Supplementary Information

Plant-like biosynthesis of isoquinoline alkaloids in *Aspergillus fumigatus*

Joshua A. Baccile^{1,#}, Joseph E. Spraker^{2,#}, Henry H. Le¹, Eileen Brandenburger³, Christian Gomez¹, Jin Woo Bok⁴, Juliane Macheleidt⁵, Axel A. Brakhage⁵, Dirk Hoffmeister³, Nancy P. Keller^{4,6*}, Frank C. Schroeder^{1,*}

¹Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States

²Department of Plant Pathology, University of Wisconsin-Madison, WI, United States

³Department of Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich Schiller University, Jena, Germany

⁴Department of Bacteriology, University of Wisconsin-Madison, WI, United States

⁵Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), and Institute for Microbiology, Friedrich Schiller University, Jena, Germany

⁶Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, WI, United States

[#]These authors contributed equally *To whom correspondence should be directed

Supplementary Results

Compound	HR-ESI(+/-) observed (<i>m/z</i>)	lon	Calculated ion formula	Calculated m/z	Retention time [min]	Yield of compound (per L culture)*
1	281.1137	[M+H]⁺	$C_{13}H_{17}N_2O_5^+$	281.1132	0.74	~1–5 mg
2	359.0557	[M-H] ⁻	$C_{13}H_{15}N_2O_8S^{-1}$	359.0555	0.81	~1–5 mg
3	289.0471	[M-H] ⁻	$C_{13}H_9N_2O_6^-$	289.0466	4.31	~10–50 mg
4	241.0255	[M-H] ⁻	$C_{12}H_5N_2O_4^{-1}$	241.0255	4.38	
5	227.0462	[M-H] ⁻	$C_{12}H_7N_2O_3^{-1}$	227.0462	6.58	
7	200.0727	[M-H] ⁻	$C_{12}H_{10}NO_2^{-1}$	200.0717	7.46	~0.5–2 mg
8	216.0676	[M-H] ⁻	$C_{12}H_{10}NO_3^{-1}$	216.0666	5.98	~0.5–2 mg
11	210.0772	[M-H] ⁻	$C_{10}H_{12}NO_4^{-1}$	210.0772	1.71	
12	208.0615	[M-H] ⁻	$C_{10}H_{10}NO_4^{-1}$	208.0165	1.38	
18	293.0565	[M-H] ⁻	$C_{16}H_9N_2O_4^-$	293.0568	5.46	~1–5 mg
21	343.0941	[M-H] ⁻	$C_{17}H_{15}N_2O_6^-$	343.0936	4.31	
22	337.0473	[M-H] ⁻	$C_{17}H_9N_2O_6^-$	337.0466	5.13	

Supplemetary Table 1. LC-HRMS data of reported compounds

*Numbers indicate estimated production of each compound prior to sample treatment, where significant losses are incurred at each chromatographic step.

Supplementary Table 2. Predicted homologs of *fsqB*, *fsqC*, and *fsqG* that are clustered in other *Aspergilli*.

Protein		Putative function			
<i>A. fumigatus</i> 293	N. fischeri	A. parasiticus	A. oryzae	A. flavus	
fsqB	474/497 (95%)	234/501 (47%)	232/501 (46%)	228/501 (46%)	FAD binding domain protein
fsqC	338/365 (93%)	157/321 (49%)	160/343 (47%)	158/325 (49%)	methyltransferase
fsqG	557/598 (93%)	329/619 (53%)	326/619 (53%)	330/619 (53%)	cytochrome P450 monooxygenase

*Percentage similarity values of the *A. fumigatus* 293 ORFs to *N. fischeri, A. parasiticus, A. oryzae,* and *A. flavus* clusters are given in parentheses.

Supplementary Table 3. Amino acid sequence of polyhistidine-tagged FsqB and software-aided¹ identification of tryptic FsqB peptides analyzed with UHPLC-MS/MS.

<u>MGSSHHHHHHSSGLVPRGSH</u>MSIPNSFIIVGSGVFGLSLAYALSLDDRFADKKIILVDRWNFEPPNATGSVHNPAAAN ADTSRVIRRDYPHGPYASLALEAMKHWRGKFGENNRYVNQRLLFSGEGSSLTTPPKALETVNYIKKAYAISCELTPGG RDAVQVLDSLDEVRAFLGNTPSHPPHLPVNKDPAARDLRGYVSNDCGWADAGASIEWLRQEVLRLGRVECVVGEVE SLVYSDDQRAVKGVKLVDGKVLTAELTVIAAGARSSHILGIPKLCDVYSEFVAYIQLTKEEADELRRRQWPILVNCHRG VFAVGPDHDNCLKFGHFSYSGIVDVLREASIQVPTRPDGWEAQQKYWSDPRFAFGGEVKVSALGDVDDYENPAAQR ALADYRLFLLELLGPTGLQGVDTLGLDQSDNLLNNIANRPFTRVRKCWYNDTPALDFVVDYHPSYGKTLFVATGGCD HAFKFLPIIGEKTLALILRNRGDSAVSLPAGVEPSLEELSELWRFPVELLQDN

Peptide	observed	expected	z	Δ
MGSSHHHHHHSSGLVPR	590.2879	633.9679	3	-131.0400
GSHMSIPNSFIIVGSGVFGLSLAYALSLDDRFADKKIILVDR	1075.2218	1075.2200	3	0.0254
WNFEPPNATGSVHNPAAANADTSR	842.0560	842.0509	3	-0.0066
DYPHGPYASLALEAMK	881.9266	881.9198	2	-0.0010
FGENNR	736.3424	736.3373	1	0.0051
LLFSGEGSSLTTPPK	767.4106	767.4043	2	-0.0020
ALETVNYIK	1050.5813	1050.5757	1	-0.0017
AYAISCELTPGGR	697.8393	697.8330	2	-0.0020
DAVQVLDSLDEVR	1458.7411	1458.7362	1	-0.0024
FLGNTPSHPPHLPVNK	457.2478	457.2409	4	-0.0015
GYVSNDCGWADAGASIEWLR	1113.9964	1113.9900	2	-0.0018
VECVVGEVESLVYSDDQR	1041.9851	1041.9788	2	-0.0020
VLTAELTVIAAGAR	462.2763	462.2695	3	-0.0014
SSHILGIPK	951.5615	951.5549	1	-0.0007
LCDVYSEFVAYIQLTK	974.9887	974.9826	2	-0.0023
EEADELR	431.2024	431.1938	2	0.0027
QWPILVNCHR	661.8428	661.8357	2	-0.0003
GVFAVGPDHDNCLK	764.8631	764.8570	2	-0.0024
FGHFSYSGIVDVLR	798.9108	798.9048	2	-0.0026

EASIQVPTRPDGWEAQQK	1020.5093	1020.5036	2	-0.0032
YWSDPR	412.1909	412.1903	2	0.0012
FAFGGEVK	854.4397	854.4334	1	-0.0009
VSALGDVDDYENPAAQR	910.4254	910.4192	2	-0.0022
LFLLELLGPTGLQGVDTLGLDQSDNLLNNIANRPFTR	1346.7254	1346.7195	3	-0.0042
KCWYNDTPALDFVVDYHPSYGK	1134.4530	892.7407	3	725.1369
TLFVATGGCDHAFK	762.3686	762.3620	2	-0.0013
FLPIIGEK	916.5490	916.5429	1	-0.0012
TLALILR	799.5390	799.5327	1	-0.0009
GDSAVSLPAGVEPSLEELSELWR	1221.1133	1221.1061	2	-0.0002
FPVELLQDN	1074.5451	1074.5393	1	-0.0015
KC(FAD)WYNDTPALDFVVDYHPSYGK	1134.4530	1134.4454	3	0.0009

Supplementary Table 4. Fungal strains and plasmids used in this study

Strain/plasmid	Description	Reference
Aspergillus fu	migatus 293 background strains	
Af293	Wild type	2
Af293.1	pyrG1	2
Af293.6	pyrG1, argB1	2
TJES1.18	A.fargB::gpdA(p):: fsqA, pyrG1	This study
TJES2.20	∆fsqA::A.ppyrG, argB1	This study
TJES3.1	A.fargB::gpdA(p):: fsqA, A.ppyrG	This study
TJES4.10	A.fargB::gpdA(p):: fsqA, ∆fsqF::A.ppyrG	This study
TJES8.2	∆fsqA::A.ppyrG, A.fargB	This study
TJES13.61	A.fargB::gpdA(p):: fsqA, ∆fsqB::A.ppyrG	This study
TJES14.68	A.fargB::gpdA(p):: fsqA, ∆fsqC::A.ppyrG	This study
TJES15.91	A.fargB::gpdA(p):: fsqA, ∆fsqG::A.ppyrG	This study
Aspergillus fla	wus NRRL3357 background strains	
NRRL3357.5	pyrG1	3
TJW149.27	∆ku70::pyrG	This study
TJES19.1	$\Delta pyrG, \Delta ku70$	This study
TJES 23.3	A.ppyrG::gpdA(p)::imqA, ∆ku70	This study
TJES 27.1	∆imqA::A.ppyrG, ∆ku70	This study
Plasmids		
pJMP4	A. fumigatus argB	4
pJMP8.1	<i>A. nidulans</i> gpdA promoter (truncated to 1.5 kb) in pBluescript	5
pJMP9.1	A. nidulans gpdA(p) + A parasiticus pyrG	6
pJES1.2	gpdA(p):: fsqA in pJMP8.1	This study
pJES2.7	A. fumigatus argB::gpdA(p):: fsqA	This study
pJES13.2	C-terminal 6His tagged <i>fsqF</i> A-domain in pET30a vector	This study
pJW24	A parasiticus pyrG in pBluescript	7

pXX = plasmid, TXX = original transformant

Supplementary Table 5. PCR primer sets used in this study

Name of the primer	Oligonucleotide sequence (5'-3')	Uses
Afu6g03380_FOR_Nprobe	CTTTCACGTGGACACTGCGC	Northern probe
Afu6g03380_REV_Nprobe	TACTGCTCCAACCAGCACCG	Northern probe
Afu6g03390_FOR_Nprobe	TCAGGGAGATATGGTGGCG	Northern probe
Afu6g03390_REV_Nprobe	CAACGCAGCAGGTAGTCACG	Northern probe
Afu6g03400_FOR_Nprobe	CTTCCAAGCCCAACAAGCC	Northern probe
Afu6g03400_REV_Nprobe	AATCTCGTAGGCCTCCAGCG	Northern probe
Afu6g03430_FOR_Nprobe	TGGCCTATCACACCAGTGGC	Northern probe
Afu6g03430_REV_Nprobe	GTGCAGCCTGAATCTCACGG	Northern probe
Afu6g03420_FOR_Nprobe	GAGCTCGACAATGGTGAGCG	Northern probe
Afu6g03420_REV_Nprobe	CAATCACATCGGCATGCGG	Northern probe
Afu6g03440_FOR_Nprobe	GATGGAACTTCGAGCCACCC	Northern probe
Afu6g03440_REV_Nprobe	GGCGATAATCTGCCAACGCC	Northern probe
Afu6g03450_FOR_Nprobe	CTACATCGCCTGCGATGTGG	Northern probe
Afu6g03450_REV_Nprobe	TAGCACACGCGCCAGATACC	Northern probe
Afu6g03460_FOR_Nprobe	GCGACTTCGCGACTCGGAAT	Northern probe
Afu6g03460_REV_Nprobe	CCATCACAAACTCGGTCCCG	Northern probe
Afu6g03470_FOR_Nprobe	AACTGCGCTCCAAAACCGCC	Northern probe
Afu6g03470_REV_Nprobe	ATCCACAAGGGCGATCTGGC	Northern probe
Afu6g03490_FOR_Nprobe	GTTCTCAGGGGATGTGACCG	Northern probe
Afu6g03490_REV_Nprobe	ACAAGTTCGCCCTTCGCTCCG	Northern probe
Afu6g03500_FOR_Nprobe	GGTGCTCAAGGAACAGAGGG	Northern probe
Afu6g03500_REV_Nprobe	GCCAAGAGGTCATTCTGCCC	Northern probe
Afu6g03510_FOR_Nprobe	AACACCCGATACCAGCTCGC	Northern probe
Afu6g03510_REV_Nprobe	ATGGGCCACCCATTGATGGC	Northern probe
Afu6g03520_FOR_Nprobe	ATGCCATCATCACCGGTGCC	Northern probe
Afu6g03520_REV_Nprobe	CGAGCATGGACAATAGCC	Northern probe
A.ppyrG_T7 FOR	CGTAATACGACTCACTATAGGG	Amplification of
		A.ppyrG from pJMP9.1
A.ppyrGR_Rev	ATTCGACAATCGGAGAGGCTGC	Amplification of
		A.ppyrG from pJMP9.1
Afu6g03430_3'F_flank	CTGTCGCTGCAGCCTCTCCGATTGTCG	Amplification of <i>fsqA</i> 3'
	AATGCTTCAGCTGGAGTGTCTCC	flanking region
Afu6g03430_3'R_flank	TACAGCGACGACCAACGAGC	Amplification of <i>fsqA</i> 3'
		flanking region
Afu6g03430_5'F_flank	TAAGAGCGGAGACTGGTGGC	Amplification of <i>fsqA</i> 5'
		flanking region
Afu6g03430_5'R_flank	CCAATTCGCCCTATAGTGAGTCGTATT	Amplification of <i>fsqA</i> 5'
	ACGICTGCAAGGGTTTACGAGGG	flanking region
Atu6g03440_3'F_flank	CIGTCGCTGCAGCCTCTCCGATTGTCG	Amplification of <i>fsqB</i> 3'
	AATICGGAACTCTGGAGGTTCCC	tlanking region
Atu6g03440_3'R_flank	ACIGCGCGACAAATGCAGCC	Amplification of <i>fsqB</i> 3'
		flanking region
Atu6g03440_5'F_flank	GICICGICACTTACCCTGCC	Amplification of <i>fsqB</i> 5'

		flanking region
Afu6g03440_5'R_flank	CCAATTCGCCCTATAGTGAGTCGTATT	Amplification of <i>fsqB</i> 5'
	ACGAAAGAGACAGCCGGGATCCG	flanking region
Afu6g03450_3'F_flank	CTGTCGCTGCAGCCTCTCCGATTGTCG	Amplification of fsqC 3'
	AATCTTGCTGCGGAAATCGAGCG	flanking region
Afu6g03450_3'R_flank	CACGGTAAAAGCCCAGTCCG	Amplification of fsqC 3'
		flanking region
Afu6g03450_5'F_flank	GATGTAGGCCACGAACTCGC	Amplification of <i>fsqC</i> 5'
		flanking region
Afu6g03450_5'R_flank	CCAATTCGCCCTATAGTGAGTCGTATT	Amplification of <i>fsqC</i> 5'
	ACGAGGATGCCAAAAGCCCACCG	flanking region
Afu6g03480_3'F_flank	CTGTCGCTGCAGCCTCTCCGATTGTCG	Amplification of <i>fsqF</i> 3'
	AATCGCGGGCATCTAGTATTCGG	flanking region
Afu6g03480_3'R_flank	ACTTGCGCAACCAGCTGTGC	Amplification of <i>fsqF</i> 3'
		flanking region
Afu6g03480_5'F_flank	GAATCTGAGCGCTTGTCGCG	Amplification of <i>fsqF</i> 5'
		flanking region
Afu6g03480_5'R_flank	CCAATTCGCCCTATAGTGAGTCGTATT	Amplification of <i>fsqF</i> 5'
	ACGAAGAAAGGCGAAACGGAGCG	flanking region
Afu6g03490_3'F_flank	CTGTCGCTGCAGCCTCTCCGATTGTCG	Amplification of <i>fsqG</i> 3'
	AATATGGACTCCAGTCAGGACCG	flanking region
Afu6g03490_3'R_flank	ATCCACCTCGTGGAGAAGCC	Amplification of <i>fsqG</i> 3'
		flanking region
Afu6g03490_5'F_flank	TGTGTCACGAAGGCAGTGCG	Amplification of <i>fsqG</i> 5'
		flanking region
Afu6g03490_5'R_flank	CCAATTCGCCCTATAGTGAGTCGTATT	Amplification of <i>fsqG</i> 5'
	ACGGTGCCCATCGTCCAATACGG	flanking region
fasE Adomain xp 5'E	AATAA GCGGCCGC ACCTGGAACACCG	
	TGGTTGC	Amplification of <i>fsqF</i> A-
		domain (Noti cut site)
fqsF_Adomain_xp_3 [°] R	ATTAGE <u>CTCGAG</u> TTCGTTGCCCCGAGT	Amplification of <i>fsqF</i> A-
		domain (Xnoi cut site)
fsqD_xp_5 [°] F	GIAGGUIA <u>GAATIC</u> ICACACCAGUUU	Amplification of <i>JsqD</i>
factor and a large		ORF (ECORI CUT SILE)
rsqD_xp_3 R		Amplification of <i>JsqD</i>
Afuca02420 Neel COD		Amplification of for A
Aluog03430_NCOI_FOR	CAGATG <u>CCATGG</u> ACGACAAGCATGGC	OPE (Neal cut site)
		Amplification of fcgA
Aluogos430_Noti_KeV	ATCACTC	OPE (Notl cut site)
flykuZOEE		Amplification of ku70
livku/UFS	ACATCTCTTCCGTCAAAGGCGC	F' flanking region
flovku70P5	CGATATCAAGCTATCGATACCTCGACT	Amplification of ku70
	CTGTGTTGAGAGTCGTAAGTCATGAAT	5' flanking region
	TGCG	
flyku70F3	GTCGCTGCAGCCTCTCCGATTGTCGAA	Amplification of ku70
	ΤGΔCΔΔCGCTΔGTΔTGGTΔCGΔGAG	3' flanking region
	I GROADCOCIAGIA I I GOTIACOAGAG	

flavku70R3 Fku70IF Fku70IR	ACAG AGAATGGCTACGTCAACCTCCG ATGAGGAAGAGGAGGAGACCG CACTTTTCAATCGTGCGAGCCG	Amplification of $ku70$ 3' flanking region Amplification of $\Delta ku70$ cassette Amplification of $\Delta ku70$ cassette
pet28_fsqB_3'_fwd fsqB_5'_pet28_rev	TGGTGCCGCGCGGCAGCCATATGTC TATCCCTAACTCTTTCATCATTGT CTCAGCTTCCTTTCGGGCTTTGTTACTA GTTGTCCTGTAGTAGTTCCACGG	Amplification of fsqB, <u>pET28b+ 3' destination</u> Amplification of fsqB <u>pET28b+ 5' destination</u>

WT	Δ	OE	<u>Afu6g</u> -	Predicted function
14 15	100 60	-	03400	Unknown function
			03420	Putative trehalase phosphorylase
			03430	Zn(II) ₂ Cys ₆ transcription factor
			03440	Fructosyl amine oxidase
		-	03450	N-methyltransferase
		-	03460	D-ala/D-ala ligase
		- TOL AND	03470	MDR1 type ABC transporter
		shine party	03480	NRPS-like enzyme
(1) (jak		100	03490	Monooxygenase
			03500	Hypothetical protein
Same Same		Same man	03510	Polyamine oxidase
	-			Actin
				rRNA

Supplementary Figure 1. Northern blot analysis of WT (Af293) left, $\Delta fsqA$ middle, and OE::*fsqA*, right. Overexpression of *fsqA* causes specific up-regulation of AFUA6g_03430 – AFUA6g_03490, defining the boundaries of the *fsq* cluster.

Supplementary Figure 2. Phenotype of WT (Af293) left, $\Delta fsqA$ middle, and OE::fsqA right grown on GMM at 37°C for 72 hours. OE::fsqA decreases radial growth and shows characteristic brown pigmentation diffusing into the media.

Supplementary Figure 3. **Color of fumisoquin C.** Photograph of a test tube (18 x 150 mm) from large-scale reverse-phase chromatography containing ~0.02 mg/mL of fumisoquin C, **3**, (left) and UV-Vis spectrum from HPLC-UV-MS analysis (right).

Supplementary Figure 4. Fumisoquin C decomposition and derivatization. (a) ¹H NMR spectra in CD₃OD at T = 2 h (top), T = 72 h (middle), and T = 192 h (bottom) after chromatographic purification, showing conversion of fumisoquin C, **3**, into **4**. (b) Conversion of fumisoquin C (**3**) into dimethyl fumisoquin C. See Online Methods for experimental procedure.

Supplementary Figure 5. Synteny analysis of fsq cluster in indicated Aspergillus and *Neosartorya* species. The analysis shows conservation of fsqB (red), fsqC (green), and fsqG (blue), which encode the enzymes responsible for the incorporation of the isoquinoline ring in 1-5, and 18. For % identity of these genes in each species shown, see Supplementary Table 2.

Supplementary Figure 6. L-cysteine is not incorporated into the fumisoquins. lon chromatograms from HPLC-MS analysis of extracts from OE::*fsqA* fed with L-cysteine or L-[3,3- d_2]-cysteine. Indicated *m*/*z* values correspond to isotopomers of **2** with or without heavy atom incorporation.

Supplementary Figure 7. Mass spectra of FSQ cluster metabolites with and with out heavy atom incorporation. (a) L-serine, L-tyrosine, and L-methionine are incorporated into the fumisoquins. (b) Mass spectrum of 2 with L-serine incorporated (left) and mass spectrum of 2 with $L-[^{13}C_3, ^{15}N]$ -serine incorporated (right). Increased M+1 and M+2 peaks likely result from amination/deamination and use of abundant labeled serine for methionine production. (c) Mass spectrum of 2 with L-tyrosine incorporated (left) and mass spectrum of 2 with L-[2-¹³C]-tyrosine incorporated (right). (d) Mass spectrum of 2 with L-methionine incorporated (left) and mass spectrum of 18 with L-tyrosine incorporated (right). (e) Mass spectrum of 18 with L-tyrosine incorporated (right).

Supplementary Figure 8. **NMR spectra of** ¹³**C-enriched 4** (a) ¹H-¹³C coupled ¹H NMR spectrum of a sample of 4 obtained from fumisoquin C (3) isolated from a fungal culture grown with L-[1'-¹³C]-methionine (top) and ¹H-¹³C *decoupled* ¹H NMR spectrum of the same sample of 4 (bottom), showing selective incorporation of the methionine methyl group. In the decoupled spectrum, the intensity of the signal of the proton attached to the labeled carbon does not increase proportionally due to partial signal loss and line shape changes during decoupling. (b) ¹H-¹³C coupled HSQC spectrum of this sample of **4**. Spectra were acquired using the 600 MHz Varian INOVA spectrometer, using DMSO-*d*₆ as solvent.

Supplementary Figure 9. **Purification and spectra of FsqB.** SDS-polyacrylamide gel of the polyhistidine-tagged FsqB (left), and UV-Vis absorption and fluorescence spectra (right) of FsqB. Spectra were acquired in 100 mM potassium phosphate buffer at pH 7.0, and fluorescence spectrum was acquired using an excitation wavelength of 450 nm.

Supplementary Figure 10. Reaction of DL-DOPA with formaldehyde followed by addition of sodium borohydride produces a 7:3 mixture of cyclized products **12** and **13**, respectively, in addition to variable amounts of uncyclized **11**, as determined by HPLC-MS.

Supplementary Figure 11. **Enzymatic activity of FsqB**. Steady-state kinetics evaluated for FsqB on model substrate **11**. The observed apparent steady-state kinetic parameters of FsqB operating on **11** were K_{M} : 142.5 ± 42.9 µM and k_{cat} : 0.9 ± 0.1 s⁻¹ at 25 °C. Each initial concentration of **11** was sampled twice for kinetic analysis, and displayed as the mean ± s.d.

Supplementary Figure 12. Substrate specificity of FsqB. (a) Ion chromatograms for *N*methyl dopamine (m/z = 166.1) and cyclic product (m/z = 164.1), showing no product formation after 151 min. (b) FsqB does not catalyze the cyclization of *N*-methyl-L-tyrosine. Ion chromatograms for *N*-methyl-L-tyrosine (m/z = 194.1) and cyclic product (m/z = 192.1) obtained after 151 min show no product formation. (c) FsqB does not catalyze the cyclization of *N*,*N*dimethyl DOPA. Ion chromatograms for *N*,*N*-dimethyl DOPA (m/z = 224.1) and putative cyclic product (m/z = 222.1) obtained after 200 min show no product formation. Validating FsqB preference toward secondary β -*N*-methylamine substrates. (d) FsqB does not catalyze the cyclization of (*S*)-reticuline. Ion chromatograms for (*S*)-reticuline (m/z = 328.1) and cyclic product (m/z = 326.1) obtained after 12 h show no product formation.

Supplementary Figure 13. FsqB features a covalently bound FAD cofactor and produces H_2O_2 in the presence of substrate (a) Collision-induced dissociation mass spectrum of tryptic FsqB peptide, revealing covalently bound FAD. Amino acid sequence and location of FAD attachment were inferred from indicated *b*- (green) and *y*-type (red) ion series and diagnostic FAD fragmentation (blue). (b) Amplex Red H_2O_2 assay of 15 µM FsqB with or without 11, or 3,4-dihydroxy-DL-phenylalanine (DOPA) (100 mM phoshate buffer, pH 7, 1.5 h). Values were normalized to 0 and 100 µM H_2O_2 and presented as mean ± s.d. (n = 3), where * *P* < 0.05, ** *P* < 0.001, *** *P* < 0.0001, determined using Student's *t*-test.

Supplementary Figure 14. **Properties of recombinant FsqF adenylation domain.** SDSpolyacrylamide gel showing the purity of the FsqF adenylation domain (left), and ATP-[³²P]pyrophosphate exchange assay results (right) for amino acids selected based on results from the stable-isotope labeling experiments (see Fig. 4a-c and Supplementary Fig. 6 and Online Methods). The exchange assay shows none or minimal (in the case of L-cysteine) activation for all tested amino acids. Collectively, the assay results suggest that no standard amino acid is the true substrate, but rather a derivative of an amino acid, such as dehydroalanine, as proposed in the biosynthetic model shown in main text Fig. 3.

Supplementary Figure 15. L-tyrosine is incorporated into shunt metabolite 18. lon

chromatograms extracted from HPLC-MS analysis of extracts from OE:: $fsqA-\Delta fsqF$ fed with L-tyrosine or L-[2-¹³C]-tyrosine. The indicated *m/z* values correspond to **18** with or without heavy atom incorporation. The data support the hypothesis that FsqD is responsible for incorporation of L-tyrosine and not FsqF, as shown in main text **Fig 3**.

Supplementary Figure 16. Shunt metabolite 18 is produced non-enzymatically from 12 and anthranilic acid, 20. High-resolution UHPLC-MS total ion chromatogram for a reaction mixture of 12 and 20 reveals formation of 18, along with two intermediates, 21 and 22 (proposed structures shown in gray). See **Supplementary Table 1** for HRMS data.

Supplementary Figure 17. Southern analysis confirmation of all mutants used in this study. Mutant (number) lanes are on the left of each image and the parental strain ("WT") is shown on the right. Expected band sizes correlating with those seen in the images are marked accordingly. Under each image is the enzymes used in the restriction digest as well as the nucleic acid probe us

Supplementary References

- 1. Clauser, K. R., Baker, P. & Burlingame, A. L. Role of accurate mass measurement (+/- 10 ppm) in protein identification strategies employing MS or MS/MS and database searching. *Anal Chem* **71**, 2871–82 (1999).
- 2. Xue, T., Nguyen, C. K., Romans, A., Kontoyiannis, D. P. & May, G. S. Isogenic auxotrophic mutant strains in the Aspergillus fumigatus genome reference strain AF293. *Arch Microbiol* **182**, 346-353 (2004).
- 3. He, Z., Price, M.S., OBrian, G.R., Georgianna, D.R. & Payne, G.A. Improved protocols for functional analysis in the pathogenic fungus Aspergillus flavus. *BMC Microbiology* **7**, 104 (2007).
- 4. Palmer, J. M. *et al.* Loss of CcIA, required for histone 3 lysine 4 methylation, decreases growth but increases secondary metabolite production in Aspergillus fumigatus. *PeerJ* **1**, e4 (2013).
- 5. Sekonyela, R. *et al.* RsmA regulates Aspergillus fumigatus gliotoxin cluster metabolites including cyclo(L-Phe-L-Ser), a potential new diagnostic marker for invasive aspergillosis. *PLoS One* **8**, e62591 (2013).
- 6. Lim, F.Y., *et al.* Genome-Based Cluster Deletion Reveals an Endocrin Biosynthetic Pathway in Aspergillus fumigatus. *Appl Environ Microbiol* **78**, 4117-4125 (2012).
- Calvo, A.M., Bok, J.W., Brooks, W. & Keller, N.P. LeA Is Required for Toxin and Sclerotial Production in Aspergillus parasiticus. *Appl Environ Microbiol* **70**, 4733-4739 (2004)

Supplementary Note

¹H (800 MHz) and ¹³C (200 MHz) NMR spectroscopic data for fumisoquin A, 1, in

methanol-d₄.

Chemical shifts were referenced to $\delta(CHD_2OD) = 3.31$ and $\delta({}^{13}CHD_2OD) = 49.0.{}^{13}C$ chemical shifts were determined via HMBC and HSQC spectra. ${}^{1}H$, ${}^{1}H$ -*J*-coupling constants were determined from the acquired ${}^{1}H$ or dqfCOSY spectra. NOESY correlations were observed using a mixing time of 400 ms. HMBC correlations are from the proton(s) stated to the indicated ${}^{13}C$ atom.

No.	δ _c	Proton	δΗ (<i>J</i> _{HH} [Hz])	НМВС	NOESY
1	128.03				
2	70.99	2-H	4.94 (<i>J</i> _{2,3} = 1.9)	1, 3, 4, 7, 10, 11, 14	3, 4, 14
3	60.44	3-H	$3.73 (J_{3,2} = 1.9, J_{3,4} = 8.7)$	1, 7	2, 4, 5b
4	67.19	4-H	4.65 ($J_{4,3}$ = 8.7, $J_{4,5a}$ = 7.6,	5	2, 5a, 5b
			$J_{4,5b} < 1$)		
5	33.67	5-H _a	2.46 ($J_{5a,4}$ = 7.6, $J_{5a,5b}$ = 13.0,	3, 4, 6, 7	4, 6, 5b
			$J_{5a,6} = 5.7$)		
		5-H₀	2.06 ($J_{5b,4}$ < 1, $J_{5b,5a}$ = 13.0,	3, 4, 6, 7	3, 4, 5a
			$J_{5b,6} = 12.4)$		
6	47.88	6-H	4.29 ($J_{6,5a}$ = 5.7, $J_{6,5b}$ = 12.4)	5, 7	5a
7	169.75				
8					
9	42.35	9-H _a	4.66 (J _{9Ha,9Hb} = 18.0)	1, 2, 3, 6, 7, 10, 11, 12, 13	
		9-H _b	4.78 (J _{9Hb,9Ha} = 18.0)	1, 2, 3, 6, 7, 10, 11, 12, 13	3
10	119.92				
11	142.82				
12	146.06				
13	114.23	13-H	6.73 (J _{13,14} = 8.0)	1, 10, 11, 12	14
14	120.04	14-H	$6.70 (J_{14,13} = 8.0)$	1, 2, 4, 9, 10, 12, 13	2,1 3

S25

¹H (600 MHz) and ¹³C (151 MHz) NMR spectroscopic data for fumisoquin B, 2, in methanol- d_4 .

Chemical shifts were referenced to $\delta(C\underline{H}D_2OD) = 3.31$ and $\delta({}^{13}\underline{C}HD_2OD) = 49.0.{}^{13}C$ chemical shifts were determined via HMBC and HSQC spectra. ${}^{1}H$, ${}^{1}H$ -*J*-coupling constants were determined from the acquired ${}^{1}H$ or dqfCOSY spectra. ROESY correlations were observed using a mixing time of 500 ms. HMBC correlations are from the proton(s) stated to the indicated ${}^{13}C$ atom.

No.	δ _c	Proton	δΗ (<i>J</i> _{HH} [Hz])	HMBC ^a	ROESY
1	134.03				
2	70.75	2-H	4.98 ($J_{2,3}$ = 2.0)	1, 3, 10	4, 14
3	60.19	3-H	$3.71 (J_{3,2} = 2.0, J_{3,4} = 9.2)$		5a
4	67.30	4-H	4.62 ($J_{4,3}$ = 9.2, $J_{4,5a}$ = 6.9, $J_{4,5b}$ = 7.9)	6	2
5	34.69	5-H _a	1.94 ($J_{5a,4} = 6.9$, $J_{5a,5b} = 13.0$, $J_{5a,6} = 11.5$)	4, 6, 7	3
		5-H _b	2.43 ($J_{5b,4}$ = 7.9, $J_{5b,5a}$ = 13.0, $J_{5b,6}$ = 5.8)	4, 6, 7	
6	47.88	6-H	4.02 ($J_{6,5a}$ =11.5, $J_{6,Hb}$ = 5.8)	5, 7	
7	171.61				
8					
9	42.26	9-H _a	$4.63 (J_{9Ha,9Hb} = 18.5)$	3	
		9-H _b	4.81 ($J_{9Hb,9Ha}$ = 18.5)	10, 11	
10	121.61				
11	147.05				
12	140.92				
13	122.08	13-H	7.23 ($J_{13,14} = 8.1$)	1, 11, 12w	
14	119.96	14-H	6.83 (<i>J</i> _{14,13} = 8.1)	2, 10, 12, 13	2

^aw: weak correlation (less than ~10% of the intensity of strongest signal)

¹H and ¹³C spectroscopic data for fumisoquin C, 3, in DMSO-*d*₆.

Chemical shifts were referenced to $\delta(C\underline{H}D_2SOCD_3) = 2.50$ and $\delta({}^{13}\underline{C}HD_2SOCD_3) = 39.52$. ¹³C chemical shifts were determined via HMBC and HSQC spectra. Spectra were acquired using the Varian INOVA 600 spectrometer, except for the HSQC, which was acquired using the Bruker Avance 800 spectrometer. ¹H, ¹H-*J*-coupling constants were determined from the acquired ¹H spectrum. NOESY correlations were observed using a mixing time of 600 ms. HMBC correlations are from the proton(s) stated to the indicated ¹³C atom.

No.	δ _c	Proton	δΗ (<i>J</i> _{HH} [Hz])	НМВС	NOESY
1	115.62				
2	138.33				
3		3-NH	9.46 (<i>J</i> _{3,4} = 1.5)	1, 4, 5, 6, 8	4
4	53.27	4-H	$3.73 (J_{4,3} = 1.5, J_{4,6a} = 9.6, J_{4,6b} = 5.4)$	2, 5, 6, 7	3, 7
5	173.40				
6	32.31	6-Ha	1.69 ($J_{6a,4}$ =12, $J_{6a,6b}$ = 12.8, $J_{6a,7}$ = 9.5)	4, 5, 7, 8	
		6-Hb	2.38 ($J_{6b,4}$ =12, $J_{6a,6b}$ = 12.8, $J_{6b,7}$ = 5.3)	4, 5, 7, 8	
7	66.85	7-H	4.57 (J _{7,6a} = 9.5, J _{7,6b} = 5.3)	2, 4, 6, 8	4
8	152.69				
9					
10	130.73	10-H	7.98	1, 8, 11, 12, 13, 15	
11	124.93				
12	188.04				
13 ^a	184.60				
14	107.92	14-H	5.24	1, 12, 13, 15	
15 ^a	170.85				

^aPosition 13 and 15 carbon chemical shifts are interchangeable

¹H (800 MHz) and ¹³C (200 MHz) NMR spectroscopic data for dimethyl-fumisoquin C (dimethyl-3) in DMSO- d_6 .

Chemical shifts were referenced to $\delta(C\underline{H}D_2SOCD_3) = 2.50$ and $\delta({}^{13}\underline{C}HD_2SOCD_3) = 39.52$. ¹³C chemical shifts were determined via HMBC and HSQC spectra. ¹H, ¹H-*J*-coupling constants were determined from the acquired ¹H spectrum. ROESY correlations were observed using a mixing time of 600 ms. HMBC correlations are from the proton(s) stated to the indicated ¹³C atom.

No.	δ _c	Proton	δН (<i>J</i> _{нн} [Hz])	HMBC ^a	ROESY
1	112.56				
2	138.34				
3		3-NH	9.22 (<i>J</i> _{3,4} = 3.8)	1,2,4,6,8	4
4	49.12	4-H	4.49 ($J_{4,3}$ = 3.8, $J_{4,6a}$ = 6.3) ($J_{4,6b}$ = 12.2)	2,5,6,7,8	3, 6a, 6b, 7
5	172.07				
6	30.13	6-Ha	2.24 ($J_{6a,4}$ =6.3, $J_{6a,6b}$ = 13.5, $J_{6a,7}$ = 3.6)	4,5,7,8	4, 6b, 7
		6-Hb	2.38 $(J_{6b,4} = 12.2, J_{6a,6b} = 13.5)$ $(J_{6b,7} = 9.0)$	4,5,7,8	4, 6a, 7
7	65.09	7-H	4.69 ($J_{7,6a}$ = 3.6, $J_{7,6b}$ = 9.0)		4, 6a, 6b, 7OH
7		7-OH	5.61 (J _{70H,7} = 4.2)	2,4,8	7
8	153.51				
9					
10	132.52	10-H	8.31	1,2w,8,11,12,13,15	
11	123.43				
12	179.63				
13	159.07				
14	111.20	14-H	6.32	1,2,12,13,15	17
15	187.38				
16	51.58	16-H3	3.63	5	4
17	56.24	17-H3	3.86	13,14	14

^aw: weak correlation (less than ~10% of the intensity of strongest signal)

¹H (800 MHz) and ¹³C (200 MHz) NMR spectroscopic data for compound 4 in DMSO-*d*₆.

Chemical shifts were referenced to $\delta(C\underline{H}D_2SOCD_3) = 2.50$ and $\delta({}^{13}\underline{C}HD_2SOCD_3) = 39.52$. ¹³C chemical shifts were determined via HMBC and HSQC spectra. ¹H, ¹H-*J*-coupling constants were determined from the acquired ¹H spectrum. HMBC correlations are from the proton(s) stated to the indicated ¹³C atom.

No.	δ _c	Proton	δΗ (<i>J</i> _{HH} [Hz])	HMBC ^a
1	127.41			
2	134.33			
3		3-NH	13.71 ($J_{3,4}$ = 6.6, $J_{3,5}$ = 1.7)	
4	140.30	4-H	8.06 ($J_{4,3}$ = 6.6, $J_{4,5}$ = 7.3)	2, 5, 6
5	111.88	5-H	$6.24 (J_{5,4} = 7.3, J_{5,3} = 1.7)$	4, 7
6	175.28			
7	144.61			
8				
9	141.85	9-H	8.91	1, 2w, 7, 10, 11w, 12w
10	125.00			
11	185.04			
12	180.67			
13 ^b	108.10	13-H	5.45	1, 2w, 11, 12w, 14w
14 ^b	172.04			

^aw: weak correlation (less than ~10% of the intensity of strongest signals); ^bPosition 12 and 14 carbon chemical shifts are interchangeable

¹H (800 MHz) and or ¹³C (200 MHz) NMR spectroscopic data for compound 5 in DMSO-*d*₆.

Chemical shifts were referenced to $\delta(C\underline{H}D_2SOCD_3) = 2.50$ and $\delta({}^{13}\underline{C}HD_2SOCD_3) = 39.52$. ¹³C chemical shifts were determined via HMBC and HSQC spectra. ¹H, ¹H-*J*-coupling constants were determined from the acquired ¹H spectrum. NOESY correlations were observed using a mixing time of 600 ms. HMBC correlations are from the proton(s) stated to the indicated ¹³C atom.

No.	δ _c	Proton	δΗ (<i>J</i> _{HH} [Hz])	HMBC ^a	NOESY
1	108.19				
2	142.74				
3					
4	146.12	4-H	8.87 ($J_{4,5}$ = 4.7)	2, 5, 6	5, 14-OH
5	121.77	5-H	7.75 ($J_{5,4}$ = 4.7, $J_{5,6}$ = 8.3)	4, 7	4, 6
6	136.97	6-H	8.48 (<i>J</i> _{6,5} = 8.3)	2, 4	5
7	136.52				
8					
9	149.94	9-H	9.52	1, 2w, 7, 10, 11, 14w	
10	118.41				
11	133.63				
12	146.74				
13	106.91	13-H	6.97	1, 2w, 11, 12, 14	
14	150.40				
14		14-OH	13.42	1, 12, 13, 14	4

^aw: weak correlation (less than ~10% of the intensity of strongest signal)

¹H (600 MHz) and ¹³C (151 MHz) NMR spectroscopic data for compound 8 in methanol-*d*₄.

Chemical shifts were referenced to $\delta(C\underline{H}D_2OD) = 3.31$ and $\delta({}^{13}\underline{C}HD_2OD) = 49.0$. ${}^{13}C$ chemical shifts were determined via an HMBC spectrum. ${}^{1}H$, ${}^{1}H$ -*J*-coupling constants were determined from the acquired ${}^{1}H$ spectrum. HMBC correlations are from the proton(s) stated to the indicated ${}^{13}C$ atom.

No.	δ _c	Proton	δΗ (<i>J</i> _{HH} [Hz])	НМВС
1				
2	129.62	2-H	7.03 (<i>J</i> _{2,3} = 8.5)	1, 3, 4, 7
3	130.63	3-H	6.70 (<i>J</i> _{3,2} = 8.5)	1, 4, 5
4	155.91			
5	130.63	5-H	6.70 (<i>J</i> _{5,6} = 8.5)	1, 4, 5
6	129.62	6-H	7.03 ($J_{6,5}$ = 8.5)	1, 3, 4, 7
7	33.04	7-H ₂	3.83	2, 3, 5, 6, 8, 9
8	138.30			
9	108.30	9-H	$5.80 (J_{9,10} = 3.5)$	7, 8, 10, 11, 13
10	116.12	10-H	$6.62 (J_{10,9} = 3.5)$	8, 9, 11, 13
11	122.63			
12		12-NH		
13	164.53			

¹H (500 MHz) and ¹³C (125 MHz) NMR spectroscopic data for compound 11 in water-*d*₂.

Chemical shifts were referenced to $\delta(\underline{H}OD) = 2.79$ and $\delta({}^{13}\underline{C}H_3OD) = 49.0$. ${}^{13}C$ chemical shifts were determined via an HMBC and HSQC spectrum. ${}^{1}H$, ${}^{1}H$ -*J*-coupling constants were determined from the acquired ${}^{1}H$ spectrum. HMBC correlations are from the proton(s) stated to the indicated ${}^{13}C$ atom.

No.	δ _c	Proton	δН (<i>J</i> _{нн} [Hz])	НМВС
1	127.21			
2	117.10	2-H	6.84 (<i>J</i> _{2,6} = 1.8)	4, 6, 7
3	144.36			
4	143.63			
5	116.49	5-H	$6.92 (J_{5,6} = 8.0)$	1, 3
6	121.86	6-H	6.76 ($J_{6,5}$ = 8.0, $J_{6,2}$ = 1.8)	2, 4, 5, 7
7	35.06	7-H ₂	3.14 (<i>J</i> _{7,8} = 6.0)	1, 2, 6, 8, 9
8	64.71	8-H	$3.82 (J_{8,7} = 6.0)$	1, 7, 9, 10
9	173.12			
10	32.16	10-H₃	2.71	8

¹H (600 MHz) and ¹³C (151 MHz) NMR spectroscopic data for compound 12 in water-*d*₂.

Chemical shifts were referenced to $\delta(\underline{H}OD) = 2.79$ and $\delta({}^{13}\underline{C}H_3OD) = 49.0$. ${}^{13}C$ chemical shifts were determined via an HMBC and HSQC spectrum. ${}^{1}H$, ${}^{1}H$ -*J*-coupling constants were determined from the acquired ${}^{1}H$ spectrum. HMBC correlations are from the proton(s) stated to the indicated ${}^{13}C$ atom.

No.	δ _c	Proton	δН (<i>J</i> _{нн} [Hz])	НМВС
1	124.11			
2	28.50	2-Ha	$3.08 (J_{2a,2b} = 16.0, J_{2a,3} = 11.5)$	1, 3, 6, 10, 11
		2-Hb	$3.32 (J_{2b,2a} = 16.0, J_{2b,3} = 5.0)$	1, 3, 6, 10, 11
3	56.25	3-H	$3.98 (J_{3,2a} = 11.5, J_{3,2b} = 5.0)$	1, 2, 5, 11
4		4-NH		
5	40.60	5-Ha	4.25 (<i>J</i> _{5a,5b} = 16.0)	1, 3, 6, 7
		5-Hb	4.54 ($J_{5b,5a}$ = 16.0)	1, 3, 6, 7
6	116.69			
7	140.97			
8	142.61			
9	116.49	9-H	$6.93 (J_{9,10} = 8.4)$	1, 7
10	121.86	10-H	$6.80 (J_{10,9} = 8.4)$	2, 6, 8
11	173.12			

¹H (600 MHz) and ¹³C (151 MHz) NMR spectroscopic data for compound 18 in DMSO-*d*₆.

Chemical shifts were referenced to $\delta(C\underline{H}D_2SOCD_3) = 2.50$ and $\delta({}^{13}\underline{C}HD_2SOCD_3) = 39.52$. ¹³C chemical shifts were determined via HMBC and HSQC spectra. ¹H, ¹H-*J*-coupling constants were determined from the acquired ¹H spectrum. NOESY correlations were observed using a mixing time of 600 ms. HMBC correlations are from the proton(s) stated to the indicated ¹³C atom.

No.	δ _c	Proton	δН (<i>J</i> _{нн} [Hz])	HMBC ^a	NOESY
1	140.40				
2	117.23	2-H	8.05 (<i>J</i> _{2,3} = 5.2)	3, 6, 7, 10	
3	154.59	3-H	9.02 (<i>J</i> _{3,2} = 5.2)	1, 2, 5	
4					
5	148.00	5-H	9.08 (<i>J</i> _{5,2} = 2.3)	1, 3, 6, 7	
6	125.13				
7	181.43				
8	175.31				
9	102.40	9-H	6.45	1, 7, 8, 10w	13
10	149.45				
11		11-NH			
12	142.36				
13	120.03	13-H	7.48 ($J_{13,14} = 8.5$)	15, 17	9
14	130.23	14-H	7.45 ($J_{14,13}$ = 8.5, $J_{14,15}$ = 7.5)	12, 16	
15	122.68	15-H	7.11 ($J_{15,14}$ = 7.5, $J_{15,16}$ = 7.5)	13, 17	
16	131.10	16-H	8.01 (<i>J</i> _{16,15} = 7.5)	12, 14, 18	
17	126.86				
18	168.47				

^aw: weak correlation (less than ~10% of the intensity of strongest signal)

