Structure-based discovery of potentially active semiochemicals for *Cydia*

pomonella **(L.)** *Jiyuan Liu1,2a Zhen Tian1a Yalin Zhang¹ **

¹ Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China

² Department of Medicinal Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, Shaanxi, China

^a These authors contributed equally to this work.

*Corresponding author: Ya-Lin Zhang

Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, Northwest A&F University, Yangling 712100, Shaanxi, China. Tel./Fax: +86-29-8709-2190. E-mail: yalinzh@nwsuaf.edu.cn.

Preparations for structure-based pharmacophore modeling

Details for 3D model construction The 3D structure of CpomPBP1 was built by using Modeller9[.](#page-26-0)10¹. Based on the crystallographic R-factor (21.8%), sequential identity (50%, Figure S1b) and pH state (pH 7.0), we finally selected the crystal structure of BmorPBP-bombykol complex from *Bombyx mori* (PDB ID: 1DQE, Chain A, resolution 1.8 Å) as the template for homology modelling. The CpomPBP1-Codlemone and CpomPBP1-ETrME complexes were constructed by molecular docking simulations using program GOLD5.[3](#page-26-1)². The 3D model of CpomPBP1 was performe[d](#page-26-2) 5000 steps minimization in Amber12 with ff99SB force field³ before being selected as a receptor for docking simulations. The 3D structure of Codlemone was sketched using Maestro version (Schrodinger Inc.), and the 3D structure of ETrME was derived from the results of virtual screening proceeded by Ligandsout 4.0[9](#page-26-3)⁴. Whole of them were optimized 2000 steps in Amber12 with GAFF force field^{[5](#page-26-4)} prior to the docking simulation. The Chemplp score implemented in GOLD was employed to finely reproduce the best binding model of these complexes si[n](#page-26-5)ce it is superior to other scoring functions in GOLD for pose prediction 6 . All details of the homology modeling and the molecular docking were performed according our previous $\text{reports}^{7,8}$ $\text{reports}^{7,8}$ $\text{reports}^{7,8}$ $\text{reports}^{7,8}$.

Protonation states examination of CpomPBP1 model The protonation states of CpomPBP1 model were examined by using Rosetta pKa Protocol^{[9](#page-26-8)} before we loaded the homology model of CpomPBP1 into the GOLD5.3 for molecule docking. Based on the CpomPBP1 model, we estimated the pKa values of five types of residues (Asp, Glu, His, Tyr, and Lys) in varied protonation states (Table S8). These ionizable residues, especially His35, His69, His70, His80, His95 and His123, were expected to show smaller pKa shifts compared to their theoretical intrinsic pKa (IpKa) values (set protonation with proton on $N\delta1$ atoms). Moreover, According to the 2D interaction diagram of CpomPBP1 with Codlemone (Figure S10), these ionizable residues were far away from Codlemone binding sites. As a result of what mentioned above, the protonation states of CpomPBP1shed little effects on the structure-based pharmacophore modeling in this study。

Solvent selection for competitive binding assay

Parts of our tested compounds are stored in ethanol (GC grade) solution, so it is necessary to check whether ethanol is advisable to be the solvent in competitive binding assay. Two

experiments were performed to evaluate the effects of ethanol on CpomPBP1 protein and CpomPBP1/1-NPN system. One was titrating 2 μM CpomPBP1 solution with ethanol (final volume fraction ranging from 0 to 50%), This experiment suggested the effects of ethanol on CpomPBP1 protein. The other was titrating solutions containing 2 μM CpomPBP1 and 2 μM 1-NPN with ethanol (0-32 μM). In the pretests, the fluorescence intensity at each point was recorded by Hitachi F-4600 spectrofluorimeter with a slit width of 5 nm for excitation and emission. For the first experiment, the excitation and emission wavelength were determined to be 250 nm and 280-380nm, respectively. For the second experiment, the excitation and emission wavelength were determined to be 370 nm and 385-500nm, respectively.

Supplementary Tables

Table S1 Pharmacophore-Fit Score obtained through virtual screening and the extracted 133 hits.

31 hits.						
		Pharmacophore-Fit	Gaussian Shape Similarity			
Entry	Zinc No.	Score	Score			
1	ZINC83316566	45.89	0.67234			
$\mathbf 2$	ZINC83314700	47.5	0.64463			
\mathfrak{Z}	ZINC15273980	46.24	0.63166			
$\overline{4}$	ZINC27643501	46.49	0.62931			
5	ZINC04655401	46.93	0.62170			
6	ZINC83314697	46.64	0.62103			
7	ZINC03630789	47.02	0.62072			
8	ZINC83316818	47.2	0.60465			
9	ZINC27643568	47.21	0.60282			
10	ZINC27643488	45.72	0.59936			
11	ZINC13508540	47.52	0.59149			
12	ZINC83314696	47.35	0.58634			
13	ZINC34961865	45.56	0.58551			
14	ZINC05964866	46.13	0.58093			
15	ZINC04474613	45.78	0.57441			
16	ZINC03871295	46.12	0.56778			
17	ZINC64858254	46.35	0.56712			
18	ZINC27643554	46.12	0.56462			
19	ZINC83314695	46.76	0.55472			
20	ZINC83316817	46.32	0.55096			
21	ZINC40164570	46.86	0.54915			
22	ZINC13508536	46.89	0.54795			
23	ZINC31333928	46.7	0.54648			
24	ZINC83314698	46.13	0.54516			
25	ZINC33822158	46.88	0.54419			
26	ZINC04655400	46.35	0.54101			
27	ZINC13551720	45.7	0.53500			
28	ZINC31983243	46.68	0.53477			
29	ZINC12496534	47.19	0.52698			
30	ZINC13507101	47.1	0.52582			
31	ZINC30730667	46.51	0.52548			

Table S2 Gaussian Shape Similarity Score obtained based on shape alignment and the extracted

		Gaussian Shape	Pharmacophore-Fit	Binding Affinity
Entry	Name	Similarity Score	Score	Score
1	ZINC13508536	0.54795	46.89	-35.99
$\overline{2}$	ZINC31983243	0.53477	46.68	-35.17
3	ZINC83314697	0.62103	46.64	-35.05
$\overline{4}$	ZINC27643501	0.62931	46.49	-35.00
5	ZINC13551720	0.535	45.7	-34.83
6	ZINC03630789	0.62072	47.02	-34.62
7	ZINC33822158	0.54419	46.88	-34.49
8	ZINC83314698	0.54516	46.13	-34.29
9	ZINC30730667	0.52548	46.51	-34.18
10	ZINC83316818	0.60465	47.2	-33.65
11	ZINC13508540	0.59149	47.52	-33.48
12	ZINC13507101	0.52582	47.1	-33.48
13	ZINC83314700	0.56307	46.15	-33.40
14	ZINC83316566	0.67234	45.89	-32.95
15	ZINC83316817	0.55096	46.32	-32.90
16	ZINC04474613	0.57441	45.78	-32.52
17	ZINC83314696	0.58634	47.35	-32.46
18	ZINC12496534	0.52698	47.19	-30.79

Table S3 Binding affinity calculation results and the extracted 18 hits.

				Enthalpy of Vaporization ^c
Compound	Physical state	Boiling Point ^a	Vapor Pressure ^b	(kcal/mol)
ETrME	liquid	398.55 ± 11.00	-5.84 ± 0.92	15.51
Codlemone	liquid	270.68 ± 9.00	-3.05 ± 1.24	14.12
ZINC27643501	liquid	388.18 ± 11.00	-6.38 ± 1.90	16.72
ZINC12496534		$488.04 + 45.00$	0.00 ± 2.80	20.76
ZINC13507101		437.98 ± 24.00	-8.17 ± 2.26	18.21

Table S4 Physical properties prediction of 4 hit compounds and Codlemone.

^a Calculated boiling point value at 101.325 kPa pressure.

^b Saturated vapor pressure prediction of compounds in the closed equilibrium system at the temperature of 25 Celsius. Vapor pressure prediction is converted into a logarithmic scale.

^c Calculated enthalpy of vaporization indicates the amount of energy needed to vaporize a given quantity of analyzed compound under the atmospheric pressure.

Cluster	Occurrence	RMSD[Å]
	[%]	To Docking
	2.3	1.40
2(6.2	1.25
3	6.5	1.33
	37.1	1.23
5	47.8	1.13

Table S5 Cluster analysis of CpomPBP1-ETrME complex based on the MD simulations trajectory^a.

^a The five structural clusters appear consecutively during the 75 ns MD simulations. RMSD represents the conformational variations between clusters and docking structure.

Table S6 Decomposition of binding free energy on a per-residue level ^a

Residue	S _{VDW}	B_{VDW}	T_{VDW} S_{ELE}		$\mathbf{B}_{\mathrm{ELE}}$	$\mathbf{T_{ELE}}$	S_{EPB}	B_{EPB} T_{EPB}		S_{TOT}	B_{TOT}	$\mathrm{T_{TOT}}$
Phe ₁₂	-2.418	-0.218	-2.636			-0.124 -0.012 -0.136 1.228		0.030		$1.259 - 1.313$	-0.200	-1.513
Phe ₃₆	-1.922	-0.204	-2.126	-0.128		$-0.011 - 0.139$	1.007	-0.031		0.976 -1.043	-0.247	-1.289
Trp37	-1.481	-0.104		-1.584 -1.614 0.002		-1.612 1.638		0.103		1.741 -1.456	0.001	-1.455
Ile52	-1.138	-0.272	-1.409	0.040		$-0.042 - 0.002$	0.084	0.407	0.491	-1.014	0.093	-0.920
Ile94	-1274	-0.190	-1.465	-0.019		-0.019 -0.038	0.013	0.086	0.099	-1.280	$-0.124 - 1.404$	
Ser ₉	-0.634	-0.853	-1.488			-0.117 -0.186 -0.303 1.256 0.712			1.968	1.256	-0.327	0.177
Phe33	-0.914	-0.194	-1.11	0.050	-0.084	-0.034	0.808	1.122	1.930	-0.057	0.844	0.787
Ser ₅₆	-0.472	-0.157	-0.629		-0.036 0.011	-0.024	1.907	-0.000	1.907	1.400	-0.147	1.254

 $^{\text{a}}$ Energies shown as contributions of sidechain atoms (S), backbone atoms (B), and the total (T). Each item is subdivided into van der Waals energy (VDW), electrostatic energy (ELE), polar solvation energy (EPB). TOT represents the total energy contribution of each item. All values are given in kcal/mol.

Table S7 H-bond interactions between ETrME and CpomPBP1 during whole MD simulations^a.

DONOR ACCEPTORH		ACCEPTOR			
atom# :res@atom	atom# :res@atom	atom# :res@atom	<i>%</i> occupied	distance	angle
$2302 + 146@021$	567 :37@HE1	566 :37@NE1	74.84	2.93(0.17)	30.72 (12.85)

 $^{\text{a}}$ The percentage of simulation snapshots (saved every 10 p sec) in which the H-bond was present is listed. The occupancy of H-bonds larger than 5% is listed.

Residue Number	$IpKa^b$	pKa	Method $^{\rm c}$
GLU ₂	4.4	5.7	N
ASP 7	$\overline{4}$	3.9	N
LYS 14	10.4	10.5	N
ASP ₁₇	$\overline{4}$	3.9	${\bf N}$
GLU 18	4.4	3.8	N
LYS 20	10.4	10.9	N
LYS 21	10.4	10.4	${\bf N}$
ASP ₂₂	$\overline{4}$	$\overline{4}$	N
GLU 23	4.4	4.6	${\bf N}$
ASP ₂₇	$\overline{4}$	3.1	N
ASP ₃₂	$\overline{4}$	$\mathbf{1}$	N
HIS 35	6.3	6	N
LYS 38	10.4	10.3	N
GLU 39	4.4	4.4	${\bf N}$
ASP ₄₀	$\overline{4}$	3.6	N
TYR 41	10	10	N
LYS 57	10.4	10.3	${\bf N}$
LYS 58	10.4	11.8	N
GLU 60	4.4	4.6	${\bf N}$
ASP ₆₃	$\overline{4}$	3.3	N
ASP ₆₅	$\overline{4}$	5.1	N
GLU 67	4.4	5.1	N
HIS 69	6.3	4.3	N
HIS 70	6.3	5.9	${\bf N}$
LYS 74	10.4	10	N
GLU 75	4.4	4.8	N
LYS 79	10.4	10.4	N
HIS 80	6.3	5	P
ASP ₈₃	$\overline{\mathcal{L}}$	3	N
GLU 84	4.4	4.4	N
GLU 85	4.4	5.6	N
ASP ₈₉	$\overline{4}$	4.1	N
HIS 95	6.3	6.4	N
ASP ₉₆	$\overline{4}$	3.7	N
ASP 105	$\overline{4}$	3.7	N
ASP 106	$\overline{4}$	2.9	N
LYS 110	10.4	10	N
GLU 113	4.4	3.8	N
LYS 116	10.6	11.3	${\bf N}$
LYS 119	10.4	11.4	N
GLU 121	4.4	$\overline{4}$	${\bf N}$
HIS 123	6.3	6.1	${\bf N}$

Table S8 Calculation of pKa values for all ionizable residues^a in CpomPBP1 structure.

^a All ionizable residues in CpomPBP1 were categorized into five types of Asp, Glu, His, Tyr and Lys.

^b IpKa represents the theoretical intrinsic pKa values. Ionizable residues buried in the core of the protein and near enzyme catalytic sites are expected to show higher pKa shifts compared to the residues on the protein surface exposed to the solvent.

^c Methods: S: Site Repack; N: Neighbor Repack; P: Prepack Complete Structure.

Supplementary Figure Legends

Figure S1 Structure of CpomPBP1. (a) 3D model of CpomPBP1. The six α-helixes are marked by α1 to α6, C and N represent C-terminus and N-terminus, respectively. (b) Amino acid sequences alignment between BmorPBP from *Bombyx mori* and CpomPBP1. 1DQE_A stands for BmorPBP. **Figure S2** Interaction energy map between CpomPBP1 (in the binding site region) and probe. The golden (a) and slate blue (b) points indicate areas of favorable interaction energy with hydroxyl and CMET probes (energy threshold set to -18.9 and 18.1KJ/mol, respectively). Codlemone was overlaid for comparison, but removed before computing the interaction energy map.

Figure S3 The effects of ethanol on CpomPBP1 (a) and CpomPBP1-1-NPN system (b). F_0 is the intrinsic fluorescence intensity of CpomPBP1 without ethanol, F_m is the intrinsic fluorescence intensity of CpomPBP1 at a given ethanol concentration.

Figure S4 Binding curves of tested ligands to CpomPBP1. These ligands including C20:3n-6,8,12 (a), OTrE (b) and Linoleic acid (c) exhibited no binding to CpomPBP1.

Figure S5 Molecular dynamic analysis of CpomPBP1-ETrME complex. (a) RMSD value for the whole backbone of atoms from CpomPBP1-ETrME complex, (b) RMSD of ETrME relative to the starting structure during the production phase of MD simulations. (c) Average fluctuations of residues from CpomPBP1 in the whole process of 75 ns MD simulations.

Figure S6 Superimposing the best MD representative conformations of ETrME and key residues in the active pocket of CpomPBP1 on the counterparts of docking structure. In green, the best MD representative conformation; in gray, the conformations of docking structure. ETrME is presented with stick-and-sphere model. Key residues including Phe12, Phe36 and Trp37 are presented with stick model. Red dashed line is the H bond.

Figure S7 The distances of key interactions in CpomPBP1-ETrME complex. (a) The best MD (molecular dynamic) representative structure of CpomPBP1-ETrME complex. ETrME and key residues including Phe12, Phe36 and Trp37 are presented in green and gray stick-and-sphere model, respectively. Black, red and green dashed lines represent the average distances of key interactions. (b) The distances of atoms forming key interactions along the whole MD simulation time. Corresponding atoms are marked in (a).

Figure S8 Residue-ligand interaction spectrum of the CpomPBP1-ETrME according to the MM-PBSA method. The x-axis denotes the residue number of CpomPBP1 and the y-axis denotes the sidechain energy contribution of each residue.

Figure S9 Site-directed mutation of CpomPBP1. (a) The site-directed mutation of CpomPBP1 gene. (b) The mutant and wild types of CpomPBP1 protein. F12A, F36A, W37A, I52A and I94A are abbreviations for CpomPBP1F12A, CpomPBP1F36A, CpomPBP1W37A, CpomPBP1I52A and CpomPBP1I94A. WT stands for wildtype CpomPBP1.

Figure S10 The interaction diagram of CpomPBP1 with ETrME. Only van der waals (light green) and hydrogen bond (green) interactions were detected around the binding sites of CpomPBP1.

Figure S3

Figure S4

Figure S6

Figure S7

References

- 1 Šali & Blundell, T. L. Comparative protein modelling by satisfication of spatial restraints. *J Mol Biol* **234**, 779 (1993).
- 2 Jones, G., Willett, P., Glen, R. C., Leach, A. R. & Taylor, R. Development and validation of a genetic algorithm for flexible docking. *J Mol Biol* **267**, 727-748 (1997).
- 3 Hummer, G., Rasaiah, J. C. & Noworyta, J. P. Water conduction through the hydrophobic channel of a carbon nanotube. *Nature* **414**, 188-190 (2001).
- 4 Wolber, G. & Langer, T. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. *J Chem Inf Model* **45**, 160-169 (2005).
- 5 Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general amber force field. *J Comput Chem* **25**, 1157-1174 (2004).
- 6 Korb, O., Stutzle, T. & Exner, T. E. Empirical scoring functions for advanced protein− ligand docking with PLANTS. *J Chem Inf Model* **49**, 84-96 (2009).
- 7 Liu, J., Yang, X. & Zhang, Y. Characterization of a lambda-cyhalothrin metabolizing glutathione S-transferase CpGSTd1 from Cydia pomonella (L.). *Appl Microbiol Biotech* **98**, 8947-8962 (2014).
- 8 Tian, Z., Liu, J. & Zhang, Y. Structural insights into *Cydia pomonella* pheromone binding protein 2 mediated prediction of potentially active semiochemicals. *Sci Rep* **6**, doi:10.1038/srep22336 (2016).
- 9 Kilambi, K. P. & Gray, J. J. Rapid calculation of protein pK(a) values using Rosetta. *Biophys J* **103**, 587-595 (2012).