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Figure S1. The cluster quality for two functional enriched co-expression gene
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Figure S2. Co-expression networks of the cluster 5. the solid line represents a positive correlation, the
dash line represents a negative correlation, and the thickness of a line is proportional to the average
covariance value. Only interactions with a absolute covariance value larger than 0.5 are shown here.
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Figure S3. The association of inflammation-, skeletal disorder-, and CVD-associated genes
with the physical and cardiac function-related traits in the monkeys. Left panel shows the
cluster results based on physical (up) and cardiac (bottom) traits, and the right panel shows the
differential expression of the inflammation- and CVD/muscle disorder-associated genes in two
monkey groups. The correlation coefficients between expression of the genes and CVD/physical traits
are shown in the middle-right panel.
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Figure S4. The variations of physical traits among young and old monkeys. It shows that comparing
with young group, old monkeys have lower volume and higher density of fat tissues (except for getting
lower density of pericardial fat), higher volume of bone and muscle tissues, lower average walk speed
and BMI, and higher kness OA grade and muscle/fat Interface volume. The significant variant traits
are VAT volume and attenuation (density), SAT volume, Knees OA grade, and Bone volume (with p-
value less than 0.05).
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Figure S5. The variations of cardiac traits between monkeys with normal and risky hearts.
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Figure S6. Adipocyte dysfunction leads to atherosclerosis. In the aged animals, dysfunctional
adipocyte causing by inefficient metabolism will release adipokines and lipoproteins. Increasing of
these adipokines, such as tumor necrosis factor-a (TNF- @), lead to insulin resistance and
vasodilation, which attract monocyte to travese endothelial cells and into the lumen of artery.
Meanwhile, increased adipocyte-derived cholesteryl ester transfer protein (CETP) plasma
concentrations lead to a reduced level of high density lipoprotein (HDL) and an increased number of
low density lipoprotein (LDL). Once redundant LDL went into intima and became oxidized LDL
(OxLDL), it would help the transformation of macrophages into foam cells. The foam cells are the
main elements of lipid cores. Monocyte chemoattractant protein-1 (MCP-1) will attract smooth muscle
cells (SMC) to immigrate to intima from the media, leading to plaques prone to rupture with thin
fibrous caps, necrotic cores and rich in macrophages. These processes together can make the lumen
of artery to narrow down, and finally result in the atherosclerosis.
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Figure S7. Co-expression network of cluster 3.
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Figure S8. The top enriched functional/disease annotations, canonical pathways, and cell-types for
the cluster 3.



Cardiac Myocytes: 2.091 Bone Marrow:1.3221
BDCA4+ Dentritic Cells: 0.392 CD14+ Monocytes:0.971
Smooth Muscle:1.419

Figure S9. The enriched cell types with high —log 10 adjusted Benjamini-Hochberg p-value in the
cluster 3.



