
Proc. Natl. Acad. Sci. USA
Vol. 89, pp. 11209-11213, December 1992
Medical Sciences

Specific inhibition of human immunodeficiency virus type 1
replication by antisense oligonucleotides: An in vitro
model for treatment

(escape mutants/therapeutic avoidance)

JULIANNA LISZIEWICZ*, DAISY SUN*, MARY KLOTMAN*, SUDHIR AGRAWALtt, PAUL ZAMECNIKt,
AND ROBERT GALLO*§
*Laboratory of Tumor Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and tWorcester Foundation for
Experimental Biology, 222 Maple Avenue, Shrewsbury, MA 01545

Contributed by Paul Zamecnik, August 19, 1992

ABSTRACT We have developed a culture system, simu-
lating in vivo conditions ofhuman immunodeficiency virus type
1 (HIV-1) infection, to evaluate the long-term efficacy of
antisense oligonudeotide treatment. Five oligonucleotide phos-
phorothioates (28-mers), complementary to different regions of
IiV-1 RNA, blocked replication of the virus in a sequence-
specific manner at 1 pM concentration. Variations in antiviral
activity were seen among the different oligonucleotides, reveal-
ing an effect of target selection. Mismatched or random
oligonucleotide phosphorothioates delayed, but did not com-
pletely inhibit, HIV-1 replication. In the case of inhibition by
a splice-acceptor-site antisense oligodeoxynucleotide, a break-
through phenomenon occurred after 25 days of treatment,
suggesting the development ofan "escape mutant." This result
did not occur when the inhibitory oligodeoxynucleotides were
complementary to the primary-sequence areas of the rev-
responsive element and rev-i genes. Sequential treatment of
HIV-1-infected cells with a combination of different antisense
oligonucleotides, each administered once, also prevented the
development of escape mutants. Our results suggest that che-
motherapy based on specifically targeted antisense-oligonucle-
otide phosphorothioates may be an effective method for reduc-
ing the viral burden in HIV-1-infected individuals at clinically
achievable oligonucleotide concentrations.

One rationale for antiviral chemotherapy is based on the use
of antisense oligonucleotides to inhibit specifically the ex-
pression ofhuman immunodeficiency virus type 1 (HIV-1) (1)
or other viruses (2). Unmodified phosphodiester oligodeoxy-
nucleotides, complementary to HIV-1 RNA, have been dem-
onstrated to inhibit viral replication in early infected cells (3,
4) but not to inhibit viral replication in chronically infected
cells (5), mainly because of the nuclease susceptibility of
these oligodeoxynucleotides (6). Therefore, chemically mod-
ified nuclease-resistant analogs have been developed and
studied for their effectiveness in inhibiting HIV-1 replication
in tissue cultures (7-9). Phosphorothioate-modified oligo-
mers inhibit HIV-1 replication in both acute infection (5)
(when virus is added to an uninfected susceptible-cell line)
and in chronically infected cell lines (8, 10-12), but even
mismatched oligomers have some inhibitory activities in
acutely infected cells. At low concentrations, these control
oligomers are, however, less effective than the complemen-
tary oligomers.

MATERIALS AND METHODS
Synthesis of the Oligodeoxynucleotide Phosphorothioates.

Phosphorothioate-modified oligodeoxynucleotides were syn-

thesized by using H-phosphonate chemistry on an automated
synthesizer (Millipore model 8700) on a 5- to 10-mmol scale.
After assembly of the required sequence, the controlled-pore
glass-bound oligonucleotide H-phosphonate was oxidized
with sulfur in pyridine/triethylamine/carbon disulfide to
generate phosphorothioate linkages. The deprotection was
completed in concentrated ammonia at 40TC for 48 hr. The
oligonucleotides were purified by preparative reverse-phase
chromatography and then ion-exchange chromatography.
Finally, purified oligonucleotides were dialyzed against wa-
ter and lyophilized. Oligonucleotide phosphorothioates were
checked for their purity by HPLC and PAGE (5).

Antisense and Control Oligonucleotides. To study the inhi-
bition of HIV-1 replication, oligodeoxynucleotide phospho-
rothioates 28 bases long were chosen because specificity has
been shown to be increased by length of the oligomers used
at equivalent concentrations (11). Five different target se-
quences (Fig. 1) in the HIV-1 genome were selected. Because
tat and rev can trans-activate HIV-1 gene expression and are
essential for virus replication, two oligomers, rev-1 (10) and
rev-2, complementary to these overlapping reading frames
were evaluated. Rev regulates HIV gene expression through
interaction with the Rev-responsive element (RRE). There-
fore the RRE oligomer was directed against the RRE over-
lapping the known Rev-binding site (14, 15). The RRE
oligomer was chosen after screening a number of potential
anti-RRE oligonucleotides. In addition to blocking the Rev-
RRE interaction, RRE could potentially interfere with trans-
lation of the viral envelope gene. Another oligomer, desig-
nated gag, was directed against the mRNA of that structural
gene. Oligonucleotide SA is complementary to the major
splice-acceptor site of the first coding exon of the tat gene
(16), which is also located in the open reading frame of the
nonessential vpr gene. To determine specificity of the an-
tisense oligomers, the biological effect should be compared to
the same-size oligomer that is not complementary to any
known cellular or viral genes. We have chosen three control
"nonspecific" types of oligonucleotides, of which the "Ran-
dom" sequence is theoretically the best. The Random se-
quence was synthesized as a degenerate oligonucleotide, by
coupling a mixture of 4 nucleotides at each stage (theoreti-
cally it contains 428 = 7.2 x 1016 sequences) and thus
measures the extent of sequence-nonspecific inhibition.
"Mismatch" has the SA sequence with 5 bases altered (Fig.
1, underlined bases) and serves as a type of control for
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FIG. 1. Sequences of antisense oligonucleotide phosphorothioates used and targeted genes in HIV-1 genome (13).

SA-specific inhibition. Areas ofpotential hybridization in this
mismatched oligomer still remain, however, with a likelihood
of activation ofRNase H. C28 is a phosphorothioate oligode-
oxycytidine, S-(dC)28. The latter homooligomer has a signif-
icant antiviral effect (8, 10), has the potential for segments of
hybridization, and also introduces cytotoxicity.
Short-Term Experiment for Inhibition ofHIV-1 Replkation.

MOLT-3 cells (5 x 105 per ml) were infected with HIV-1 type
IIUB. After 2 hr, cells were washed and treated with oligo-
nucleotide phosphorothioates at 1 ,AM concentration. Cells
were incubated for 4 days, and then virus expression was
measured.
Long-Term Experiment for Inhibition of HIV-1 Repliation.

MOLT-3 cells (5 x 105 per ml) were infected with HIV-1 type
"'B. After 2 hr, cells were washed and treated with oligo-
nucleotide phosphorothioates at 1 ,uM concentration. Cells
were split to 5 x 105 cells per ml every 3 or 4 days and treated
with drugs at a concentration of 1 uM.

Detection of HIV-1 Expression and Toxicity. Virus replica-
tion was monitored at the cellular level by syncytia formation
and p24 membrane expression (7) and in the supernatants by
p24 antigen-capture assay (DuPont) and reverse transcriptase
(RT) assay (17). Cell viability was determined by trypan blue
exclusion.

RESULTS AND DISCUSSION
Sequence-Specific Inhibition of HIV-1 Replication. Studies

of the mechanism and efficiency of antisense oligonucleo-
tides in inhibiting viral replication can be approached effec-
tively in an in vitro system that resembles the process of
HIV-1 infection in vivo. In HIV-1-infected people, only a
small percentage ofthe CD4+ cells are infected and producing
virus. In vitro chronically infected cells do not parallel the in
vivo conditions because these cells are CD4- and conse-
quently reinfection cannot occur. A better model for drug
studies may be an acute, low multiplicity of infection, where
only some fraction of the cell population harbors virus, while
other cells are uninfected and CD4+. We have developed cell
culture conditions to approach those in vivo conditions. This
system has similarities to a retroviral vector, one used for
studies of HIV-1 inhibition (18). The effect of antisense
oligonucleotides on HIV-1 replication was tested in a CD4+
T-cell line (MOLT-3) infected with low multiplicity of infec-
tion ofHIV-1 type IIIB. After 2 hr of infection, the cells were
washed and treated with oligonucleotides. The initial infec-
tion is characterized by 3% positivity for p24 membrane
expression after 4 days in untreated cells. Therefore, most
cells remain CD4+ and, thus, susceptible to reinfection
during the treatment period. Extending the treatment period
over weeks rather than days simulates a treatment schedule
that could be given to an HIV-1-infected individual.

The amount of drug used for long-term studies was deter-
mined, based on the minimal concentration that inhibited
viral infection >60%6 in a 4-day study. Short-term inhibition
by different oligomers (Fig. 2A) demonstrated that all com-
pounds other than Random inhibited HIV-1 replication >60%o
compared with control (cells infected without drug). No more
than 26% difference in antiviral activity was found among the
complementary and "control" oligomers other than the
Random control in our short-term assay. Twenty-five days
after infection, however, high levels of virus replication were
detected in cultures treated with both the Random and the
Mismatch oligomers, demonstrating that these control oligo-
mers failed to inhibit HIV-1 replication (Figs. 2B and 3A).
Because these controls were at the peak of the acute phase
ofthe infection at day 25, this time was chosen to evaluate the
specificity ofinhibition. Inhibition ofHIV-1 replication by all
complementary oligonucleotides was >99.8% (detected by a
quantitative p24 ELISA assay) compared with the Random
oligomer. Less than 1% of cells treated with the sequence-
specific antisense oligomers expressed detectable p24 anti-
gen on the surface, and only 3% of the SA-treated cells
showed syncytia formation (Fig. 2B). In these cultures the
numbers of viable cells resembled those in the uninfected
control, suggesting that long-term oligonucleotide phospho-
rothioate treatment is not toxic to cells. The acute phase of
HIV-1 infection in the control is characterized by extensive
syncytia formation (>75%), low membrane-antigen expres-
sion, and high virus levels in the supernatants (p24 >1 ,.g per
million cells). Cells that survive enter into a chronically
infected phase (19) characterized by the absence of a CD4
receptor at the cell surface. Because CD4 is the main receptor
for HIV-1 infection ofT cells, reinfection does not occur, and
production of virus declines. Therefore, a chronically in-
fected culture produces at least 100 times less virus than cells
in the acute phase and does not present a cytopathic effect.
At day 25, an aliquot of the cells was split without addition

of the antisense oligomers. After four passages without
drugs, all cultures entered an acute phase of infection as
described above. Fig. 2C demonstrates that recovery ofvirus
replication was delayed depending on the oligomers used for
treatment during the first 25 days. The earliest recovery ofthe
virus was in the SA-treated cells at day 32. This early
reappearance might be expected, considering that SA is not
directed against the open reading frame of an essential gene.
At day 35 gag- and RRE-treated cells converted to an acute
phase of infection, consistent with specific inhibition at the
late phase of the virus replication. The rev-2-treated, fol-
lowed by rev-i-treated, were the last cells to revert into an
acute phase of infection. These oligomers presumably inhibit
the early phase ofvirus replication by interfering with activity
of the regulatory genes. This delay in recovery is consistent
with the proposal that a threshold level of Rev protein is
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MM concentration (C28 and RRE). The treatments were
repeated three times in 11 days, when the cells were split;
then treatment was stopped, and the cultures were continued
7 more weeks without oligonucleotide treatment. Control
cells infected in the absence of drug showed a high level of
p24 membrane expression (8% 1 week after infection and 60%o
11 days after infection). During the 9-week experiment,
neither virus replication nor toxicity could be detected in the
cultures treated by oligonucleotide phosphorothioates. In
conclusion, simultaneous addition of virus and high concen-
trations of the oligonucleotide phosphorothioates (40 Ag/ml;
5 FM) resulted in no apparent viral replication, suggesting
inhibition at the level of viral entry, RT, or integration.
The phosphorothioate oligodeoxynucleotide C28 has been

reported (10, 22) to inhibit HIV-1 and herpes simplex virus
type 2 replication. In our experiments, the culture treated
with C28 homooligomer produced low amounts of virus
throughout the study period, similar to the culture treated
with rev-i oligomer. Early on the cell-growth rate with C28
oligomer treatment did not apparently differ from that of cells
treated with the complementary oligomers. After 25 days,
when treatment was stopped, the virus production in the
C28-treated culture paralleled that in the rev-1-treated cul-
ture. Thirty-nine days after infection, the culture treated with
the C28 oligomer began to show evidence of toxicity. There-
fore, we split the same number of cells and treated them with
1 AM, 0.5 MM, and 0.1 AM C28 oligomer. Fig. 4 demonstrates
that after one passage, <5% of the cells were viable under
treatment with 1 IM and 0.5 pM C28; however, cells treated
with 0.1 pM C28 recovered. After the second passage, there
were no viable cells in the cultures treated with 1 pM and 0.5
A.M C28, whereas the 0.1 AM-treated cells remained healthy.
The persistent antiviral effect of C28 oligomer, therefore,
may not reflect a sequence-specific inhibition of HIV gene
expression but may be due to a cytotoxic effect. It is worth
noting, nevertheless, that the primer for the second strand
synthesized by the RT is a polypurine tract sequence.

Selection of an Effective Target. The in vitro test provides
a system in which to study the antiviral effects of drugs and
to determine efficacy before in vivo studies. Our results
indicate that the best targets for antisense inhibition may be
directed against mRNAs of overlapping regulatory genes.
The target sequences must be highly conserved between
different HIV isolates to minimize the chance for virus
escape because the isolates differ, even within one patient.
Targeting a noncoding sequence (like SA) allowed the virus
to escape. Virus replication was, however, in this instance,
lower compared with the controls. An interesting and effec-
tive target appears to be a functional RNA, such as RRE.
Chin (23) has provided evidence that the RRE structure is
disrupted by antisense oligonucleotide interaction, which can
block formation of the Rev-RRE complex in vitro. Our
long-term tissue culture results support this mechanism. With
the RRE-treated cultures, virus replication was always about
5-10 times higher, as compared with the rev-i-treated cells.
Because multimerization of the Rev protein is required for
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FIG. 4. Cytotoxic effect of the C28 oligomer.
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ent antisense oligomers compared with repeated treatment with a
single oligomer. Rotate indicates that at every treatment a different
oligomer was added to the culture at 1 MAM concentration. The
sequence of treatment was RRE, rev-2, rev-i, and SA oligomers.

Rev function (24), a critical amount ofRev must escape from
antisense inhibition for virus reproduction. However, if only
a single RRE escapes from the antisense block, Rev might
recognize RRE and activate virus expression. The oligomer
directed against the gag gene could also inhibit HIV-1
replication efficiently, without generating what we call es-
cape mutants. Sequences essential for packaging, situated
around the gag initiation codon, have been shown to form a
stable secondary structure (25). The gag oligomer may dis-
rupt these structures, inhibiting viral packaging in addition to
translation of gag mRNA.
Model for Treatment. HIV-1 has a high mutational rate and,

therefore, all drugs designed to treat virus infection might
induce the formation of escape mutants. To overcome this
problem, combination chemotherapy has been suggested for
treating HIV-i-infected patients. This therapy involves more
than one drug directed against different targets, such as RT
inhibitors combined with protease inhibitors. Antisense treat-
ment of HIV-l-infected individuals, even when a highly con-
served region is targeted, may result in the formation ofescape
mutants. Targeting different sequences, either in combination
or in sequential treatment schedules, would place different
selection pressures on the virus with little time to mutate an
escape. The first treatments could consist of a mixture of
oligomers or one targeted to a highly conserved region; the
subsequent treatments could consist of a sequential adminis-
tration of alternatively targeted oligomers. We have evaluated
the beneficial effects of sequential treatment using antisense
oligonucleotides directed against different sequences of the
viral RNA. We have tested sequential treatment with RRE,
rev-2, rev-1, and SA, designated as Rotate in Fig. 5, oligomers.
During this study SA-treated virus escaped after 32 days, and
rev-2-treated cells showed a higher level of virus replication
compared with the rev-i- or RRE-treated cells. Sequential
treatment kept virus replication at the level ofthe rev-1-treated
cells, which when used alone gave the best antiviral activity
among these oligomers. Our results suggest that the use of a
combination of antisense oligonucleotides may be useful for
treating HIV-infected patients.
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