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Supplementary Figures 

 

 

 

Supplementary Figure 1 | Schematic representation of the associating bond formation. 
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Supplementary Figure 2 | Relaxation of reversible network. Dependence of the time average 

Young’s modulus 〈𝐸(𝑡)〉 = 𝑡−1 ∫ 𝐸(𝜏)𝑑𝜏
𝑡

0
 on time t for associating networks (black line) and 

chemical networks (green dashed line), for two temperature intervals for which (a) 𝜏𝑙 > 𝜏𝑅 and 

(b) 𝜏0(𝑚 𝑝⁄ )2 < 𝜏𝑙 < 𝜏𝑅, respectively. Logarithmic scales. 
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Supplementary Figure 3 | Different compositions and strain rates. Stress-strain curves for 

different MAAc:DMAA molar ratios (a) 50:50; (b) 45:55; (c) 40:60; (d) 30:70 samples were 

measured in silicone oil at 3
o
C with different strain rates. Lower MAAc concentration leads to 

lower density and strength of hydrogen bonds and thus lower stress. 
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Supplementary Figure 4 | Failed time-temperature superposition. VGP plots of two 

polymeric materials measured at varying temperatures in a range of frequencies from 0.1 to 100 

Hz.  (a) Master curve of linear poly(n-butyl acrylate) displaying excellent overlap of data 

between temperatures in accordance with the time temperature superposition principle.  (b) 

Master curve of 45:55 MAAc:DMAA gel displaying deviation between data at different 

temperatures indicating multiple temperature dependencies within relaxation processes.  

 

 

Supplementary Figure 5 | Linear viscoelasticity. The time-average network Young’s modulus 

(〈𝐸(𝑡)〉 = 𝑡−1 ∫ 𝐸(𝜏)𝑑𝜏
𝑡

0
= 𝜎(𝑡)/𝜀)  as a function of time 𝑡 = 𝜀/𝜀̇ was extracted from (a) stress-

strain curves measured at different strain rates at 25C in silicone oil and (b) plotted according to 

Supplementary Equation 29. In small strain range, the perfect superposition of the 〈𝐸(𝑡)〉 curves 

in (b) validates the linear viscoelasticity approximation. 
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Supplementary Figure 6 | High extensibility and reversibility. A dogbone-shaped sample 

(MAAc:DMAA = 50:50)  was stretched to a strain of 600% at a rate of 0.05 s
-1 

at 22 
o
C with 

DMA, then unloaded at the same rate. After 4 h in silicone oil, the sample fully restored its initial 

length and mechanical properties as shown by the second loading-unloading cycle conducted 

under the same conditions. 
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Supplementary Figure 7 | Stress-strain at different temperatures and strain rates.   The 

stress-strain curves of dogbone-shaped samples (MAAc:DMAA = 50:50) were measured in 

silicone oil at different temperatures: (a-b) 3
o
C; (c) 17

 o
C; (d) 25

 o
C; (e) 37

 o
C and different strain 

rates from 0.0005 s
-1 

to 0.05 s
-1

. (f) Time-average network Young’s modulus ( 〈𝐸(𝑡)〉 =

𝑡−1 ∫ 𝐸(𝜏)𝑑𝜏 = 𝜎(𝑡)/𝜀  
𝑡

0
) collapses different strain rates in small strain (~0.05) within the limits 

of linear approximation. The modulus decreases with temperature due to dissociation of 

hydrogen-bonded crosslinks.  
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Supplementary Figure 8 | Effect of chemical cross-linking on modulus.  Stress-strain curves 

of samples (MAAc:DMAA = 50:50) with different concentrations of cross-linker, N,N’-

methylenebisacrylamide (BIS). Dogbone-shaped samples were stretched at 37 
o
C with a strain 

rate of 0.0005 s
-1

. The high temperature and low strain rate almost eliminate the contribution of 

H-bonding to modulus. 

 

 

 

Supplementary Figure 9 | FTIR study on hydrogen bonds. (a) FTIR-ATR spectra of hydrogel 

at 3 
o
C and 60 

o
C. Samples (MAAc:DMAA = 50:50) were prepared in D2O to eliminate 

absorption peak of H2O. During measurements, the sample was immersed in D2O solvent to 

maintain constant temperature and eliminate evaporation. (b) Zoomed-in bands corresponding to 

C=O group of DMAA. The high-frequency shift of the peak maximum at 60 
o
C suggests the 

dissociation of H-bonds at high temperature.  
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Supplementary Figure 10 | Effect of water evaporation on shape recovery. (a) Two pieces of 

hydrogels (MAAc:DMAA = 50:50, 15mm×5mm×1mm) were stored in open air or in silicone 

oil at room temperature (~22 
o
C). The water loss was measured as ∆𝑚 0.7𝑚0 × 100%⁄ , where 

∆𝑚 is weight change and 𝑚0 is the initial weight of gel, 0.7 is the water fraction in the original 

sample. Compared to the measurement in open air, the water loss with oil protected sample was 

negligible (some evaporation occurs during weight measurement in air). The error bar indicates 

the standard deviation of the average of three separate experiments (b) Unfolding of a hairpin in 

different environments (air, pH3 water, and silicone oil) as indicated. The hairpin was 

programmed by folding a straight rod of the 50:50  MAAc:DMAA  hydrogel in pH3 water for 1 

min at 22 C. 

 

Supplementary Figure 11 | Effect of different programming protocols and temperature on 

the recovery rate. (a) Kinetics of shape recovery (50:50 MMAc-co-DMAA gel) for different 

programming protocols as indicated but with the same total programming time. They show 

similar shape recovery rate.  (b) Hydrogel hairpin samples (MAAc:DMAA = 50:50) were bent 

180
o 

and programmed for 15 min in silicone oil at 22
 o

C and then recovered in oil at different 

temperatures. The angles were measured and plotted as a function of time for each recovery 
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temperature. The faster recovery at higher temperatures is ascribed to faster dissociation of 

hydrogen bonds. 

 

 

Supplementary Figure 12 | Lack of thermal transitions. DSC scanning for wet hydrogel 

(MAAc:DMAA = 50:50) performed at a heating and cooling rate of 2 
o
C/min for 3 cycles (22

 o
C 

-60
 o
C -3 

o
C, 3

 o
C -60

 o
C -3 

o
C, and then 3

 o
C to 80 

o
C).  

 

 

 

Supplementary Figure 13 | The standard linear solid model for description of relaxation in 

reversible network.  
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Supplementary Figure 14 | Recovery rate vs programming time. From Fig. 3a in the main text, 

we obtain the strain recovery time 𝝉𝐫 , which increases with the programming time 𝒕𝐩  for a 

sample programmed by Protocol 2: uniaxial extension, 𝜀̇ = 0.05 s−1,ε = 50%, 𝑇 = 25 ℃. 
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Supplementary Figure 15 | Sequential opening of a box. (a) Programming of cargo carrying 

box cut from a gel sheet (MAAc:DMAA = 50:50,  70 wt% water). The three short sides (1) were 

first folded to 90
o
 in air, followed by the long side (2) and finally the top lid (3). each with 

different programming times: (3) 30 min, (2) 10 min, (1) 1 min, respectively. (b-e) Sequential 

opening of the box (pH 3 water, 22 C): each side of the box unfolds in the reverse order of the 

programming time (longer programming time leads to slower recovery). 
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Supplementary Discussion 

Theoretical Analysis  

1. Thermodynamics of association   

Since an equilibrium between separated groups A, B and their complex C is controlled by 

hydrogen bond association/dissociation, the reaction describing this process is  

A + B ⇔ C        (1) 

with an association reaction constant Kass and a dissociation reaction constant Kdis. The evolution 

of concentration of the associated species [C] in a system is governed by the following kinetic 

equation 

𝑑[𝐶]

𝑑𝑡
= −𝐾dis[𝐶] + 𝐾ass[𝐴][𝐵]     (2) 

In an equilibrium state, the rate of change of [C] is equal to zero and the equilibrium 

concentration of complexes is given by 

[𝐶]

[𝐴][𝐵]
=

𝐾ass

𝐾dis
= 𝜈exp (−

𝐸ass−𝐸dis

𝑘𝑇
)     (3) 

where concentrations [A]=[A0] –[C] and [B]=[B0]-[C], 𝑣 is the association volume (on the order 

of the pervaded volume per associating pair), Ei are activation energies of forward and reverse 

reactions (Supplementary Figure 1), k is the Boltzmann constant and T is the absolute 

temperature. In a special case, when initial concentrations of A and B are the same, we can 

introduce a parameter, degree of conversion p=[C]/[A0], and simplify Supplementary Equation 3  

𝑝

(1−𝑝)2 = [𝐴0]𝜈exp (
Δ𝜀

𝑘𝑇
)      (4) 

where e=Edis-Eass, energy difference between associated and dissociated states. The presence of 

the associating bonds results in effective attractive second virial coefficient between associating 

groups. In the presence of associating groups, the free energy of the polymer system responsible 

for the interactions between monomers has the following form
1
  

𝐹int

𝑘𝑇
=

𝑉

𝜈
[

𝜙2

2
+

𝜙3

6
+

𝜙

𝑚
(

𝑝

2
+ ln(1 − 𝑝))] ≈

𝑉

𝜈
[(1 −

1

𝑚2 exp (
Δ𝜀

𝑘𝑇
))

𝜙2

2
+

𝜙3

6
,       for p<1    (5) 

where m is the average number of monomers between associating groups and  is polymer 

volume fraction in the solution. Thus during network polymerization process, as concentration of 

associating groups increases, the system will phase separate into polymer-rich and polymer-poor 

phases. This is manifested as a sample becoming milky. 

 The degree of polymerization of the polymeric strands between associating groups is 

controlled by the degree of conversion, p. For a polymeric strand to have n unassociated groups 

in a row starting with bonded pair, the probability is equal to 
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𝑤(𝑛) =  (1 − 𝑝)𝑛𝑝         (6) 

where factor (1-p) describes probability that associating group is unassociated and p is a 

probability for associating groups to form a bond. Note that the probability w(n) is normalized 

such that  

∑ (1 − 𝑝)𝑛𝑝 =
𝑝

1−(1−𝑝)
= 1∞

𝑛=0      (7) 

In substituting the upper limit for the sum by infinity, we have assumed that the number of 

associating groups per polymeric strand nst>>1. The average number of monomers in a section 

of polymeric strand with n unassociated groups is equal to 

〈𝑁〉 = 𝑚 ∑ (𝑛 + 1)(1 − 𝑝)𝑛𝑝 =
𝑚

𝑝
∞
𝑛=0     (8) 

Probability w(n) can be expressed in terms of concentration c(n) of polymeric strands with n-

open stickers 

𝑤(𝑛) = 𝑐(𝑛)/ ∑ 𝑐(𝑛)∞
𝑛=0       (9) 

Total concentration of n-mers can be found by taking into account its relation with total 

monomer concentration  

 𝜌 = ∑ (𝑛 + 1)𝑚𝑐(𝑛) = 𝑚(∑ 𝑐(𝑠)) ∑ (𝑛 + 1)(1 − 𝑝)𝑛𝑝 = (∑ 𝑐(𝑠))𝑚/𝑝∞
𝑠=0

∞
𝑛=0

∞
𝑠=0

∞
𝑛=0  (10) 

We can use Supplementary Equation 10 to rewrite concentration of n-mers, c(n) in terms of 

probability w(n) and total monomer density 

𝑐(𝑛) =
𝜌

𝑚
𝑝2(1 − 𝑝)𝑛       (11) 

Below we will use this distribution function to calculate stress evolution in polydisperse 

associating network. 

2. Dynamics of associating networks 

 In polymeric networks, dynamics of strands forming a network on the time scales t 

smaller than the strands’ Rouse time,𝜏R = 𝜏0𝑁2 (N - degree of polymerization (DP) of network 

strands and 0 - characteristic monomer time), is that of a melt of polymer chains with the same 

DP. At these time scales, the dynamics of polymer chains is not influenced by crosslinks and 

network modulus decays with time as, 𝐸(𝑡) ∝ 𝜌𝑘𝑇(
𝜏0

𝑡
)1/2 , where  is a monomer number 

density. Here we consider N<Ne (entanglement DP). However, at the time scales t larger than the 

Rouse time of polymeric strands the network response is pure elastic with Young’s modulus 

𝐸 ∝ 𝜌𝑘𝑇/𝑁. We will use the following approximation for time dependent Young’s modulus to 

describe network relaxation: 

𝐸(𝑡) ≈ 3𝜌𝑘𝑇 {
(𝜏0 𝑡⁄ )1/2, 𝑓𝑜𝑟   𝜏0 < 𝑡 ≤ 𝜏R = 𝜏0𝑁2

1 𝑁⁄ ,          𝑓𝑜𝑟   𝜏R ≤ 𝑡
            (12) 
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Using Boltzmann superposition principle,
2
  we can describe stress evolution in polymeric 

networks undergoing uniaxial elongation at a constant strain rate 𝜀̇ as  

𝜎(𝑡) = ∫ 𝐸(𝑡 − 𝑡′)𝑑𝜀(𝑡′)
𝑡

0
= ∫ 𝐸(𝑡 − 𝑡′)𝑑𝑡′ = 𝜀̇ ∫ 𝐸(∆𝑡)𝑑∆𝑡

𝑡

0

𝑡

0
 (13) 

For the stress relaxation modulus given by Supplementary Equation 12, integration of 

Supplementary Equation S13 results in   

𝜎(𝑡) ≈ 2𝐸0𝜀̇𝜏0
1 2⁄

𝑡1 2⁄ ,         𝑓𝑜𝑟 𝑡 < 𝜏R    (14) 

where we introduced 𝐸0 = 3𝑘𝑇 𝑣⁄ . For experiments at constant strain rate, we substitute 𝑡 = 𝜀/𝜀̇ 

into Supplementary Equation 14 to express t as a function of strain eas  

𝜎(𝜀) ≈ 2𝐸0𝜏0
1 2⁄

𝜀̇1 2⁄ 𝜀1/2,      𝑓𝑜𝑟 𝑡 < 𝜏R                     (15) 

In the opposite limit, t > 𝜏R, 

𝜎(𝜀) ≈ 2𝐸0𝜀̇𝜏R 𝑁⁄ + 𝐸0𝜀̇(𝑡 − 𝜏R) 𝑁 ≈ 𝐸0𝜀 𝑁⁄⁄ , 𝑓𝑜𝑟 𝑡 ≥ 𝜏R (16) 

Polydisperse networks have a distribution of the Rouse times such that crossover from the 

unentangled melt to network relaxation regime depends on chain’s DP. For associating networks, 

it depends on DP of polymeric strands between associating bonds. Note that in addition to Rouse 

time of such strands there is also another time scale 𝜏l (life-time of the bond), which determines 

the characteristic time scale when associating network begins to change bond arrangements. 

Here we assume that the dissociation process of physical crosslinks is a limiting step of the 

association/dissociation reaction (see Supplementary Figure. 1) such that 𝜏l = 𝜏𝑎exp (𝐸𝑎 𝑘𝑇⁄ ), 

where Ea=Edis. On the time scales t < 𝜏l, each associating bond is considered to be permanent 

bond. In this case, the concentration of strands with n-open associating groups is given by 

Supplementary Equation 11.  Here we assume that there is time scale separation 𝜏l > 𝜏R = 𝜏0𝑁2 

(Rouse time of the polymeric strands of the chemical network). In a polydisperse sample at time 

t, chains can be divided into two groups: (i) the chains with DP = N, such that their Rouse time 

𝜏0𝑁2 > 𝑡, these chains contribution to the system modulus is time dependent; (ii) chains with 

𝜏0𝑁2 ≤ 𝑡, which at these time scales provide a pure elastic contribution to network modulus. In 

the Rouse regime, network relaxation dynamics is controlled by sections of the chains containing 

l monomers for which 𝑡 ≈ 𝜏k ≈ 𝜏0𝑙2 ⇒ 𝑙 ≈ (𝑡 𝜏0)⁄ 1 2⁄
. In average, each such section stores 

energy on the order of thermal energy kT.  Therefore, contribution of n-mers with concentration 

c(n) to system modulus will be 𝑐(𝑛)𝑚(𝑛 + 1) 𝑙⁄ ≈ 𝑐(𝑛)𝑚(𝑛 + 1)(𝜏0 𝑡)⁄ 1 2⁄
. Combining 

contributions from all n-mers we have 

𝜎(𝑡) = 3𝜀̇𝑘𝑇 ∑ 𝑐(𝑛)𝑚(𝑛 + 1) ∫ 𝑑∆𝑡(𝜏0 ∆𝑡)⁄ 1 2⁄𝑡

0
∞
𝑛=√𝑡 𝜏𝑚⁄ −1

+ 3𝜀̇𝑘𝑇 ∑ 𝑐(𝑛)𝑚(𝑛 +
√𝑡 𝜏𝑚⁄ −1

𝑛=0

1) ∫ 𝑑∆𝑡(𝜏0 ∆𝑡)⁄ 1 2⁄𝜏(𝑛)

0
+ 3𝜀̇𝑘𝑇 ∑ 𝑐(𝑛) ∫ 𝑑∆𝑡, 𝑓𝑜𝑟 𝑡 < 𝜏l

𝑡

𝜏(𝑛)

√𝑡 𝜏𝑚⁄ −1

𝑛=0              (17) 
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where we introduced 𝜏m = 𝜏0𝑚2 and 𝜏(𝑛) = 𝜏m(𝑛 + 1)2. After substitution of Supplementary 

Equation 11 for c(n), Supplementary Equation 17 transforms into 

𝜎(𝑡) = 2𝐸0𝜀̇√𝜏0𝑡 ∑ (𝑛 + 1)𝑝2(1 − 𝑝)𝑛

∞

𝑛=√𝑡 𝜏m⁄ −1

+ 2𝐸0𝜀̇√𝜏0𝜏𝑚 ∑ (𝑛 + 1)2𝑝2(1 − 𝑝)𝑛

√𝑡 𝜏m⁄ −1

𝑛=0

 

+𝐸0𝜀̇𝑚−1 ∑ 𝑝2(1 − 𝑝)𝑛(𝑡 − 𝜏𝑚(𝑛 + 1)2)
√𝑡 𝜏m⁄ −1

𝑛=0 , 𝑓𝑜𝑟 𝑡 < 𝜏l    (18) 

In the case when conversion p < 1, we can substitute summation in Supplementary Equation 18 

by integration  

𝜎(𝑡) ≈ 2𝐸0𝜀̇√𝜏0𝑡 ∫ 𝑑𝑛𝑛〈𝑛〉−2exp (−𝑛 〈𝑛〉)⁄ + 2𝐸0𝜀̇√𝜏0𝜏m ∫ 𝑑𝑛𝑛2〈𝑛〉−2exp (−𝑛 〈𝑛〉)⁄
√𝑡 𝜏m⁄

0

∞

√𝑡 𝜏m⁄

 

+𝐸0𝜀̇𝑚−1 ∫ 𝑑𝑛〈𝑛〉−2 exp(−𝑛 〈𝑛〉)(𝑡 − 𝜏m𝑛2⁄ )
√𝑡 𝜏m⁄

0
, 𝑓𝑜𝑟  𝑡 < 𝜏l                        (19) 

where < 𝑛 >= 1 𝑝⁄ . Performing integration in Supplementary Equation 19, we obtain  

𝜎(𝑡) ≈
𝐸0𝑝

𝑚
𝜀̇𝜏̃𝑅(𝑡 𝜏̃R⁄ + 2(1 − exp(−√𝑡 𝜏̃R⁄ ))), for  𝑡 < 𝜏l  (20) 

Thus the stress evolution in a polydisperse network depends on the Rouse relaxation time of an 

average strand between associated bonds with relaxation time 𝜏̃R = 𝜏0𝑚2 𝑝2⁄   . 

On the time scales 𝑡 ≥ 𝜏l, associating bonds cannot be considered as permanent 

crosslinks and c(n) of n-mers begins to change. To describe this regime, we use Tobolsky’s dual 

network idea
3
, assuming that network modulus changes with the degree of conversation p. This 

also means that relaxation of a combined strand after dissociation takes place is much faster than 

the occurrence of the next bond dissociation event (time scale separation assumption, 𝜏l > 𝜏R). 

Survival probability of an associated bond over time interval t is (1-t/𝜏l). For a bond to 

survive over time interval t, the probability is estimated as T(𝑡) = ∏ (1 − ∆𝑡i/𝜏l) ≈𝑖

exp (− ∑
∆𝑡i

𝜏l
𝑖 ) ≈ exp (−𝑡/𝜏l). T(t) gives a transition probability, therefore evolution of the 

conversion over time is also an exponential function of time 𝑝(𝑡) ≈ 𝑝𝑒𝑥𝑝(− 𝑡 𝜏l⁄ ).  Taking this 

into account, we can rewrite Supplementary Equation 17 as follows 

𝜎(𝑡) = 𝜎(𝑡c) + 3𝜀̇𝑘𝑇 ∑ ∫ 𝑐(𝑛, 𝑡)𝑑∆𝑡

𝑡

𝑡c

∞

0

≈ 𝜎(𝑡𝑐) + 3𝜀̇𝑘𝑇
𝜌

𝑚
∫ ∑ 𝑝(∆𝑡)2(1 − 𝑝(∆𝑡))

𝑛
𝑑∆𝑡

∞

𝑛=0

𝑡

𝑡c

 

≈ 𝜎(𝑡c) + 𝐸0𝑚−1 ∫ 𝑝𝑒𝑥𝑝(− ∆𝑡 𝜏l⁄ )𝑑∆𝑡

𝑡

𝑡c
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≈ 𝜎(𝑡c) +
𝐸0𝜀̇𝑝𝜏l

𝑚
𝑒𝑥𝑝(− 𝑡c 𝜏l⁄ ) (1 − exp (−

𝑡−𝑡c

𝜏l
)) , 𝑓𝑜𝑟 𝑡 ≥ 𝑡c                                     (21) 

where tc is a reference time, 𝜏̃𝑅 < 𝑡c < 𝜏l , which provides continuity of the stress given by 

Supplementary Equations 20 and 21. On average, each polymeric strand of the degree of 

polymerization N between crosslinks has Np/m associated reversible bonds at time ≈ 𝜏l . For all 

these bonds to dissociate would require time on the order of 𝜏l𝑁𝑝 𝑚⁄ . At these time scales the 

network modulus approaches that of a chemical network consisting of strands with degree of 

polymerization between crosslinks N.  

𝜎(𝑡)

𝜀
≈ 𝐸0

𝜏𝑙𝑝

𝑚

𝜀̇

𝜀
≈

𝐸0

𝑁
⟹ 𝑡 ≈ 𝜏l

𝑁𝑝

𝑚
     (22) 

In Supplementary Figure 2, we summarize our results for the time average Young’s 

modulus 

〈𝐸(𝑡)〉 =
𝜎(𝑡)

𝜀
=

𝜀̇

𝜀
∫ 𝐸(𝜏)𝑑𝜏

𝑡

0
=

1

𝑡
∫ 𝐸(𝜏)𝑑𝜏

𝑡

0
    (23) 

in different network deformation regimes. At time scales 𝜏0 ≤ 𝑡 ≤ 𝜏̃R = 𝜏0 (𝑚 𝑝⁄ )2 , the Rouse 

modes of polymeric strands between associating bonds determine time dependence of the time 

average network Young’s modulus (“Rouse” Regime). 

〈𝐸(𝑡)〉 = 𝐸0(𝜏0 𝑡⁄ )
1 2⁄

 ,     for   𝜏0 ≤ 𝑡 ≤ 𝜏0 (𝑚 𝑝⁄ )2   (24) 

 

In this time interval, behavior of reversible network is similar to that of a chemical network. 

Crossover to “Temporary Network” regime takes place at 𝑡 ≈ 𝜏0 (𝑚 𝑝⁄ )2 . In this regime 

associated bonds could be considered as permanent crosslinks since their life time 𝜏l is longer 

than an experimental time scale t. The network modulus in this regime is  

〈𝐸(𝑡)〉 ≈ 𝐸0 𝑝 𝑚⁄  ,     for   𝜏0 (𝑚 𝑝⁄ )2 ≤ 𝑡 ≤ 𝜏l   (25) 

Temporary network of associating bonds start to evolve at 𝑡 ≈ 𝜏l. In the time interval 𝑡 > 𝜏l, the 

network modulus is determined by breaking of the associated bonds, which effectively results in 

increase of the degree of polymerization of the temporary network strands (“Bond Breaking” 

regime). The network modulus in this regime is inversely proportional to time 

〈𝐸(𝑡)〉 ≈ 𝐸0
𝜏l𝑝

𝑚
𝑡−1,     for  𝜏l ≤ 𝑡 ≤ 𝜏l𝑁 𝑝 𝑚⁄    (26) 

Finally, all unrelaxed associated bonds disappear at time scales on the order of 𝜏l𝑁 𝑝 𝑚⁄  and 

network elastic response is that of a chemical network (“Chemical Network” regime) with 

modulus   

〈𝐸(𝑡)〉 ≈ 𝐸0 𝑁⁄ ,     for 𝜏l𝑁 𝑝 𝑚⁄ ≤ 𝑡            (27) 

Increasing temperature will result in decrease of the degree of conversion p (see Supplementary 

Equation 4) and decrease of the life time 𝜏l of the associated bonds, 𝜏l = 𝜏𝑎exp (𝐸𝑎 𝑘𝑇)⁄ . This is 

manifested in Supplementary Figure 2 as shift of the location of the crossover to the temporary 

plateau regime with value of the network modulus E0p/m down and to the right along the dashed 

line describing time dependence of modulus of chemical networks of the same degree of 
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polymerization between crosslinks. At the same time, the location of the “Associating Liquid” 

regime with 〈𝐸(𝑡)〉 ∝ 𝑡−1 will shift to the left since the life time of the associating bond will 

decrease exponentially with temperature. A new time dependent regime will appear when the life 

time of the bond l becomes shorter than the Rouse time of the polymeric strand between 

crosslinks R (see Supplementary Figure. 2b). For such temperature range, after bond 

dissociation the relaxation of the enlarged strands between associated bonds will follow a Rouse-

like relaxation with a characteristic time 𝜏l (“Sticky Rouse” regime). Therefore, at time interval 

𝜏l ≤ 𝑡 ≤ 𝜏𝑅 the time dependent network modulus has the following form 

〈𝐸(𝑡)〉 ≈ 𝐸0 𝑝 𝑚⁄ (
𝜏l

𝑡
)

1 2⁄

, for 𝜏l ≤ 𝑡 ≤ 𝜏R         (28) 

In order to demonstrate how the time average Young’s modulus depends on strain and strain rate, 

it is convenient to rewrite Supplementary Equation 15 as 

〈𝐸(𝜀)〉 =
𝜎(𝜀)

𝜀
≅ 𝐸0𝜏0

1/2 (
𝜀

𝜀̇
)

−1/2

                                                              (29) 

This expression suggests that all stress-strain curves shown in Supplementary Figure. 5a can be 

collapsed on one universal curve by plotting 𝜎 𝜀⁄  vs 𝜀 𝜀̇⁄  (Supplementary Figure 5b), which is 

consistent with the predictions of the Rouse model (Supplementary Equation 24). 

3. Two state model of associating network relaxation 

Analysis of the associating networks dynamics shows that in a wide time range, we can 

approximate network properties by a two network model, with one being formed by physical   

crosslinks with a life time 𝜏l and plateau modulus Ep, and another network being network of 

permanent chemical crosslinks with modulus Ec. In this approximation, we may neglect Rouse-

like relaxation of polymeric strands between physical crosslinks which occur at short time scales. 

Phenomenologically, dynamics of such system can be described by “standard linear solid” model 

(Supplementary Figure. 13) of elastic spring with modulus 𝐸c  connected in parallel with a 

Maxwell element having 𝐸m = 𝐸p − 𝐸c and 𝜂m = 𝐸m𝜏l. Since for our networks the ratio of the 

Young’s modulus of the physical network and that of a chemical network is about 10
3
, the small 

deformation of the physical network strands could result in large deformations of the strands of 

chemical network. For this reason, to account for this large deformation of the chemical network, 

we will use a general stress-strain relation  

       𝜎c(𝑡) =
𝐸c

3
(𝜆(𝑡)2 − 𝜆(𝑡)−1)             (30) 

where 𝜆(𝑡) = 1 + 𝜀(𝑡) - deformation ratio. 

To analyze dynamics of the shape recovery process, we consider a strain relaxation from 

a state with initial strain e0. Since the external stress is zero, we can write  

𝐸c

3
(𝜆(𝑡)2 − 𝜆(𝑡)−1) = −𝐸m𝜀𝑚

𝑠 (𝑡)     (31) 
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Differentiating both sides of the Supplementary Equation 31 with respect to time, we obtain the 

rate of deformation of the Maxwell spring 

𝜀𝑚̇
𝑠 (𝑡) ≈ −

𝐸c

𝐸m
𝜀̇(𝑡)       (32) 

Partitioning of deformation in the Maxwell element between spring and dashpot (see 

Supplementary Figure 13) allows us to write the following expression for the whole sample rate 

of deformation  

𝜀̇(𝑡) = 𝜀ṁ
s (𝑡) + 𝜀ṁ

d (𝑡) ≈ −
𝐸c

𝐸m
𝜀̇(𝑡) + 𝜀ṁ

d (𝑡)    (33) 

Taking into account a Maxwell element  

𝜂m𝜀ṁ
d (𝑡) = 𝐸m𝜀m

s (𝑡) = −
𝐸c

3
(𝜆(𝑡)2 − 𝜆(𝑡)−1)   (34) 

we obtain  

𝜀̇(𝑡) = −
𝐸c𝐸m

3(𝐸c+𝐸m)𝜂m
(𝜆(𝑡)2 − 𝜆(𝑡)−1)    (35) 

Internal stress in a sample is manifested in exponential shift of the life time of the physical bond. 

In the framework of the Eyring’s assumption of the relaxation time shift due to internal stress, 

one can write deformation dependent life time  

𝜏(𝜆(𝑡)) ≈ 𝜏l𝑒𝑥𝑝 (−
𝑣𝐸c(𝜆(𝑡)2−𝜆(𝑡)−1)

3𝑘𝑇
)     (36) 

where v is the activation volume. Substitution of this equation into Supplementary Equation 35 

results in 

𝜀̇(𝑡) = −
(𝜆(𝑡)2−𝜆(𝑡)−1)

3𝜏r
𝑒𝑥𝑝(𝛽(𝜆(𝑡)2 − 𝜆(𝑡)−1))   (37) 

Here we introduce the effective relaxation time for strain recovery 𝜏r(𝑡p) and dimensionless 

parameter 𝛽 = 𝑣𝐸c/(3𝑘𝑇) , where 𝑡p  – programming time,  𝐸c~𝑁−1  and 𝐸p~ 𝑝 𝑚⁄  are the 

plateau moduli of the chemical and physical networks, respectively. 

Analysis of the experimental data for strain recovery rate (Fig.3a) indicates that the 

characteristic recovery time 𝜏r increases with programing time 𝑡p and then levels off as shown in 

Supplementary Figure 14. The shape recovery is driven by the strained chemical network (𝐸c) 

and resisted by a fraction 𝜙(𝑡p) of re-associated physical cross-links, which increase with 𝑡𝑝. 

Note that in general case 𝜙(𝑡p) is also a function of the programming sample deformation ep. 

Therefore, the recovery time in a standard linear solid model can be written as 𝜏r(𝑡p) =
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𝜙(𝑡p)𝐸p

𝐸c
𝜏l, which accounts for rearrangement of the physical cross-links during the programming 

stage. In the limit of large 𝑡p, the recovery time 𝜏r =
𝐸p

𝐸c
𝜏l ≅

𝑁𝑝

𝑚
𝜏l corresponds to the time 

𝑁𝑝

𝑚
𝜏l 

required for complete re-association of the physical network during its deformation 

(Supplementary Figure 7f).  

We can apply this two state model to study stress relaxation in reversible network. In this 

case a constant strain e0 is applied to the sample. Using relation for the rate of change of strain in 

the Maxwell element  

𝜀0̇ = 0 = 𝜀ḋ(𝑡) + 𝜀ṡ(𝑡) → 𝜀ḋ(𝑡) = −𝜀ṡ(𝑡)    (38) 

we can rewrite the force balance condition for spring and dashpot as follows 

𝜎̇m(𝑡) = −
1

𝜏l
𝜎𝑚(𝑡)𝑒𝑥𝑝 (

3𝛽𝜎m(𝑡)

𝐸c
)     (39) 

In Supplementary Equation 39, exponential term accounts for the stress effect on the associating 

bond life time. Integration of Supplementary Equation 39 gives 

𝐸1 (
3𝛽𝜎m(0)

𝐸c
) − 𝐸1 (

3𝛽𝜎m(𝑡)

𝐸c
) =

𝑡

𝜏l
     (40) 

where function 𝐸1(𝑥) = ∫
𝑒−𝑡

𝑡
𝑑𝑡

∞

𝑥
. Note that instead of solving Supplementary Equation 40 for 

m(t) it is more convenient to look at t as a function of stress. Time dependence of the stress in 

the Maxwell element is 𝜎m(𝑡) = 𝜎(𝑡) − 𝜎∞.  

 

Supplementary Methods 

Materials 

N,N-dimethylacrylamide (DMAA), methacrylic acid (MAAc), ammonium persulfate (APS), 

and N,N,N’N’-tetramethylethylenediamine (TEMED) were used as received (Sigma-Aldrich) 

without further purification. Water was produced by distillation and deionization to a resistance 

of 18 MΩ cm, followed by filtration through a 0.2 µm filter to remove particulate matter. 

 Hydrogel preparation    

All hydrogels were prepared by a one-step copolymerization of DMAA and MAAc with 

different molar ratios, while the total monomer concentration is 33 wt%. A mixed aqueous 

solution of DMAA and MAAc was degassed with N2 for 30 min. Then initiator APS and 

accelerator TEMED were added separately to the solution and the solution was then transferred 

to a glass mold with a PDMS spacer for polymerization at room temperature under N2 

atmosphere for 48h. 

The dimethylamide group in DMAA is known to be a strong hydrogen-bond acceptor, while 

methacrylic acid is a potent hydrogen-bond donor. The copolymerization of DMAA and MAAc 
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leads to multiple intermolecular hydrogen bonding, which causes formation of polymer-rich 

aggregates stabilized by the hydrophobic interactions due to the presence of the α-methyl groups 

of PMAA. Besides, the polymerization process produces a low fraction of chemical cross-links 

due to the chain transfer reaction in copolymers with DMAA.
4
 Thus, it yields a dual network 

hydrogel comprised of a dense H-bonded network integrated with a loose chemical network.  

Dynamic Mechanical Analysis 

The mechanical test was carried out on a Dynamic Mechanical Analysis (RSA-G2, TA 

Instrument) with an Immersion Clamps. Samples with a thickness of 1.6 mm were cut into 

dogbone shape (DIN 53504-S3, 2 mm in width with an initial length of 12 mm).  In order to 

avoid the water evaporation during test, all of the mechanical tests were performed in silicone oil. 

Samples were stretched at a certain strain rate at a defined temperature. For shape programming, 

sample was stretched to a strain of 50% at a certain strain rate and then holding the sample at 50% 

strain for a defined time. Next, the sample was set to isoforce mode where the external force was 

set to be constantly at zero and then record the strain change over the recovery process. 
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