are indicated by yellow (previously
published) or purple (new) boxes. Grey
boxes indicate the expansin-type specific
insertions that only occur in either a-expanin
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Figure S7. Phylogenetic
analysis of Arabidopsis
and regulated Azolla
Aux/IAA proteins. Protein
data was extracted from the
longest ORF found in the
significantly regulated
Azolla filiculoides Aux/IAA
homologs and aligned with

Arabidopsis Aux/IAA
proteins (extracted from
TAIR) using MAFFT
G-INS-I. A

maximum-likelihood (ML)
tree was computed using
1000 bootstrap replicates
and a JTT+G substitution
model with 5 gamma
categories and a partial
deletion cutoff of 95%.
Bootstrap values <50 are
not shown. The
best-fit substitution model
was determined  using
MEGA. A- and B-types were
classified according to
Remington et al., 2004.
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