SUPPLEMENTARY MATERIALS

Nitric oxide-induced activation of the type 1 ryanodine receptor is critical for epileptic seizure-induced neuronal cell death

Yoshinori Mikami^{1,2}, Kazunori Kanemaru¹, Yohei Okubo¹, Takuya Nakaune¹, Junji Suzuki¹, Kazuki Shibata³, Hiroki Sugiyama³, Ryuta Koyama³, Takashi Murayama⁴, Akihiro Ito^{5,6}, Toshiko Yamazawa⁷, Yuji Ikegaya³, Takashi Sakurai⁴, Nobuhito Saito⁵, Sho Kakizawa^{8*} & Masamitsu Iino^{1,9 *}

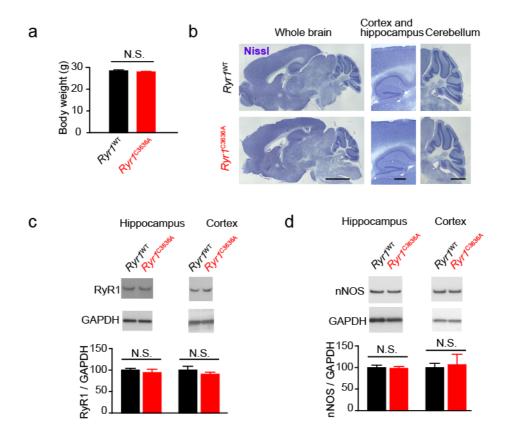


Figure S1 Characterization of *Ryr1*^{C3636A} mice and characterization of RyR1^{C3636A} channels in brain (Relates to Figure 1)

(a). Body weights of $RyrI^{C3636A}$ and $RyrI^{WT}$ littermates at 12 weeks of age. n = 7-8. Error bars indicate s.e.m. N.S., not significant, *t*-test compared with control. (b) Representative images of Nissl-stained sagittal sections from brains of $RyrI^{WT}$ littermates and $RyrI^{C3636A}$ mice at 12 weeks of age. Scale bar: 5 mm (whole brain), 500 µm (cortex and hippocampus), 1 mm (cerebellum). (c) Immunoblotting of cytosol and microsome-enriched fractions from hippocampus (left) and cerebral cortex (right) using antibodies against RyR1 and GAPDH (loading control). Samples were collected from $RyrI^{C3636A}$ and $RyrI^{WT}$ littermates at 12 weeks of age; n = 3-4. Error bars indicate s.e.m. N.S., not significant, *t*-test compared with control. (d) Expression levels were analyzed by immunoblotting using antibodies to nNOS and GAPDH; n = 3-4. Error bars indicate s.e.m. N.S., not

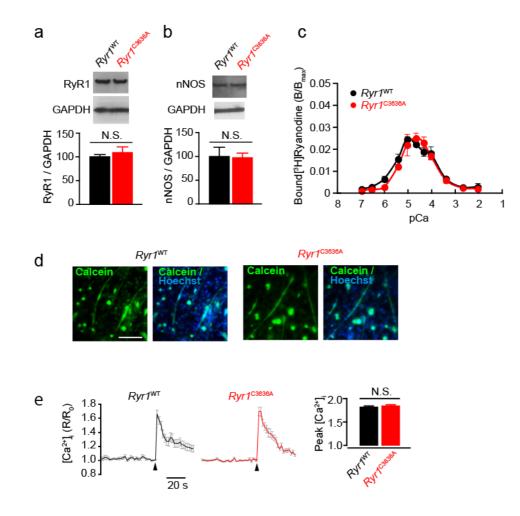


Figure S2 Characterization of RyR1^{C3636A} channels in skeletal muscle (Relates to Figure 1)

(**a**, **b**) Immunoblotting of cytosol and microsome-enriched fractions from skeletal muscle, using antibodies against RyR1 (a) or nNOS (b) and GAPDH (loading control). Samples were collected from $RyrI^{C3636A}$ and $RyrI^{WT}$ littermates at 12 weeks of age; n = 3-4. Error bars indicate s.e.m. N.S., not significant, *t*-test compared with control. (**c**) Ca²⁺-dependent [³H]ryanodine binding to $RyrI^{WT}$ (black) and $RyrI^{C3636A}$ (red) sarcoplasmic reticulum vesicles. (**d**) Fluorescence images of calcein-AM (green) and Hoechst 33342 (blue) stained primary cultured myocytes. Scale bar: 100 µm. (**e**) Intracellular Ca²⁺ response to field stimulation in $RyrI^{C3636A}$ and $RyrI^{WT}$ myocytes measured at 2 frames s⁻¹. R (F_{340}/F_{380} of Fura-2) was normalized by the initial R (R_0). Peak amplitudes were compared between $RyrI^{WT}$ (36 cells) and $RyrI^{C3636A}$ (42 cells) myocytes. Error bars indicate s.e.m. N.S., not significant, *t*-test compared with control.

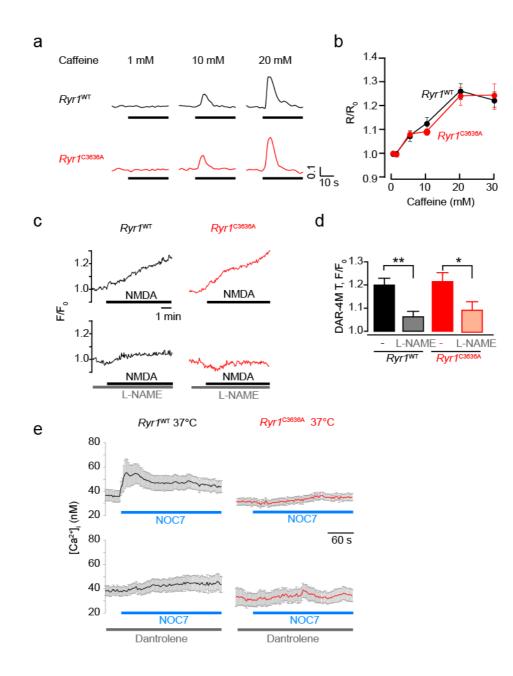
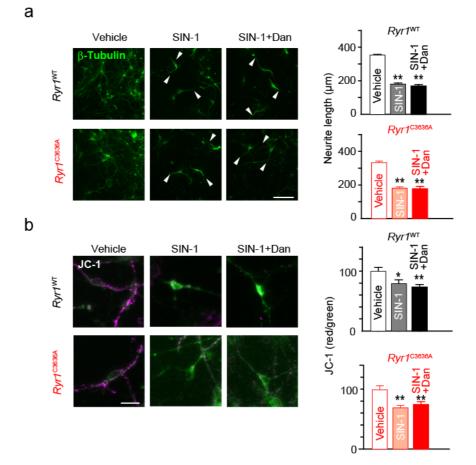



Figure S3 Characterization of RyR1^{C3636A} channels in primary cultured neurons (Relates to Figure 1) (a) Caffeine-induced Ca²⁺ responses (expressed as R/R_0) in $Ryr1^{C3636A}$ and $Ryr1^{WT}$ neurons. (b) Peak amplitudes of $[Ca^{2+}]_i$ at varied caffeine concentrations in $Ryr1^{WT}$ and $Ryr1^{C3636A}$ neurons; n = 13-35 neurons. (c) NO production measured with DAR-4M with or without a NOS inhibitor L-NAME. Fluorescence intensity of DAR-4M was normalized by the initial value. (d) Magnitude of NO production at 6 min after administration of NMDA in $Ryr1^{WT}$ (n = 15-19 cells) and $Ryr1^{C3636A}$ (n = 18-19 cells). Error bars indicate s.e.m. *t*-test. * p < 0.05, ** p < 0.01. (e) NICR was blocked by dantrolene. NOC7 (500 µM)-induced intracellular Ca²⁺ increase at 37°C with or without dantrolene (10 µM) in cultured cerebral neurons of $Ryr1^{WT}$ or $Ryr1^{C3636A}$ mice; n = 17-30 neurons, error bars indicates s.e.m.

Figure S4 Peroxynitrite donor SIN-1 induces neuronal cell death in both *Ryr1*^{WT} and *Ryr1*^{C3636A} neurons to the same extent (Relates to Figure 3)

(a) Effect of the application of peroxynitrite donor SIN-1 (3-morpholino-sydnonimine; 100 μ M) on neuron morphology (stained with anti- β -III tubulin antibody). Arrowheads indicate short and curly neurites. Graphs show the length of the longest neurite of each neuron; n = 95-125; error bars indicate s.e.m. Data were analyzed for significance using ANOVA followed by a Tukey-Kramer *post-hoc* test. ** p < 0.01. Dan, dantrolene. (b) Cell viability examined by JC-1 assay. n = 65-81. Error bars indicate s.e.m. Data were analyzed for significance using ANOVA followed by a Tukey-Kramer *post-hoc* test. ** p < 0.01, * p < 0.05.