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ABSTRACT Motivated to understand the behavior of biological filaments interacting with membranes of various types, we
employ a theoretical model for the shape and thermodynamics of intrinsically helical filaments bound to curved membranes.
We show that filament-surface interactions lead to a host of nonuniform shape equilibria, in which filaments progressively unwind
from their native twist with increasing surface interaction and surface curvature, ultimately adopting uniform-contact curved
shapes. The latter effect is due to nonlinear coupling between elastic twist and bending of filaments on anisotropically curved
surfaces such as the cylindrical surfaces considered here. Via a combination of numerical solutions and asymptotic analysis
of shape equilibria, we show that filament conformations are critically sensitive to the surface curvature in both the strong-
and weak-binding limits. These results suggest that local structure of membrane-bound chiral filaments is generically sensitive
to the curvature radius of the surface to which it is bound, even when that radius is much larger than the filament’s intrinsic pitch.
Typical values of elastic parameters and interaction energies for several prokaryotic and eukaryotic filaments indicate that bio-
polymers are inherently very sensitive to the coupling between twist, interactions, and geometry and that this could be exploited
for regulation of a variety of processes such as the targeted exertion of forces, signaling, and self-assembly in response to geo-
metric cues including the local mean and Gaussian curvatures.
INTRODUCTION
All living cells have a wide variety of filamentous biopoly-
mers associated with the cell or nuclear membranes that
play vital roles in biological functions specifically through
their interactions with these membranes. In eukaryotes, for
example, the actin cortex that resides just inside the cell
membrane and is linked to it via a number of actin-binding
proteins, provides the cell with structural integrity and me-
diates signal transduction as well as cell adhesion (1). Other
examples of membrane associated filamentous networks
that provide mechanical stability include the actin-spectrin
network in red blood cells and the nuclear lamin networks,
which are anchored to the cell and nuclear membranes by a
number of specific binding proteins (2,3). Membrane-asso-
ciated filaments can also be dynamic and exert forces such
as the actin contractile ring in eukaryotes that provide the
forces necessary for cell division (4). Cell-wall-associated
microtubules in plants play a significant role in guiding syn-
thesis activity during the elongation phase of the cell cycle
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(5). In bacteria, a similar role is accomplished by MreB,
which directs cell wall synthesis (6–8), and the bacterial
tubulin homolog FtsZ forms filaments that associate with
the cell wall and function as contractile rings during division
(7,9). In many of these cases, the conformations and orien-
tations of the membrane-bound filaments are critical for
function, as they exert forces and guide growth.

Three very important physical parameters control these
conformations and orientations: the helicity, or intrinsic
twisted geometry, of the filaments; the strength of the bind-
ing interactions with the surface; and the local geometry or
curvature of the surface. Although conformations of poly-
mers in contact with interfaces and surfaces have been
well studied in the past (10,11), the interplay of helicity
and surface curvature introduces rich new behaviors. Freely
associating chiral polymers by themselves show novel
phases in aggregates (12–15), and we have shown recently
that the interactions of a chiral polymer even with a flat sur-
face dramatically restructures the filament shape and with
nontrivial binding thermodynamics related to the Frenkel-
Kontorova transition of incommensurate solids (16). We
showed that there exists a critical binding strength, propor-
tional to the torsional modulus of the filament and the square
of its intrinsic twist, above which the filament unwinds to a
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zero-twist, surface-bound state, and below which the elastic
energy of the filament causes the proliferation of weakly
bound ‘‘twist domains’’. For filaments with anisotropic
bending stiffnesses, this transition is coupled to a dramatic
change in the effective persistence length, with the twist
walls functioning as floppy joints. Recently, it has also
been shown that the interplay between twist elasticity and
surface interactions can lead to nontrivial, metastable 3D
morphologies including loops and helices that lift off the
surface (17). Thus, the conformations of surface-bound he-
lical polymers can depend sensitively on the binding inter-
actions, and this has implications not only for biopolymers
in vivo but also for experimental studies of biopolymers im-
mobilized on surfaces (2) and for protein-based templated
assemblies for nanotechnology applications (18,19). For
example, amyloid fibrils, which are essentially undesirable
aggregates in vivo and are responsible for a number of path-
ological conditions (20), have been shown to be susceptible
to membrane-binding-induced morphological changes in
their twist states (21). Not only does this have implications
for the cytotoxicity in vivo, but the coupling between bind-
ing and conformation via the twist may also be exploited for
the design of amyloid-based functional nanomaterials.

Although the coupling between chirality and binding pro-
duces a rich behavior even on flat surfaces, curvature is an
essential feature of many of the surfaces of relevance in vivo
and also potentially a desirable feature for surfaces used in a
variety of biotechnology applications. In this article, we
take the first steps, to our knowledge, toward understanding
the combined effect of surface curvature, chirality, and bind-
ing interactions on filament conformations. Specifically, we
aim to understand how the 3D equilibrium shape of filaments
(curvature and torsion) is controlled not only by the strength
of surface interactions, but also by the shape of the interface
itself to which it is bound. In the Model section, we present a
general model of a helical filament adsorbed to an anisotrop-
ically curved (cylindrical) surface and construct the shape
Hamiltonian of the filament. In Shape Transitions: Numeri-
cal Solutions, we present our numerical solutions of the
shape equations of motion for filaments on surfaces of vari-
able binding strength and surface curvature. Significantly,
we showed that on anistropically curved surfaces, the equi-
librium shape of filaments becomes increasingly curved as
surface binding unwinds the helical twist of filaments, due
to the nonlinear geometrical interplay of twist and writhe
for filaments on curved surfaces. In Shape Sensitivity to
SurfaceCurvature, we analyze the key limits of the rich shape
evolution of helical filaments on curved surfaces, beginning
with the case of strong surface binding and the transition from
the strongly bound, untwisted filament to the weakly bound,
twisted filament. We then look at the shape sensitivity of
bound filaments in the limiting case of weak interactions
with the curved surface, showing that even arbitrarily weak
coupling between filament helicity and the surface leads to
local changes of filament structure that are sensitive to sur-
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face curvature. In the last section, we discuss the implications
of our results and potential experimental measurements.
MATERIALS AND METHODS

All numerical solutions of differential equations in this article were

obtained using the Mathematica (v10.4) package.
Model

Our model considers a thin filament of length L that has a preferred intrinsic

helical twist around its centroid of u0 (radians/length). To depict the micro-

scopic anisotropy of the filament, it is illustrated schematically as a helical

ribbon in Fig. 1. We assume that the filament backbone, given by the curve

rðsÞ, where s is the contour length along the curve, is localized to a cylin-

drical membrane of fixed radius r, the simplest model of an extrinsically

curved surface. The local geometry of the bound filament is described by

its tangent, btðsÞ (see Fig. 1),
vsr ¼ bt ¼ cosqbz þ sinqbf: (1)

Here, qhqðsÞ is the tilt angle between the filament and the long axis of

the cylinder and bz and bf describe the local longitudinal and azimuthal di-

rections on the cylinder. To describe the twist degree of freedom, we choose

two orthonormal unit vectors defining the material frame,

be1 ¼ cosjbr þ sinjðbt � brÞ (2)

and

be2 ¼ �sinjbr þ cosjðbt � brÞ: (3)

The angle jhjðsÞ is the angle between one ‘‘face’’ of the helical fila-

ment (for example, the wide face of the ribbon) and the local normal to

the cylinder, br ¼ bf � bz. Using these three coordinate definitions we can

compute the curvature of the filament in both of the principal material di-

rections, ki ¼ bei,vsbt, as well as the rate of twist of the material frame,

u ¼ be1,vsbe2 (i.e., the model assumes a ‘‘left-handed’’ convention for fila-

ment twist). The total curvature is given by

k2 ¼ ðq0Þ2 þ sin4q

r2
; (4)

where the first and second contributions derive from the geodesic and

normal curvatures of the filament on the cylinder. Similarly, the filament

twist decomposes into two contributions,

u ¼ j0 � sinð2qÞ
2r

; (5)

where the first term represents the rotation of the material frame with

respect to the local surface normal, and the second term derives from the

rotation of the surface normal along the filament tangent.

The elastic mechanical energy stored in the filament,

Emech ¼ 1

2

Z L

0

ds
�
Ck2 þ Kðu� u0Þ2

�
; (6)

arises from two sources when it is bound to the cylinder: 1) bending

energy, which is proportional to the local curvature (Eq. 4), the magni-

tude of which is set by the elastic constant C; and 2) the torsional elastic

cost for deviations from the intrinsic twist of the filament, u0, which we



FIGURE 1 A diagram depicting the model that

we study. The triplet of axes are the filament

tangent vector ðbtÞ, which is related to the tilt angle

of the helix, and the two material frame coordinates

ðbe1;be2Þ, which are related to the twist angle of the

filament. The radius of the cylinder is r. To see this

figure in color, go online.
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assume is harmonic and whose magnitude is set by K, the elastic twist

stiffness (16). In the absence of external forces on the filament, the shape

of the filament is straight ðq ¼ 0Þ, with a twist rate of u0. Here, we do

not consider spontaneous curvature and neglect anisotropy in bending

moduli for the be1 and be2 directions, though the model can easily be

extended to consider these effects. To associate the cylindrical wall

with the filament, we consider that the filament possesses strong binding

domains distributed along its contour that are in register with the

intrinsic twist of the filament. For the schematic example, ‘‘strong bind-

ing’’ may be considered to occur along the wider adhesive face shown in

Fig. 1. Furthermore, we envision that it is these domains (faces with

j ¼ np) that favor contact with the cylindrical wall at all times as

opposed to the ‘‘off-face’’ binding (i.e., j ¼ ðnþ 1=2Þp). As a minimal

model of the interaction of the helical symmetry of the filament with the

membrane, we introduce a periodic potential with a strength V,

Ebind ¼ V

2

Z L

0

ds sin2j: (7)

Note that thej/jþ p symmetry is consistentwith localC2 symmetry of
a double-helical filament cross section, though it is straightforward, in prin-

ciple, to modify the interaction according to any n-start helical symmetry.

Combining the mechanical and binding energies (Eqs. 6 and 7) along

with the curvature and twist expressions (Eqs. 4 and 5), we arrive at the

Hamiltonian that describes the energetics of the conformational phase space

that the filament can sample from, when it is bound to the cylinder.

H ¼ 1

2

Z L

0

ds

"
Cðq0Þ2 þ C

sin4q

r2
þ K

�
j0 � sinð2qÞ

2r
� u0

�2

þ Vsin2j

#
:

(8)

By inspection, we see that helical filaments are frustrated by surface

binding. On one hand, it is not possible even in the undeformed case

ðq ¼ 0;j0 ¼ u0Þ for the helical filament to maintain ideal contact with
the cylinder surface, since the point of contact between the cylinder and

the filament-binding domain will occur periodically at a distance of p=u0

(i.e., half the helical pitch). On the other hand, maintaining uniform, ideal

contact ðj ¼ npÞ leads generically to an elastic cost due to the preferred

intrinsic twist. However, unlike the case of planar substrates ðr/NÞ stud-
ied previously (16), any helical tilt of filaments on curved surfaces can relax

the frustration through bending (i.e., qs0). This is due to the geometric

rotation of the surface normal along tilted paths, qsnp=2. Hence, although

the transition from weakly bound, twisted filaments to strongly bound,

untwisted filaments on flat surfaces is described by mathematics identical

to the Frenkel-Kontorowa transition (16), on curved surfaces, the filament

tilt acts as a gauge field coupled to the twist degree of freedom. As we

find below, the strength of the coupling of the filament tilt to the twist,

and its effect on the binding thermodynamics, is controlled by the dimen-

sionless surface curvature, ðu0rÞ�1.
RESULTS

Shape transitions: numerical solutions

In this section, we analyze the equilibrium shapes of bound
helical filament conformations for varying surface-binding
potential, V, for surfaces of varying curvature, ðu0rÞ�1,
and filaments of varying ratios of bend to twist stiffness,
C=K. For a given set of set parameters, V, u0, r, C, and K,
we consider equilibrium shapes for filaments of arbitrary
(unlimited) length on infinite-length cylinders. Equilibrium
shapes satisfy the following equations of motion, corre-
sponding to torque balance about the surface normal,

Cq00 ¼ 2C
sin3qcosq

r2
� K

cosð2qÞ
2r

�
j0 � sinð2qÞ

2r
� u0

�
;

(9)

and about the filament tangent,
Biophysical Journal 111, 1575–1585, October 4, 2016 1577
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K

�
j0 � sinð2qÞ

2r

�0
¼ V

2
sinð2jÞ: (10)

For the case of infinite-length filaments, we search for
solutions that are periodic over an arc-distance 2L (not the
actual length, L, of the filament), and minimize the total
energy per unit length of solutions with respect to L.
Because filament tilt compensates for frame rotation when
j0ðsÞ<u0, we assume that, for equilibrium shapes, jðsÞ
and qðsÞ solutions remain ‘‘in phase’’ such that the magni-
tude of filament tilt reaches a maximum (minimum) at
positions where the rotation rate, j0ðsÞ, is at a respective
minimum (maximum). Hence, we solve Eqs. 9 and 10
numerically, subject to the boundary conditions

jð0Þ ¼ 0;jðLÞ ¼ p; q0ð0Þ ¼ q0ðLÞ ¼ 0: (11)

In practice, Eqs. 9 and 10 are solved by fixing j0ð0Þhj0
0

and using a standard shooting method to determine the
values of initial tilt, qð0Þ, and half-period, L. The energy
per unit length of solutions is then calculated via Eq. 8
and minimized with respect to j0

0, which is equivalent to
minimization over L, thus yielding both the equilibrium L
and the equilibrium shape solutions, jðsÞ and qðsÞ.

In Fig. 2, a–c, we present graphical portraits of the ‘‘phase
diagram’’ to summarize the variation of equilibrium filament
shape in the parameter space spanned by surface interactions
and surface curvature. In particular, we show shape solutions
for filaments with isotropic elastic properties, C ¼ K, for
three values of reduced curvature: u0r ¼ 10 (low curvature),
u0r ¼ 1 (intermediate curvature), andu0r ¼ 0:25 (high cur-
vature). For each case, we see that as the interactions with the
a b

c
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surface get stronger, the filament that originally prefers an
axial orientation with native twist begins to untwist and the
coupling with curvature causes the tilt angle to rise. Ulti-
mately, above some critical binding strength, Vc, the filament
is fully unwound and assumes a constant ‘‘face-on’’ configu-
ration with uniform tilt angle q.

To probe these trends more quantitatively, we show, in
Fig. 3, for the isotropic case C ¼ K, the profiles of jðsÞ and
qðsÞ for four values of the surface potential for a fixed value
of curvature,u0r ¼ 1. We see that the progression of rotation
and tilt angle profiles with V shows a qualitatively similar
sequence to what we observed from Fig. 2. As V/0, the so-
lution approaches the elastically favorable intrinsic twist,
j0ðsÞ/u0, and straight backbone, qðsÞ/0. As V increases,
surface binding decreases (increases) the rate of j rotation
near the maxima (minima) of the surface contact, leading to
an oscillatory profile with a somewhat decreased mean value
of hj0ðsÞi<u0, along with an increase in the magnitude of
the mean tilt angle, hqðsÞi. As values of the surface potential
approach a critical value, Vc, that depends on the surface cur-
vature, r (for the flat case, VchVN ¼ p2Ku2

0=4 (16)), the so-
lutions rapidly evolve toward a critical unwinding transition
via inhomogeneous structures characterized by rapid jumps
in jðsÞ by p. These correspond to ‘‘twist domains’’ (high-
lighted in Fig. 3, inset) that are separated by increasing
stretches of strong binding with nearly constant jznp.
Again, this progression toward the critical V is accompanied
by a further increase in hqðsÞi.

Beyond this critical value of surface binding, filaments
adopt a uniformly unwound, helical conformation with
jðsÞ ¼ 0 and qðsÞ ¼ const:, with shape independent of sur-
face potential in this large-V region. In Fig. 3, we also show
how jðsÞ and qðsÞ profiles vary when V is held fixed and
d

FIGURE 2 The numerically obtained shape solu-

tions for filaments with isotropic elastic properties

C ¼ K and u0r ¼ 0.25, 1, and 10. (a–c) and for

the case of C ¼ K=5;u0r ¼ 1 (d). (a–c) Three

cases of increasing binding strength, V/Vc ¼ 0.1,

0.5, and 0.95, are shown from left to right (arrows),

where Vc is the critical binding strength for each r.

(d) The binding strength is close to the critical value

V ¼ 0:95 Vc, and the filament exhibits almost uni-

formly unwound helical regions separated by twist

domains with pronounced axial straightening. To

see this figure in color, go online.



FIGURE 3 Variation of filament twist, j, and tilt, q, with the contour length along the filament withC ¼ K for fixed curvature u0r and varying values of the

potential,V (top), and for fixedpotential and varying curvature (bottom). (Top left inset) Solution of the twist,j, foru0R ¼ 10:0 andV=VN ¼ 0:95, highlighting

flat commensurate regions ðj0x0Þ that are flanked by rapid jumps in the twist DjðsÞxp (shaded vertical bars). To see this figure in color, go online.
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the curvature, u0r, is varied. Here, we see that curvature
strongly influences both the tilt and twist of the filaments,
with a higher degree of tilt and more pronounced, localized
twist domains for larger radii surfaces.

To probe the approach to the transition in more detail, we
plot, in Fig. 4, hj0i, the mean rotation rate, and sin2hqi=r, a
a b

FIGURE 4 Plots of normalized twist rate, hj0i=u0, and rescaled net filament cu

see this figure in color, go online.
measure of the net curvature of the filament, as functions
of surface-binding potential for a range of surface radii,
ðu0rÞ ¼ 0.25–50. Again, each of these shows a gradual
decrease in the net rotationof the filament for smallV followed
by a precipitous drop to hj0i ¼ 0 at a critical surface potential,
Vc, which decreases with increasing surface curvature. For the
rvature, sin2hqi=ðu0rÞ, for equal bending and torsional stiffness, C ¼ K. To

Biophysical Journal 111, 1575–1585, October 4, 2016 1579
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smallest curvature studied, we find that Vcxp2Ku2
0=4,

approaching the asymptotic limit of binding on flat sur-
faces. For the largest curvature ðu0r ¼ 0:25Þ, we observe
Vcx0:05ðp2Ku2

0=4Þ, a dramatic reduction in threshold sur-
face interaction needed to unwind the filament.

We analyze further how the coupling between twist and
tilt degrees of filaments varies not only with surface curva-
ture but with the ratio of bend to twist elastic constants,
C=K. In Fig. 5, we plot hj0i and sin2hqi=r versus V at fixed
curvature, u0r ¼ 1, for three different elastic anisotropies,
C/K ¼ 0.25, 1, and 5. Due to the diminished effect of
screening of the elastic cost of twist from helical bending
(or tilt), increasing bending stiffness relative to twist stiff-
ness increases the threshold surface binding for unwrapping
the filament. In contrast, weakening the bending stiffness
relative to twist leads to an increased sensitivity to surface
binding and smaller Vc (relative to p2Ku2

0=4), and further
to configurations which locally straighten significantly in
the neighborhood of twist domains (see, e.g., Fig. 2 d).

Overall, these results illustrate that increasing the surface
curvature and decreasing the relative bending stiffness,
C=K, lead to a marked increase in the susceptibility of fila-
ment shape (both twist and curvature) to surface interactions
that couple to the helical symmetry of the filament.
Shape sensitivity to surface curvature

In this section, we describe the mechanisms of shape selec-
tion for surface-bound helical filaments, and in particular,
the sensitivity of filament shape to surface curvature. We
begin by analyzing the limiting case of strong surface bind-
ing and the transition from the strongly bound, unwound
filament to the weakly bound, twisted filament. We follow
with an analysis of the shape sensitivity of bound filaments
in the limiting case of weak interactions with the curved
surface.
a b

FIGURE 5 Plots of normalized twist rate, hj0i=u0, and rescaled net filament c

C=K, with fixed u0r ¼ 1. To see this figure in color, go online.
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Strong-binding and unbinding transition

We begin by considering the shape of filaments in the
V/N limit, where the strong-binding face or interaction
sites on the filament are not free to peel way from the sur-
face, which is the class of configurations in the model of
(7). Assuming that filament orientation locally maximizes
surface cohesion ðj ¼ 0Þ, equilibrium configurations corre-
spond to helices of constant q ¼ q0, determined by the
strong-binding equation of state,

2C
sin3q0cosq0

r2
¼ K

cosð2q0Þ
2r

�
sinð2q0Þ

2r
þ u0

�
; (12)

obtained by setting j ¼ 0 in Eq. 9. The tilt equilibria are
plotted in Fig. 6 as a function of reduced twist, 2u0r,
showing a generic rise for q ¼ 0 to the tilt that provides
the maximum rotation of the surface normal, q ¼ p=4,
and hence the largest possible relaxation of the twist elastic
energy of the bound filament. It is straightforward to show
that tilt equilibria have the asymptotic limits

q0 ¼

8><>:
�sin�1ð2u0rÞ

�
2xu0r 2u0r � 1

�p
�
4þ C=K

2u0r � 1þ C=K
2u0r[ 1

; (13)

increasing linearly for small, reduced twist, and saturating at
q0 ¼ p=4 for large twist. We also plot, in Fig. 6, the depen-
dence of q0 on the ratio of bend to twist elastic constants,
C=K, which illustrates that the shape of strongly bound fil-
aments is determined not only by the degree of torsional
strain, or u0r, but also by the relative cost of relaxing that
strain through bending deformations.

These constant-helix solutions have been previously stud-
ied as models of chiral filaments uniformly bound to cylin-
drical membranes, such as the bacterial cell wall (7). Here,
urvature, sin2hqi=ðu0rÞ, for varying ratios of bending and torsional stiffness,



FIGURE 7 Plot of critical potential, Vc=VN, as a function of curvature,

u0r. The circles show the results of numerical solutions, whereas the solid

curve is the prediction of the ‘‘renormalized’’ critical potential given by

Eq. 15. To see this figure in color, go online.

FIGURE 6 Plots of the equilibrium tilt q0, as a function of curvature, u0r,

in the strong binding limit for varying ratios of bending and torsional stiff-

ness C=K. To see this figure in color, go online.
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we show the nonlinear evolution of the equilibrium shape
with decreasing strength of filament-surface interactions,
where sufficiently weak interactions allow filament confor-
mations to peel away from uniform surface contact. In a pre-
vious study (16), we addressed the transition from weakly
bound to strongly bound helical filaments for planar inter-
faces. Taking the limit of r/N in Eq. 8, we arrive at the
planar model, described by the energy

lim
r/N

H ¼ 1
2

R L

0
ds
h
Cjq0 j 2 þ Kðj0 � u0Þ2 þ Vsin2ðjÞ

i
;

(14)

showing that bend- and twist-orientation degrees of
freedom decouple on flat surfaces. As previously noted,
the transition from strong to weak binding with decreasing
surface potential, V, maps on to the commensurate-incom-
mensurate transition of the Frenkel-Kontorowa model of
surface adsorption (16,22). The ‘‘unwound’’ filament with
uniform j ¼ 0 (i.e., the commensurate state) is stable for
V >VN, where the critical potential is VN ¼ ðp2=4ÞKu2

0.
Near to, but below this binding strength, localized jumps
of j by p over a length scale proportional to

ffiffiffiffiffiffiffiffiffi
K=V

p
become stable in the equilibrium shape, due to the (favor-
able) relaxation of the torsional strain at the expense of
(unfavorable) unbinding from the surface. These localized
‘‘twist walls’’ (‘‘discommensurations’’ in the language of
incommensurate solids) are separated by a characteristic
distance L that diverges as the potential approaches its
critical value from below, L � �lnðVN � VÞ. As the
binding strength is decreased far below VN, distinct twist
walls merge and the filament twist profile evolves continu-
ously to the state of zero elastic strain and native twist
ðj ¼ u0sÞ as V/0.

Noting that the binding threshold separating strong bind-
ing (uniform j, q) from weak binding (nonuniform j, q) is
found to be strongly dependent on the coupling of local
filament orientation to surface curvature, we propose a
simple generalization of the flat-interface analysis for the
critical surface potential on curved surfaces. When the
uniform tilt solution of Eq. 13 is inserted into the elastic
energy of Eq. 8, we note that the torsional strain is reduced
from the native twist, u0, by �jsinð2q0Þ=ð2rÞ j . Therefore,
the torsional loading of the filament on the cylinder
is reduced relative to a flat interface, and we expect the
filament to be ‘‘unwound’’ by a far weaker critical po-
tential, Vc, proportional to the square of a renormalized
twist, ueff ¼ u0 � jsinð2q0Þ=ð2rÞ j <u0. Hence, we esti-
mate the dependence of the critical potential on dimension-
less twist, u0r, as

Vcðu0rÞ ¼ VN

�
1�

����sinð2q0Þ2u0r

���� �2

: (15)

This estimate for the critical binding strength is compared
to numerical results for the value of the binding potential at
the transition between nonuniform and uniform j solutions
in Fig. 7 and shows strong agreement over the entire range
from small to large curvatures. Using the solution of q0 as
u0r/0, we estimate that, for large curvature, the critical
binding strength vanishes as limr/0VczVNðu0rÞ4, due to
the elimination of the elastic twist penalty to unwind the
filament into perfect surface contact through small bending
deformations. In the opposite limit, where q0/p=4 as
u0r/N, we find a continuous increase of the critical po-
tential to the critical value for the planar case, Vc/VN.

Curvature sensitivity for weakly binding filaments

In this section, we illustrate the effect of surface interactions
in the limit of V � Vc, where the filament structure is only
weakly perturbed by surface interactions with its helical
symmetry. The analysis is based on a perturbative solution
to the filament-shape equations for weak binding (see Sup-
porting Material for details). Here, we solve for the weakly
perturbed filament conformation,
Biophysical Journal 111, 1575–1585, October 4, 2016 1581



FIGURE 8 Plot of torsional strain versus rescaled potential at small V.

The straight line indicates the V2=3 scaling. To see this figure in color, go

online.
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jðsÞxusþ djðsÞ; qðsÞxq0 þ dqðsÞ; (16)

where u and q0 mean filament twist and tilt, respectively,
and djðsÞ and dqðsÞ represent zero-mean, longitudinal
modulations of shape deriving from the position-dependent
torques along the filament. First consider the planar case
r/N and vanishing coupling between twist and tilt.
In this case, expanding the equation of motion for small
dj, the balance of torques about the filament axis sets
Kdj00zVsinð2usÞ. This implies a modulation of filament
twist in registry with the mean twist, u, which increases(de-
creases) the filament’s helical pitch where the filament-
surface binding is locally maximal (minimal), with an
amplitude proportional to V=ðKu2Þ. Hence, the net energy
gain per unit filament length due to this weak-correlation
effect is ~ �V2=ðKu2Þ, indicating a preference to unwind
the natural twist of the filament. Balancing this preference
is the elastic cost for altering the mean twist of the filament,
Kðu� u0Þ2=2, which, for small V, gives the parabolic
dependence of torsional strain on potential,

lim
V=Vc � 1

ðu� u0Þ ¼ � V2

16K2u3
0

for r/N: (17)

For filaments on curved cylindrical surfaces, we find two
additional effects. First, there is an additional contribution to
the correlation energy, proportional to �V2=ðCu4r2Þ per
unit length, due to the enhanced ability of bound filaments
to locally increase/decrease the rate of rotation of orien-
tation though oscillatory ‘‘wobbling’’ of the filament tilt
to further optimize local surface contact. The second, and
perhaps more critical, difference is the screening of the
elastic cost of mean torsional strain through tilt. In contrast
to the harmonic cost on planar surfaces, in the V/0 limit,
the elastic cost for deviations from native twist becomes
much softer on curved surfaces, Cðu� u0Þ4r2=2 per unit
length. Optimizing for mean twist in the V/0 limit, we
find the torsional strain on curved surfaces with finite r.

lim
V=Vc � 1

ðu� u0Þ ¼ �
	

V2

32Cu3
0r

2

�
K�1

2
þ 3C�1

16u2
0r

2

�
1=3
(18)

Therefore, we find that the sensitivity to surface potential
of helical filament shape on curved surfaces is critically
different from that on flat surfaces.

Most notably, we find that the power-law dependence of
torsional strain, u� u0, changes from the weaker V2 on
flat surfaces to V2=3 on curved surfaces. Second, we observe
that the torsional strain at small V is strongly dependent on
surface curvature, r�1, as well as on filament stiffness. This
highlights the remarkable fact that the local structure of the
filament is generically sensitive to the surface shape, even in
the asymptotic limit of weak surface interactions. In Fig. 8,
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we verify the predicted dependence of torsional strain in the
V/0 limit by replotting the mean twist, hj0i ¼ u, versus
the potential, V, rescaled by Vs ¼ 16Cðu2

0rÞ2f2K=
½8Cðu0rÞ2 þ 3K�g1=2, according to the right-hand side of
Eq. 18 above. The collapse of points in the small V limit
to a V2=3 dependence for various u0r highlights the agree-
ment. Finally, we note, by comparing the respective strain
predictions for flat and curved surfaces, that we expect a
crossover between the singular V2=3 dependence at small
potentials to the planar scaling, V2, at a characteristic bind-
ing strength, VxzðK5u6

0=Cr
2Þ1=4, indicating that the range

of weak binding where strain exhibits strong curvature ef-
fects decreases with decreasing curvatures as ðu0rÞ�1=2.
DISCUSSION

Our results show that for surface bound biopolymers,
elasticity and chirality can combine in nontrivial ways
with surface interactions and surface geometry to deter-
mine equilibrium morphology. For twisted filaments
interacting with a flat surface, we previously showed
(16) that there exists a critical interaction strength
VN ¼ ðp2=4ÞKu2

0 above which the filament exists in
an untwisted, strongly bound configuration that maxi-
mizes the interaction energy at the expense of torsion.
Here, we show that the existence of surface curvature intro-
duces an extra degree of freedom whereby the filament
can transition to the untwisted state at lower values of the
interaction strength by essentially relieving torsional strain
via writhing to maintain surface contact. This results in
a lowered value for the critical interaction strength—
Vcðu0rÞ ¼ VNð1� jsinð2q0Þ=2u0r j Þ2 —and a spontaneous
preference for helical morphologies even in the absence of
any spontaneous curvature simply due to the interplay
between twist, writhe, surface interactions, and geometry.
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This is of particular interest in the bacterial context where
cytoskeletal filaments like FtsZ and MreB have specific ori-
entations relative to cylindrical cell bodies that prove essen-
tial in applying forces and templating growth in the correct
locations. To assess the significance of our results for bacte-
rial cytoskeletal filaments, we consider the specific values of
the elastic constants and geometric parameters that are
involved and where this would situate these systems in
our phase diagram. For FtsZ, the intrinsic twist, as reported
by recent molecular dynamics (MD) simulations (23,24), is
in the range 3–20�, which we take to be of the order
of � 10+ per monomer (of size 5 nm) resulting in
u0 � 0:03 rad∙nm–1. Given that cell radii for Escherichia
coli bacteria are typically 100–500 nm, we get
u0r � 3� 15. For single protofilaments of MreB, MD re-
sults (25) indicate a smaller angle of about 3+ per monomer,
yielding u0r � 1� 5. To estimate the critical potential, VN,
we additionally require the torsional modulus, K. The
variance, s2, of the fluctuations in the twist angle from
independent MD simulations, gives a consistent value of
s2z0:005 rad2 for FtsZ (23,24). From this, one can estimate
the torsional rigidity as K ¼ kBT‘=s

2, where ‘ � 5 nm is
the monomer size, giving us K � 1200kBT nm. For
single MreB protofilaments, a similar analysis gives
K � 2000kBT nm (25). This gives us a value of
VN ¼ ðp2=4ÞKu2

0 � 2kBT=nm for FtsZ and 0:5kBT=nm
for MreB. It is to be noted that these parameters could
change for high order assemblies that occur in vivo. The
actual interaction potentials between FtsZ/MreB and the
membrane are complex and mediated by multiple linkers.
An estimate of the binding affinity of FtsZ for ZipA-
linker-coated substrates (26) allows us to approximate the
interaction strength at about 1kBT=nm, yielding the ratio
V=VN � 1=2. In addition to specific interactions from
linking molecules, nonspecific interactions such as electro-
statics could also contribute significantly to the net interac-
tion strength. Given that FtsZ (and also MreB) have linear
charge densities comparable to actin (� 4 e/nm) (27) and
that reasonable membrane charge densities under physio-
logical conditions could give rise to Vel � 1� 2kBT=nm
for actin (16), we anticipate that Vnet=VN could range
from 0.2 to 1.5 for all cases considered. It is to be noted
that these ranges of values for u0r and V=VN cover the
region corresponding to the knee of the curve in Fig.7, indi-
cating that these filaments are highly sensitive to changes in
the global surface geometry and twist state, as well as in the
interaction potential, wherein small changes in these param-
eters (e.g., the radius of curvature, r) can cause dramatic
changes in morphology and orientation.

Another interesting feature of this coupling emerges
when we consider that filaments can have spontaneous cur-
vature as well. A transition in the twist state can be coupled
to a reorientation or even the emergence of a plane of spon-
taneous curvature that can then lead to the exertion of forces
(24). It has been observed with atomic force microscopy ex-
periments on FtsZ polymerized on mica (28) that they can
exist in two states, as long curved filaments or short straight
filaments, which could arise from different torsional states
in the two populations. Experiments on FtsZ adsorbed to
curved lipid surfaces (29) have also shown that the resulting
orientations cannot be accounted for by spontaneous curva-
ture and must include a coupling to twist. These experi-
mental observations lend support to our model and also
suggest that the nonlinear interplay between geometry,
twist, and surface interactions can be used to regulate force
production. Furthermore, these in vitro systems are well
suited to test the predictions of our theory, including the
dependence of twist and tilt profiles on surface interactions,
as well as the critical potentials as a function of curvature.

The coupling between filament bending and twist studied
here for cylindrical surfaces, will arise on any surface which
is anisotropically curved, a fact that has important biophysi-
cal implications. For a strongly bound filament whose mate-
rial frame is locked to the local tangent frame of a binding
surface, the twist has the form 2ðk1 � k2Þsinð2qÞ, where k1
and k2 are the principal curvatures of the surface and q is
the angle between the filament tangent and the first principal
axis. This formula shows that a strongly bound filament
can maintain maximal twist by aligning at 45+ with respect
to the principal axes of an anistropically curved surface.
Combining this with the normal curvature for a filament
k1cos

2qþ k2sin
2q, we see that a surface of negativeGaussian

curvature, where k1k2%0, allows filaments to bind with
particularly low elastic energy, because there is always a
straight path between the principal axes when principal cur-
vatures have opposite signs. For example, for minimal sur-
faces, k1 ¼ �k2, binding at 45+ with respect to principal
axes achieves the maximal twist of a strongly bound filament
ð52k1Þ and requires no bending of the filament backbone.
These arguments suggest that binding of helical filaments
will be generically favored in regions of negative Gaussian
curvature. This mechanism may have implications for the
localization of bacterial cytoskeletal filaments to cell-wall
geometries with negative curvature, such as the localization
of crescentin that occurs in crescent-shaped Caulobacter
crescentus (30), or that proposed for MreB either in a plasti-
cally deformed rod-like bacterium (31) or in maintaining rod
shapes in growing cylindrical bacteria (32).

The fact that many biopolymers, both eukaryotic and pro-
karyotic, that are composed of proteins will have closely
related properties indicates that this kind of coupling be-
tween twist, interactions and geometry could be exploited
for regulation of a variety of processes. For example, ad-
sorbing to the surface and unwinding could expose moieties
on the monomer surfaces that could trigger biochemical
pathways in response to geometric cues, such as the pres-
ence of regions with different curvatures. This could be of
use in directing function to geometrically defined regions
such as midplane constrictions for FtsZ or regions where
extra cell-wall synthesis machinery mediated by MreB (as
Biophysical Journal 111, 1575–1585, October 4, 2016 1583
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suggested in the preceding paragraph) could be directed.
The transition could also be regulated by changing the
intrinsic twist or even just the linear charge density by post-
translational modifications. Another interesting possibility
is that the transition could be accompanied by the exposure
of regions of the monomer surface that promote bundling or
in-plane aggregation. This could then lead to an autocata-
lytic accumulation of filaments in targeted regions. One
could imagine that such a mechanism would be valuable
in the design of self-assembly pathways. For example,
amyloid fibrils have been found to untwist upon interactions
with lipid membranes (17,21), which could in turn affect
their aggregations and be exploited for the design of amy-
loid or protein-based functional nanomaterials (18) on
arbitrarily curved surfaces that could be responsive to
changing geometries. Finally, it is to be noted that many
of these cytoskeletal filaments are in a state of dynamic turn-
over, and it has been shown (33) that coupling the kinetics
of filament polymerization with cell-wall growth and me-
chanics can lead to nontrivial regulatory mechanisms. It
would be interesting to consider the role of the coupling
of our untwisting transition to these mechanisms.
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Here we examine dependence of the filament twist and tilt on the potential in the weak adhesion
limit. The Hamiltonian in the general case is given by

H =

∫ L

0

ds
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This yield the corresponding equations of motion
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We now consider the limit of weak binding potential i.e. the V → 0 limit. Here, the filament is
close to its unperturbed state with ψ → ω0s and θ → 0. This allows us to rewrite the equations
of motion, (2) and (3), to linear order in θ, ψ as

Cθ′′ = −K
2r

(
ψ′ − θ

r
− ω0

)
(4)

K
(
ψ′ − θ

r

)′
=
V

2
sin(2ψ) (5)

We look for the solution of these equations for θ, ψ in the form θ = θ0 + δθ and ψ′ = ω + δω,
where θ0, ω are constants and δθ, δω are oscillating parts, such that 〈δθ〉 = 〈δω〉 = 0. The twist
equation of motion, eq.5 implies

K
(
δω − δθ

r

)′
=
V

2
sin(2ωs) (6)

which yields upon integration

δω − δθ

r
= − V

4ωK
cos(2ωs) (7)

1



This relates the difference between the oscillating part of the twist rate and Frenet torsion from
the oscillating part of the tilt to the strength of the potential. From the tile equation of motion,
eq.4, keeping terms of the lowest order in θ0, ω, δθ, δω, we get a constant part

0 = −K
2r

(
ω − θ0

r
− ω0

)
(8)

and an oscillating part

Cδθ′′ = −K
2r

(
δω − δθ

r

)
(9)

Using eq.7, this reduces to

Cδθ′′ =
V

8ωr
cos(2ωs) (10)

yielding

δθ = − V

32ω3rC
cos(2ωs) (11)

We can now use the relation between the oscillating parts of the twist and tilt, eq.7, to get

δω = − V

4ω
cos(2ωs)

(
K−1 +

C−1

8ω2r2

)
(12)

This allows us to write the oscillatory part of the twist angle δψ as

δψ = − V

8ω2
sin(2ωs)

(
K−1 +

C−1

8ω2r2

)
(13)

Thus we see that both the tilt angle and twist vary sinusoidally along the filament with the
variations having magnitude of order V . We now consider the total energy of the filament in
this weak adhesion limit.

E =

∫ L

0

ds

[
C

2
(δθ′)2 +

C

2

θ4

r2
+
K

2

(
ω + δω − θ0 + δθ

r
− ω0

)2

+
V

4
[1− cos(2ψ)]

]
(14)

Taking ψ ∼ ωs+ δψ and using equations 11,8,7,12,13, and keeping terms to order V , we get

E =

∫ L

0

ds

[
C

2

( V

16ω2rC

)2
sin2(2ωs) +

C

2

θ40
r2

+
K

2

(
− V

4ωK
cos(2ωs)

)2

+
V

4
sin(2ωs)

V

4ω2
sin(2ωs)

(
K−1 +

C−1

8ω2r2

)]
(15)

and averaging over one period

〈E〉/L =

[
C

4

( V

16ω2rC

)2
+
C

2

θ40
r2

+
V 2

64ω2K
+

V 2

32ω2

(
K−1 +

C−1

8ω2r2

)]
(16)

Using 8 and setting θ0 = (ω − ω0)r, this reduces to

〈E〉/L =
C

2
(ω − ω0)

4r2 − V 2

16ω2

[
K−1

4
+

3C−1

64ω2r2

]
(17)

Minimizing this with respect to ω allows us to compute the non-trivial constant contribution
to the twist rate in the weak adhesion limit (for finite curvature (ω0r)

−1).

ω ' ω0 −
[

V 2

32Cω3
0r

2

(
K−1

2
+

3C−1

16ω2r2

)]1/3
; for finite r (18)

2



Comparing this to the perturbative solution for flat interfaces (taking the limit of 1/r → 0 in
eqs. 13 and 15) we arrive and the effective mean energy,

〈E〉/L =
K

2
(ω − ω0)

2 +
V 2

32Kω2
; for r→∞. (19)

Minimizing with respect to ω for weak binding, we find

ω ' ω0 −
V 2

16K2ω3
0

; for r →∞. (20)

Relative to the V 2/3 scaling of strain on curved surfaces, the V 2 dependence indicates a weaker
coupling to surface potential on flat surfaces.
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