Critical Role of Transcription Factor PU.1 in the Function of the OX40L/TNFSF4 Promoter in Dendritic Cells

Takuya Yashiro, Mutsuko Hara, Hideoki Ogawa, Ko Okumura, and Chiharu Nishiyama

Department of Biological Science and Technology,

Faculty of Industrial Science and Technology, Tokyo University of Science,

6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan

Atopy Research Center, Juntendo University School of Medicine,

2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan

5' position	Direction	Sequence	
-657	Forward	ACACggtaccGGGTGGGGGAATGACAGAATT	
-476	Forward	TGATggtaccTGTAACTATAAGACCCCTTC	
-291	Forward	ACACggtaccGGTTTAAGACATCTTGAGGG	
-136	Forward	ACACggtaccAAACAACTCCCTGTTAGCCC	
+71	Reverse	CACCagatetGAGCCAATAAGGGCAAAGTC	

Supplementary Table 1. Sequence of primers used in construction of reporter vectors.

Mutation site	Direction	Sequence	
Ets5	Forward	GTCACTCTAGAGTTCCCCCGCCTGCAAA	
	Reverse	GAACTCTAGAGTGACTAATCTGAATTTC	
Ets6	Forward	AGAAGTCGACCCGCCTGCAAAACCTGC	
	Reverse	GGCGGGTCGACTTCTATGTGACTAATCTGAATT	

Supplementary Table 2. Sequence of primers used in ChIP assay.

Species	Amplified region	Direction	Sequence
Mouse	-4992/-4889	Forward	TGGTGGGAAGAGATGAAAGACA
		Reverse	CTTACCTCCTTCTTTTTTCTATTTCTGATA
			ATC
	-4525/-4451	Forward	AACCCAGGAGCCACACCTT
		Reverse	AGTACTGGCTTTTCTTTAGCCTTG
	-1524/-1434	Forward	GCTGCAGAGTAGCCTATGTG
		Reverse	GAGGCGTTGCATTTGGAGAC
	-744/-637	Forward	AGAGCAACAAGCCTCAAATG
		Reverse	AATTCTGTCATTCCCCACCC
	-57/+3	Forward	TCCCCCGCCTGCAAA
		Reverse	AATTGAAGGAGCAGAGCAGAGTCT
	+3627/+3704	Forward	ACTTCTTGTCTCTTGTTTGTTAGGAA
		Reverse	ACATCACCAAGAGACTGAATTCTAACTC
Human	-1322/-1249	Forward	TTTTGGCTTGGAGTCTATGATATTGT
		Reverse	GAGAACATACTGGTGTTGAGAAATTTA
			AG
	-521/-455	Forward	TGCAATAGACTACAACCAAGGATCTC
		Reverse	GAAAAAGACAAAACAAGAAAATAGGA
			CACT
	-73/-18	Forward	CCGCCTGCCTGCAAAA
		Reverse	GAAAGAGCAAAGCGGACTCTCT

*+1; Transcription start site

(A) JAWSII cells were transfected with either negative control siRNA (siNega) or PU.1 siRNA (siPU.1). At 32 h after transfection, the cells were left untreated (open bars) or stimulated (closed bars) with 1 µg/ml LPS for 16 h. Relative mRNA levels were determined by quantitative RT-PCR after normalizing to mouse GAPDH mRNA levels. Data are expressed as the ratio of the expression level of the respective control siRNA-transfected cells without simulation. Results are shown as means ± 0.5 (*n*=3).

(B) Chill sasay was performed by using either goat [gG (gJgG) or anti-PU.1 Ab (PU.1). The amounts of immunoprecipitated chromatin were determined by quantitative PCR amplifying the indicated region of the OX40L promoter. Data are expressed as percentage of the input for each Chill Passy. Results are means = 8.D.8 (are -3). Similar results were obtained in three independent experiments.