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Here we examine dependence of the filament twist and tilt on the potential in the weak adhesion
limit. The Hamiltonian in the general case is given by
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This yield the corresponding equations of motion
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We now consider the limit of weak binding potential i.e. the V → 0 limit. Here, the filament is
close to its unperturbed state with ψ → ω0s and θ → 0. This allows us to rewrite the equations
of motion, (2) and (3), to linear order in θ, ψ as
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We look for the solution of these equations for θ, ψ in the form θ = θ0 + δθ and ψ′ = ω + δω,
where θ0, ω are constants and δθ, δω are oscillating parts, such that 〈δθ〉 = 〈δω〉 = 0. The twist
equation of motion, eq.5 implies
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This relates the difference between the oscillating part of the twist rate and Frenet torsion from
the oscillating part of the tilt to the strength of the potential. From the tile equation of motion,
eq.4, keeping terms of the lowest order in θ0, ω, δθ, δω, we get a constant part
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and an oscillating part
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Using eq.7, this reduces to
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We can now use the relation between the oscillating parts of the twist and tilt, eq.7, to get
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This allows us to write the oscillatory part of the twist angle δψ as
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Thus we see that both the tilt angle and twist vary sinusoidally along the filament with the
variations having magnitude of order V . We now consider the total energy of the filament in
this weak adhesion limit.
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Taking ψ ∼ ωs+ δψ and using equations 11,8,7,12,13, and keeping terms to order V , we get
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and averaging over one period
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Using 8 and setting θ0 = (ω − ω0)r, this reduces to
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Minimizing this with respect to ω allows us to compute the non-trivial constant contribution
to the twist rate in the weak adhesion limit (for finite curvature (ω0r)

−1).
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Comparing this to the perturbative solution for flat interfaces (taking the limit of 1/r → 0 in
eqs. 13 and 15) we arrive and the effective mean energy,
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Minimizing with respect to ω for weak binding, we find
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0
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Relative to the V 2/3 scaling of strain on curved surfaces, the V 2 dependence indicates a weaker
coupling to surface potential on flat surfaces.
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