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1 Supplementary Material

This document presents several additional pieces of information supporting our overarching argu-

ments that: (1) megadrought risk changes as a function of “mean state” and temperature; and (2)

most models in the CMIP5 archive do not simulate sufficient precipitation change to overcome the

effect warming will have on regional moisture balance. Specifically, Figure S1 provides additional

information about the models used in Figure 1 of the main text by supplying model names. Simi-

larly, Figure S2 shows the full range of all variables in all models plotted in Figure 1c of the main

text. Figure S3 confirms that the seasonality of the precipitation and temperature anomalies do not

fundamentally alter the characteristics of the PDF in Figure 2. Instead, it supports our argument

that temperature plays a major role in shaping future megadrought risk. The following section

(along with Figures S4 and S5) presents an analytical check on the Monte Carlo PDF generated

for Figure 1.

Finally, temporal autocorrelation is a source of uncertainty not factored in to the 2D PDF in

Figure 1. To address the role it could play in altering this PDF, we have computed megadrought risk

using different models of persistence (Figure S6). We consider both lag-1 autocorrelation (AR(1))

and power-law distributions instead of white noise (8). The autocorrelation parameter used in

this case was 0.2 (corresponding to an e-folding time of about seven months) and the power law

scaling coefficient was 0.5. Both of these values are supported by observations of autocorrelation

on interannual timescales, as discussed in (8), and references therein. In both cases, risks of
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megadrought increase in the high gradient (gray) area of Figure 1, where values are already between

0.1 and 0.8. Higher values for the autocorrelation or power law coefficients would heighten risks

even further in the same region. Accordingly, the results shown in Figure 1 are to be regarded as

slightly conservative estimates of true risk because autocorrelation/persistence would cause values

to increase in the high-gradient areas (as also argued by (8)). We have nevertheless elected to use

the white noise based 2D PDF in Figure 1 because it is more appropriate for evaluating precipitation

alongside drought indicators that exhibit varying degrees of autocorrelation.

1.1 Analytical PDF of megadrought

Analytically estimating the 2D PDF of prolonged drought risk as a function of changes in the mean

(∆µ) and standard deviation (εσ′) requires us to describe both: (a) the reduction in variance of

Xw(t) as a function of smoothing window length (w) for a given pair of values for ∆µ and δσ; and

(b) the probability of non-mutually exclusive megadrought “events.”

Because Xw is a simple moving average (MA) time series, it is straightforward to derive an

expression for its variance:
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If z′t is assumed to be “white” in time, then all of the lag covariances of z′t above will be equal to
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Var[Xw] =

(
1

w2
σ2z +

1

w2
σ2z + ...+

1

w2
σ2z

)
=

w∑
i=1

1

w2
σ2z = w

(
1

w2
σ2z

)
=

1

w
σ2z (S2)

If z′t has unit standard deviation and a mean of zero, then the variance of Xw as a function of w

is simply 1
w , which is shown in Figure S4 for a very wide range of averaging windows and compared

with direct estimates of variances of smoothed Monte Carlo realizations.

With the above analytical expression for the variance of Xw, we estimate the probability that

at least one megadrought event occurs over a given time period. Recall that if the probabilities of

two independent events (A and B) are known, then the probability of at least one of these events

occurring (Pr(A ∪B)) is simply Pr(A) + Pr(B)− Pr(A ∩B).
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Again, if the underlying distribution of z′t is white, then over a finite period of time (of duration

N) there are N/w degrees of freedom in the smoothed time series Xw. Letting Pr(Ai) denote the

probability of a single value of the time series Xw falling at or below q (i.e., the probability of a

megadrought event), then we are interested in the probability:

Pr(A1 ∪A2 ∪ . . . ∪An) =

N/w∑
i=1

Pr(Ai)−
N/w∏
i=1

Pr(Ai). (S3)

Note that Pr(A1) = Pr(A2) = Pr(An), so that equation S3 can be simplified as (N/w) Pr(A) −

Pr(A)N/w.

Finally, the distribution of Xw will be Gaussian with mean ∆µ and standard deviation 1√
w
δσ

because this time series is generated from averaging z′t, which itself is normally distributed. The

probability of a single element in Xw attaining a value equal to a given threshold (q) is therefore

the probability density function of the normal distribution with mean ∆µ and 1√
w
δσz standard

deviation:

Pr
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and the probability of Xw reaching a value equal to or below q is the cumulative density function

of equation S4 evaluated for a given q.
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2 Figures
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Figure S1: Joint (2D) PDF of Southwest megadrought risk for a normalized drought indicator time
series (z′(t)) with various changes in the mean (∆µ) and changes in the variance (δσ). In both
panels, the gray shading on all panels indicates risk estimated from Monte Carlo simulations of z′t,
expressed as the fraction of realizations with a 35-year megadrought out of all realizations. Symbols
on panels (a.) and (b.) correspond to changes in the mean and variance of precipitation only in
the CMIP5 models (colored by model according to the legend) for RCP2.6 and 8.5, respectively.
Estimates of changes in the mean and variance from a wider range of drought metrics in the 17-
model subset (employed by (7)) are plotted on panel (c.). In all calculations, changes in the mean
and variance are computed over the period 2051-2100 and compared to 1951-2000.

Figure S2: Full range of changes in mean (∆µ) and variability (δσ) simulated by CMIP5 model
subset. Only the approximate interquartile range is shown for the equivalent plot in Figure 1 of
the main text.
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Figure S3: Megadrought PDF for various combinations of seasonal changes. Each panel is
megadrought risk in JJA PDSI from a combination of T and P changes during a given season.
The upper left corner is the same as Figure 2 of the main text: changes in T and P are applied
uniformly over all seasons. Each of the other panels summarizes risks from only introducing changes
during a given season. Each column is the PDF resulting from changing precipitation for each of
the seasons labeled above that row; each row is the result of changing temperature only during
a given season (labeled on the y axis of each row). The magnitudes of the seasonal precipitation
or temperature anomalies are given by the x and y axes of each panel, respectively. Temperature
changes are only shown up to 3oC because this range is consistent with the amount of warming
seen in the majority of models for the RCP2.6 experiment. Correspondingly, the small red triangles
are the T and P results from RCP2.6 experiments (e.g., the same as the triangles in Figure 2 of
the main text).
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Figure S4: Reduction of variance in smoothed time series (Xw) as a function of smoothing window
length (w). The red line shows the reduction in variance predicted by 1/w, while the diamonds
show the range of variances computed from Monte Carlo realizations of Xw for different window
lengths.
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Figure S5: 2D PDF of prolonged drought risk computed from the analytical expression for
megadrought probability. Note that here raw probabilities are used instead of percentages as
in Figure 1 of the main text.
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Figure S6: (Left side) Megadrought 2D PDF for changes in mean and variance, but for different
autocorrelation characteristics of the z-index: (a) white noise, as in Fig. 1 of the main text;
(b) one-year lag autocorrelation (AR(1)) comparable to observations in the Southwest ( ρ = 0.2,
e-folding time of 7 months); and, (c) Power law distribution (β = 0.5). (Right side) Differences
in 2D megadrought PDFs between: (d) the AR(1) and white noise distributions; (e) power-law
and white noise; and (f) power-law and AR(1). As in Figure S5, the units of these PDFs are
probabilities, not percentages as in Figure 1 of the main text.
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