Metabolomic Analysis of Mouse Embryonic Fibroblast Cells in Response to Acute Starvation with and without Atg7

Sensen Shen¹, Rui Weng^{1, 2}, Linnan Li¹, Xinyuan Xu¹, Yu Bai^{1*}, Huwei Liu¹

 Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing,

100871

 Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081

Corresponding Author

* E-mail: yu.bai@pku.edu.cn. Phone: +86-10-62758198. Fax: +86-10-62751708.

Retention time (min)	m/z	<i>p</i> -value*
0.90	131.0530	6.39E-04
0.90	275.0517	3.49E-02
0.91	326.1071	4.07E-02
0.96	104.0708	9.56E-03
1.03	148.0422	1.08E-02
1.29	146.1648	4.05E-02
1.40	203.0789	2.33E-02
1.48	233.9813	4.40E-02
1.82	190.0817	3.67E-03
5.02	188.0676	1.50E-02
5.04	120.0663	1.98E-02
5.29	146.1172	3.39E-02
5.73	159.0913	3.22E-02
6.08	446.4539	2.05E-02
6.08	557.8160	3.49E-02
6.08	743.7534	6.62E-06
6.44	180.1015	3.67E-02
6.95	204.1048	3.50E-02
7.66	305.2576	3.75E-03
8.26	103.0755	2.18E-02
9.12	384.3066	3.05E-02
9.12	449.3697	3.57E-03
9.13	406.3509	5.98E-03
9.14	363.3239	2.91E-02
9.19	493.3960	4.53E-03
9.21	450.3770	4.01E-03
9.73	329.0763	9.12E-07
10.35	119.0816	3.06E-02
10.35	268.1085	1.96E-02
11.21	197.0954	1.20E-04
11.42	457.3153	2.40E-02
12.21	616.4168	2.82E-02

Supplementary Table S1	. Unidentified altered metabolites in wild-type MEFs
------------------------	--

*) *p*-values were determined by one way ANOVA.

Retention time (min)	m/z	<i>p</i> -value*
0.68	205.4373	8.76E-07
0.73	97.9917	2.92E-03
0.73	263.1454	1.78E-07
0.75	84.0812	5.38E-04
0.76	148.1158	1.52E-06
0.77	220.9339	4.14E-03
0.78	168.0870	1.14E-07
0.80	395.0377	1.28E-04
0.80	259.0635	5.54E-07
0.80	327.0504	7.80E-08
0.80	531.0123	3.64E-07
0.82	190.9114	4.94E-03
0.83	232.9881	9.13E-04
0.84	97.0140	6.68E-04
0.85	200.0401	5.38E-08
0.85	282.9703	6.55E-04
0.85	127.0242	4.51E-07
0.86	76.0399	3.09E-04
0.86	178.0583	9.37E-08
0.86	176.1219	2.84E-07
0.87	191.0398	3.61E-06
0.87	188.9797	1.18E-05
0.87	238.0444	2.15E-03
0.87	105.1105	4.83E-04
0.88	216.0623	3.23E-03
0.88	142.0471	5.41E-05
0.89	383.1145	5.01E-05
0.89	81.0340	6.81E-04
0.91	262.0765	3.55E-07
0.91	203.0175	3.63E-03
0.91	360.0530	3.54E-05
0.96	274.0912	2.88E-06
0.97	178.0705	3.15E-04
0.97	307.0822	4.15E-03
0.97	276.1181	2.53E-06
0.97	346.1475	2.01E-05
0.97	307.0822	4.90E-03
1.03	205.0562	3.97E-03
1.07	150.0579	7.37E-08
1.31	227.0106	4.14E-03
1.47	347.1550	7.47E-05

Supplementary Table S2. Unidentified altered metabolites in Atg7 ^{-/-} ME	Fs.
--	-----

1.48	205.9866	2.51E-03
1.84	109.0286	7.01E-05
5.03	93.0703	2.94E-06
5.18	380.1474	3.50E-06
5.73	118.0651	4.06E-06
5.73	144.0805	2.86E-04
5.73	159.0913	4.03E-06
5.75	261.1437	2.86E-03
7.36	353.0465	9.47E-05
7.69	273.0899	1.07E-06
9.23	302.2136	1.00E-05
9.54	616.1743	5.67E-08
9.66	273.0899	5.46E-09
9.73	329.0763	1.33E-10
11.21	197.0954	1.12E-04
11.73	279.2307	3.12E-03

*) p-values were determined by one way ANOVA

Supplementary Table S3. Summary of the Metabolic Pathway Analysis (MetPA) results.

Pathway category ^a	Wild-type	Atg7 ^{-/-}
	3 ^b . Glycine, serine and threonine metabolism	1 ^c . Arginine and proline metabolism
	4 ^b . Histidine metabolism	2 ^c . Histidine metabolism
	6 ^b . Alanine, aspartate and glutamate metabolism	6 ^c . Lysine degradation
Amino acid metabolism	7 ^b . Arginine and proline metabolism	7 ^c . Glycine, serine and threonine metabolism
	8 ^b . Lysine degradation	8 ^c . Valine, leucine and isoleucine biosynthesis
	11 ^b . Cysteine and methionine metabolism	13 ^c . Valine, leucine and isoleucine degradation
	13 ^b . Lysine biosynthesis	14 [°] . Lysine biosynthesis
	17 ^b . Phenylalanine metabolism	22 ^c . Tyrosine metabolism
Energy metabolism	1 ^b . Nitrogen metabolism	9 ^c . Nitrogen metabolism
	16 ^b . Methane metabolism	
		4 ^c . Ascorbate and aldarate metabolism
Carbohydrate metabolism		16 [°] . Butanoate metabolism
		18 ^c . Inositol phosphate metabolism
		21 ^c . Galactose metabolism
	10 ^b . Riboflavin metabolism	10 [°] . Riboflavin metabolism
Metabolism of cofactors and	14 ^b . Biotin metabolism	11 ^c . Pantothenate and CoA biosynthesis
vitamins		12 ^c . Nicotinate and nicotinamide metabolism
		15 [°] . Biotin metabolism
Lipid metabolism	9 ^b . Sphingolipid metabolism	5 ^c . Synthesis and degradation of ketone bodies
	12 ^b . Glycerophospholipid metabolism	19 ^c . Glycerophospholipid metabolism

Metabolism of other amino acids	2 ^b . D-glutamine and D-glutamate metabolism 15 ^b . Cyanoamino acid metabolism	17 ^c . Glutathione metabolism
Nucleotide metabolism	18 ^b . Pyrimidine metabolism 19 ^b . Purine metabolism	20 ^c .Pyrimidine metabolism
Translation	5 ^b . Aminoacyl-tRNA biosynthesis	3 ^c . Aminoacyl-tRNA biosynthesis

a) Pathway category refers to the KEGG-based database pathway.

b) Numbers were corresponding to the number listed in Supplementary Figure S1.

c) Numbers were corresponding to the number listed in Supplementary Figure S2.

Primer designation	Primer sequence(5'to3')
Sphk1-f	ACTCCACCTTTGGAGGTTGC
Sphk1-r	GCGGCCAGATTTTTAGCTTCC
Sgpp2-f	CCTGCGGGATTCACAGCTC
Sgpp2-r	TCCTCTCCAGAAGCCTCCC
Sgpl1-f	CGTGAGACGCAGAGGCAG
Sgpl1-r	GCTCGAAGTCCTTCAGCTTG
Sptlc2-f	CCAAAATTGGCGCCTTTGGA
Sptlc2-r	GGGTAGCAGGAAATCCCACC
Sds-f	CTCTGTCCAGCTCCTCGT
Sds-r	GCCTTGTTTTGCTTTCATCTTGC
Shmt2-f	TTCACTCGAACTTCACGGGG
Shmt2-r	AGCTGACCACATCTCCGAGT
Gls-f	ACGTCAGATGGTGTCATGCT
Gls-r	CAGCAACCTTCCCTCCAGAC
Pdha1-f	GTTTTGGGCGTGGCTTCG
Pdha1-r	CGGCTTGCCGGCTTCT
ACTB-f	CACTGTCGAGTCGCGTCC
ACTB-r	TCATCCATGGCGAACTGGTG

Supplementary Table S4. The primers used for real-time quantitative PCR (qPCR).

Definition	Functions of its encoding protein	NCBI ID
Sphingosine kinase 1	An enzyme that phosphorylates sphingosine into sphingosine-1-phosphate	20698
Sphingosine-1-phosphate	An intracellular enzyme located in the endoplasmic reticulum, which regulates the level of	43323
phisphotase 2	sphingosine-1-phosphate (S1P)	
Sphingosine phosphate lyase 1	An enzyme which catalyzes the S1P into free fatty acids or phosphate lipids	20397
Serine palmitoyltransferase	The key enzyme in sphingolipid biosynthesis which catalyzes the	20773
	pyridoxal-5-prime-phosphate-dependent condensation of L-serine and palmitoyl-CoA to	
	3-oxosphinganine	
Serine dehydratase	An enzyme that catalyzes the conversion of L- , D-serine, or L-threonine to pyruvate/ketobutyrate	231691
Serine hydroxymethyltransferase2	An enzyme which carries out interconversion of serine and glycine	108037
Glutaminase	An enzyme that deaminates glutamine to glutamate	14660
Pyruvate dehydrogenase E1 alpha 1	An enzyme which catalyzes the irreversible oxidative decarboxylation of pyruvate to produce acetyl-CoA in the bridging step between glycolysis and the citric acid cycle	18597
	Sphingosine kinase 1 Sphingosine-1-phosphate phisphotase 2 Sphingosine phosphate lyase 1 Serine palmitoyltransferase Serine dehydratase Serine hydroxymethyltransferase2 Glutaminase Pyruvate dehydrogenase E1 alpha 1	PerintionParticions of its encoding proteinSphingosine kinase 1An enzyme that phosphorylates sphingosine into sphingosine-1-phosphateSphingosine-1-phosphate phisphotase 2An intracellular enzyme located in the endoplasmic reticulum, which regulates the level of sphingosine-1-phosphate (S1P)Sphingosine phosphate lyase 1An enzyme which catalyzes the S1P into free fatty acids or phosphate lipidsSerine palmitoyltransferaseThe key enzyme in sphingolipid biosynthesis which catalyzes the pyridoxal-5-prime-phosphate-dependent condensation of L-serine and palmitoyl-CoA to 3-oxosphinganineSerine dehydrataseAn enzyme that catalyzes the conversion of L- , D-serine, or L-threonine to pyruvate/ketobutyrateGlutaminaseAn enzyme that deaminates glutamine to glutamatePyruvate dehydrogenase E1 alpha 1An enzyme which catalyzes the irreversible oxidative decarboxylation of pyruvate to produce acetyl-CoA in the bridging step between glycolysis and the citric acid cycle

Supplementary Table S5. The definition and functions of the selected proteins based on NCBI.

Supplementary Figure S1. Pathway analysis of the altered metabolites in wild-type MEFs using MetPA. The dots mean the affected pathways along with the starvation time, with each number corresponding to the number listed in Supplementary Table S1. Pathways were arranged according to enrichment analysis (y axis) and topology analysis (x axis) scores (see "Materials and methods" section and Supplementary Table S1 for details).

Supplementary Figure S2. Pathway analysis of the altered metabolites in Atg7^{-/-} MEFs using MetPA. The dots mean the affected pathways along with the starvation time, with each number corresponding to the number listed in Supplementary Table S1. Pathways were arranged according to enrichment analysis (y axis) and topology analysis (x axis) scores (see "Materials and methods" section and Supplementary Table S1 for details).

Supplementary Figure S3. Mutual transformation between sphingosine and sphingosine-1-p (S1P) and the related enzymes. Sphk1: sphingosine kinase 1; Sgpp2: sphingosine -1-phosphate phosphatase 2; Sgpl1: sphingosine phosphate lyase 1.

Supplementary Figure S4. The tendency of sphingosine (d18:1) along with the starvation time. Wild-type MEFs and Atg7^{-/-} MEFs were treated with EBSS for the indicated times. Error bars indicate the SD.

Supplementary Figure S5. Western blot results of the conversion of LC3-I to LC3-II and Cytochrome C in wild-type and Atg7^{-/-} **MEFs.** Cells were treated with EBSS for the indicated times. R: recovery group, in which cells were re-cultured in the full medium after 4 hours' starvation.

Supplementary Figure S6. Full-length western blotting assay a) Conversion of LC3-I to LC3-II. **b)** Level of cytochrome C.