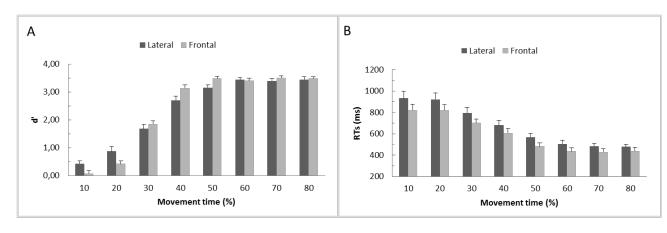
Supplemental Materials

Grasping Others' Movements: Rapid Discrimination of Object Size From Observed Hand Movements

by C. Ansuini et al., 2016, JEP: Human Perception and Performance

http://dx.doi.org/10.1037/xhp0000169


Table S1

Results of comparisons between small and large object for movements recorded in the "action execution" phase and for movements selected for the "action observation" phase. Paired samples t-tests were performed for the movement duration. For all other variables the significance of differences between "object size" (2 levels; small vs. large) and "time" (10 levels; from 10 to 100% in 10 steps) was analyzed using a within subject analysis of variance (ANOVA)

Kinematic	Recorded movements	Selected movements
variable	(Action execution phase)	(Action observation phase)
	Mean (\pm SE) small = 780 ± 22 ms	Mean (\pm SE) small = 768 \pm 16 ms
Movement	Mean (\pm SE) large = 745 \pm 27 ms	Mean (\pm SE) large = 750 \pm 20 ms
duration	t(14) = 3.767; p = .002	t(29) = 1.464; $p = .154$
	Mean (\pm SE) small = 521 \pm 13 mm/s	Mean (\pm SE) small = 524 \pm 10 mm/s
	Mean (\pm SE) large = 555 \pm 17 mm/s	Mean (\pm SE) large = 548 \pm 13 mm/s
Wrist velocity	Size = $[F_{(1,14)} = 24.538; p = .000]$	Size = $[F_{(1,29)} = 9.396; p = .005]$
-	Time = $[F_{(9,126)} = 246.750; p = .000]$	Time = $[F_{(9,261)} = 439.634; p = .000]$
	Size × Time = $[F_{(9,126)} = 17.677 ; p =$	Size × Time = $[F_{(9,261)} = 23.676; p =$
	.000]	.000]
	Mean (\pm SE) small = 42.17 \pm 1.22 mm	Mean (\pm SE) small = 42.38 \pm 1.02 mm
Grip aperture	Mean (\pm SE) large = 73.82 \pm 2.20 mm	Mean (\pm SE) large = 75.79 \pm 1.57 mm
	Size = $[F_{(1,14)} = 406.867; p = .000]$	Size = $[F_{(1,29)} = 488.113; p = .000]$
	Time = $[F_{(9,126)} = 239.327; p = .000]$	Time = $[F_{(9,261)} = 420.685; p = .000]$
	Size × Time = $[F_{(9,126)} = 257.009; p =$	Size × Time = $[F_{(9,261)} = 248.699; p =$
	.000]	.000]
	Mean (\pm SE) small = 68.76 \pm 3.53 mm	Mean (\pm SE) small = $68.67 \pm 2.40 \text{ mm}$
Wrist height	Mean (\pm SE) large = 85.08 ± 3.53 mm	Mean (\pm SE) large = $85.19 \pm 2.60 \text{ mm}$
	Size = $[F_{(1,14)} = 345.491; p = .000]$	Size = $[F_{(1,29)} = 327.735; p = .000]$
	Time = $[F_{(9,126)} = 132.876; p = .000]$	Time = $[F_{(9,261)} = 439.634; p = .000]$
	Size × Time = $[F_{(9,126)} = 143.868; p =$	Size × Time = $[F_{(9,261)} = 107.658; p =$
	.000]	.000]
	Mean (\pm SE) small = -2.19 ± 1.78	Mean (\pm SE) small = -1.91 ± 1.22
X-thumb	Mean (\pm SE) large = -15.17 ± 1.60	Mean (\pm SE) large = -15.12 ± 1.08
	Size = $[F_{(1,14)} = 90.569; p = .000]$	Size = $[F_{(1,29)} = 238.345; p = .000]$
	Time = $[F_{(9,126)} = 22.245; p = .000]$	Time = $[F_{(9,261)} = 29.294; p = .000]$
	Size × Time = $[F_{(9,126)} = 77.525; p =$	Size × Time = $[F_{(9,261)} = 87.980; p =$
	.000]	.000]
	Mean (\pm SE) small = 14.85 \pm 1.71	Mean (\pm SE) small = 15.14 \pm 1.14
Y-thumb	Mean (\pm SE) large = 6.21 \pm 1.94	Mean (\pm SE) large = 5.74 \pm 1.42
	Size = $[F_{(1,14)} = 130.878; p = .000]$	Size = $[F_{(1,29)} = 191.383; p = .000]$
	Time = $[F_{(9,126)} = 52.857; p = .000]$	Time = $[F_{(9,261)} = 84.022; p = .000]$
	Size × Time = $[F_{(9,126)} = 135.612; p =$	Size × Time = $[F_{(9,261)} = 159.989; p =$
	.000]	.000]

	Mean (\pm SE) small = -79.22 ± 1.50	Mean (\pm SE) small = -79.06 ± 1.08
	Mean (\pm SE) large = -82.40 ± 1.44	Mean (\pm SE) large = -82.95 ± 0.98
Z-thumb	Size = $[F_{(1,14)} = 22.363; p = .000]$	Size = $[F_{(1,29)} = 49.898; p = .000]$
Z-ulullio	Time = $[F_{(9,126)} = 11.391; p = .000]$	Time = $[F_{(9,261)} = 22.989; p = .000]$
	Size × Time = $[F_{(9,126)} = 37.032; p =$	Size × Time = $[F_{(9,261)} = 62.534; p =$
	[.000]	_ (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Mean (\pm SE) small = 3.87 \pm 2.17	000] Mean (\pm SE) small = 4.10 \pm 1.41
	` ′	` /
V :	Mean (\pm SE) large = -5.99 ± 2.32	Mean (\pm SE) large = -6.00 ± 1.74
X-index	Size = $[F_{(1,14)} = 136.174; p = .000]$	Size = $[F_{(1,29)} = 174.493; p = .000]$
	Time = $[F_{(9,126)} = 56.205; p = .000]$	Time = $[F_{(9,261)} = 83.713; p = .000]$
	Size × Time = $[F_{(9,126)} = 76.311; p =$	Size × Time = $[F_{(9,261)} = 84.148; p =$
	.000]	.000]
	Mean (\pm SE) small = 54.76 \pm 2.09	Mean (\pm SE) small = 55.34 \pm 1.57
	Mean (\pm SE) large = 69.32 \pm 1.92	Mean (\pm SE) large = 70.04 ± 1.35
Y-index	Size = $[F_{(1,14)} = 231.573; p = .000]$	Size = $[F_{(1,29)} = 283.058; p = .000]$
	Time = $[F_{(9,126)} = 94.803; p = .000]$	Time = $[F_{(9,261)} = 167.616; p = .000]$
	Size × Time = $[F_{(9,126)} = 75.557; p =$	Size × Time = $[F_{(9,261)} = 63.325; p =$
	.000]	.000]
	Mean (\pm SE) small = -73.32 ± 2.28	Mean (\pm SE) small = -72.98 ± 1.58
	Mean (\pm SE) large = -51.48 ± 3.21	Mean (\pm SE) large = -50.22 ± 2.42
Z-index	Size = $[F_{(1,14)} = 183.383; p = .000]$	Size = $[F_{(1,29)} = 247.804; p = .000]$
	Time = $[F_{(9,126)} = 196.741; p = .000]$	Time = $[F_{(9,261)} = 357.337; p = .000]$
	Size × Time = $[F_{(9,126)} = 172.909; p =$	Size × Time = $[F_{(9,261)} = 174.547; p =$
	.000]	.000]
	Mean (\pm SE) small = -0.96 ± 0.007	Mean (\pm SE) small = -0.97 ± 0.005
	Mean (\pm SE) large = -0.95 ± 0.006	Mean (\pm SE) large = -0.95 ± 0.004
X-finger plane	Size = $[F_{(1,14)} = 10.894; p = .005]$	Size = $[F_{(1,29)} = 22.677; p = .000]$
	Time = $[F_{(9,126)} = 4.983; p = .000]$	Time = $[F_{(9,261)} = 10.284; p = .000]$
	Size × Time = $[F_{(9,126)} = 13.429; p =$	Size × Time = $[F_{(9.261)} = 7.954; p =$
	.000]	.000]
	Mean (\pm SE) small = 0.15 \pm 0.38	Mean (\pm SE) small = 0.15 \pm 0.03
Y-finger plane	Mean (\pm SE) large = 0.07 \pm 0.37	Mean (\pm SE) large = 0.07 \pm 0.03
	Size = $[F_{(1,14)} = 9.775; p = .007]$	Size = $[F_{(1.29)} = 15.502; p = .000]$
	Time = $[F_{(9,126)} = 69.951; p = .000]$	Time = $[F_{(9,261)} = 126.713; p = .000]$
	Size × Time = $[F_{(9,126)} = 10.698; p =$	Size × Time = $[F_{(9,261)} = 9.894; p =$
	.000]	.000]
	Mean (\pm SE) small = 0.05 \pm 0.02	Mean (\pm SE) small = 0.05 \pm 0.02
Z-finger plane	Mean (\pm SE) large = 0.19 \pm 0.02	Mean (\pm SE) large = 0.19 \pm 0.02
	Size = $[F_{(1.14)} = 67.300; p = .000]$	Size = $[F_{(1.29)} = 98.603; p = .000]$
	Time = $[F_{(9,126)} = 5.981; p = .000]$	Time = $[F_{(9,261)} = 7.115; p = .000]$
	Size × Time = $[F_{(9,126)} = 71.042; p =$	Size × Time = $[F_{(9,261)} = 72.283; p =$
	.000]	.000]
	.000]	.000]

Figure SI. Results for d' (A) and RTs (B) in the frontal and the lateral viewpoints as a function of occlusion time point (from 10% up to 80% of reach-to-grasp movement). Bars represent standard error of the means.

