Supplementary Information

Bst1 is required for *Candida albicans* infecting host via facilitating cell wall anchorage of Glycosylphosphatidyl inositol anchored proteins

Wei Liu¹⁺, Zui Zou²⁺, Xin Huang³, Hui Shen⁴, Li Juan He⁵, Si Min Chen¹, Li Ping Li¹, Lan Yan⁵, Shi Qun Zhang¹, Jun Dong Zhang¹, Zheng Xu⁵, Guo Tong Xu¹, Mao Mao An^{1*}, Yuan Ying Jiang^{1, 5*}

* Corresponding author: jiangyy@tongji.edu.cn (YYJ); anmaomao@tongji.edu.cn (MMA)

[†] These authors contributed equally to this work.

¹ Shanghai Tenth People's Hospital, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, P.R. China

² Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, 200433, P.R. China

³ Department of dermatology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, P.R. China

⁴ Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, P.R. China

⁵ Research and Development Center of New Drug, School of Pharmacy, Second Military Medical University, Shanghai, 200092, P.R. China

Supplementary Figure S1. Construction of *bst1* null mutant and the complemented strain.

(A) Two-step homologous recombination by a fusion-PCR-based strategy for *BST1* gene deletion and SAT1 flipping method for *BST1*-complemented strain construction from parent strain SN152. Arrows represent orientation and approximate position of primers used for PCR (Supplementary Table S2). (**B**, **C**) The genotype of C. albicans strains were confirmed by PCR. The genomic DNA of SN152, *bst1* Δ/Δ mutant and *BST1*-complemented strains were amplified with the indicated primers.

Supplementary Figure S2. Construction of BST1 (S202A) mutant strain.

(A) SAT1 flipping method to substitute serine 202 of *BST1* gene by alanine in bst1 Δ/Δ mutant strain. (B, C) The genotype of C. albicans strains were confirmed by PCR. The genomic DNA of *BST1* (S202A)-SAT1, *bst1\Delta/\Delta*, and *BST1* (S202A) mutant strains were amplified with the indicated primers.

Supplementary Figure S3. Construction of C. albicans strains expressing hemagglutinin (HA)-tag fused Als1p.

(A) Homologous recombination by a fusion-PCR-based strategy for one allele of *ALS1* deletion and SAT1 flipping method for inserting HA-tag to another allele of ALS1 gene in *bst1* Δ/Δ mutant and parent strain SN152. (B, C) The genotype of C. albicans strains were confirmed by PCR. The genomic DNA of *als1* $\Delta/ALS1$, SN152, *bst1* Δ/Δ *als1* $\Delta/ALS1$, *bst1* Δ/Δ , *bst1* Δ/Δ *als1* $\Delta/ALS1$ -HA and *als1* $\Delta/ALS1$ -HA strains were amplified with the indicated primers.

Supplementary Figure S4. Filamentation of *bst1* mutants was defective in different media favoring hyphal growth.

Exponentially growing C. albicans parent (SN152), *BST1*-complemented (*bst1* Δ / Δ ::*BST1*), bst1 null mutant (*bst1* Δ / Δ), and *BST1* S202A mutant yeast cells were incubated in RPMI 1640 medium with 10% fetal bovine serum for 3 hours, or grew on spider and lee's agar media for 5 days at 37 °C. Representative photographs were shown.

Supplementary Figure S5. Fluorescence intensity analysis of data shown in Figure 4B-G by the LAS AF Lite program (version 2.1.1, build 4443; Leica Microsystems).

(A-C). Fluorescence intensity of three cell wall carbohydrate layers from exponentially growing parent (SN152), *BST1*-complemented (*bst1* Δ/Δ ::*BST1*), *bst1* Δ/Δ null mutant (*bst1* Δ/Δ), and *BST1* S202A strains, which were stained with ConA-FITC to visualize mannan (A), β -glucan antibody to visualize β -glucan (B) and CFW to visualize chitin (C).

(**D-F**). Fluorescence intensity of three cell wall carbohydrate layers from the hyphal forms of parent (SN152), *BST1*-complemented (*bst1* Δ/Δ ::*BST1*), *bst1* Δ/Δ null mutant (*bst1* Δ/Δ), and *BST1* S202A mutant strains, which were stained with ConA-FITC to visualize mannan (D), β -glucan antibody to visualize β -glucan (E) and CFW to visualize chitin (F).

Supplementary Figure S6. Cell surface properties of C. albicans strains and their resistance to stress.

(A) Flocculation of parent (SN152), *BST1*-complemented (*bst1* Δ/Δ ::*BST1*), *bst1* null mutant (*bst1* Δ/Δ) strains in RPMI 1640 medium for 10 minutes. Representative photographs were shown. (B) Cell surface hydrophobicity (CSH) of SN152, *bst1* Δ/Δ ::*BST1*, and *bst1* Δ/Δ strains. The CSH was measured by the percentage of cells in the hydrophobic phase. **, P<0.01 (Error bars indicate SD. One-way ANOVA with Bonferroni post-test). (C) Resistance of SN152, *bst1* Δ/Δ ::*BST1*, and *bst1* Δ/Δ strains to various indicated stresses. Serial 5-fold dilutions of the C. albicans strains were inoculated on YPD plates supplemented with different stresses.

Supplementary Figure S7. Inflammatory responses in macrophage stimulated by *C. albicans BST1* (S202A) mutant.

Thioglycollate-elicited peritoneal macrophages were stimulated with parent strain SN152, *BST1* (S202A) mutant (MOI=5) for 6 hours. TNF- α , IL-6, IL-12p40 and IL-10 in supernatants of thioglycollate-elicited peritoneal macrophages were measured by ELISA. Mock, unstimulated macrophages. Data represent mean (±SD) of triplicates of one representive experiment of three. **, P <0.01 (Two-way ANOVA with Bonferroni post-test).

Supplementary Figure S8. The molecular phylogeny and alignment of inositol deacylase in different species.

(A) Fourteen homologous inositol deacylase in different species are displayed according to the phylogenic tree representation. The conserved domains of sequences was analyzed by the MEGA4 program. (B) Multi-protein sequence alignment highlighting the protein differences between C. albicans and mammalian cells.

Supplementary Figure S9. Growth curves of *bst1* null mutant (*bst1* Δ/Δ) and *BST1* S202A mutant strains.

Supplementary Table S1. C. albicans strains and plasmids used in this

study		

Strain	Relevant genotype	reference	
C. albicans			
SN152	arg4∆ /arg4∆ leu2∆/leu2∆ his1∆/his1∆ URA3/ura3∆∷imm ⁴³⁴ IRO1/iro1∆ ∷imm ⁴³⁴	Noble et al., 2005	
bst14 /A	$bst1\Delta$::HIS1/ $bst1\Delta$::LEU2 arg4 Δ /arg4 Δ URA3/ura3 Δ ::imm ⁴³⁴ IRO1/iro1 Δ ::imm ⁴³⁴	This study	
bst14/4::BST1	bst1∆::HIS1/ bst1 ∆::BST1::SAT1-FLIP arg4∆ /arg4∆ URA3/ura3∆::imm ⁴³⁴ IRO1/iro1∆ ::imm ⁴³⁴	This study	
als1∆/ALS1	als1 Δ ::ARG4 / ALS1 leu2 Δ /leu2 Δ his1 Δ /his1 Δ URA3/ura3 Δ ::imm ⁴³⁴ IRO1/iro1 Δ ::imm ⁴³⁴	This study	
bst1∆ /∆ als1∆/ALS1-HA	bst14::HIS1/bst14::LEU2 ALS1::HA::SAT1-FLIP/als14::ARG4 URA3/ura34::imm ⁴³⁴ IRO1/iro14 ::imm ⁴³⁴	This study	
BST1 (S202A)	$bst1 \Delta :: LEU2 / bst1 \Delta :: BST1(S202A) :: SAT1 - FLIP$ BST1 (S202A) $arg4 \Delta / arg4 \Delta URA3 / ura3 \Delta :: imm^{434}$ IRO1/iro1 $\Delta :: imm^{434}$		
Plasmid			
pSN40	C. maltosa LEU2	Noble et al., 2005	
pSN52	C. dubliniensis HIS1	Noble et al., 2005	
pSN69	C. dubliniensis ARG4	Noble et al., 2005	
pSFS2	<i>FRT-MAL2p-CaFLP-ACT1-CaSAT1-FRT</i> into pSFI1	Reuss et al., 2004	

Primer	Sequence	Application
oB1	ATGCCCAACGAGAATGAAAA	BST1 specific
oB2	CTTGAAGCCGCAATTCTAGC	BST1 specific
oB3	TGGCAACACCACATTCTGAT	BST1 specific
oB4	TGGTGTTGGACCCAATTCTT	BST1 specific
		BST1 upstream
UDI	CCCCAATCCACTACTIOTCC	Check
		BST1
dB2	AAAAACCGCTTCCACTGATG	downstream
		Check
oLY364	TCAAGCCCTGTAGCTCCATT	HIS1 check
oLY365	TCCGCTCATTTGATTTCCTC	HIS1 check
oLY366	GCACGCCGTTACAGGAGTTA	LEU2 check
oLY367	GAAGTTGGTGACGCGATTGT	LEU2 check
		for <i>HIS1</i> ,
DO	ccgctgctaggcgccgtgACCAGTGTGATGGATATCTGC	LEU2,
P2	(Noble et al., 2005)	and ARG4
		cassettes
		for <i>HIS1</i> ,
D5	ccagggatgcggccgctgacAGCTCGGATCCACTAGTAACG	LEU2,
PS	(Noble et al., 2005)	and ARG4
		cassettes
		Upstream
<i>BST1</i> P1	TGTATTTCCCCCATGGTGTT	region of BST1
		for disruption
		Upstream
<i>BST1</i> P3	cacggcgcgcctagcagcggATGGTTGGGTGGCTTTAGTG	region of BST1
		for disruption
		Downstream
<i>BST1</i> P4	gtcagcggccgcatccctgcAACCCTCCACCCACACACTA	region of BST1
		for disruption
		Downstream
<i>BST1</i> P6	CCAGGTGAATTGGCTAAACA	region of BST1
		for disruption
		Upstream
		region of BST1
		with Apa I
BST1 huF	GCC GGGCCC TCCCCAGATATTTCTCCTTTTTC	restriction
		sequence to
		reconstituted
		BST1
BST1 huR	GCC CTCGAG CTAGTGTGTGGGTGGAGGGT	with Xho I

Supplementary Table S2. Primers used in this study

		restriction
		sequence to
		reconstituted
		BST1
		Downstream
		region of BST1
		with Sac II
BST1 hdF	GCC CCGCGG AACCCTCCACCCACACACTA	restriction
		sequence to
		reconstituted
		BST1
		Downstream
		region of BST1
		with Sac I
BST1 hdR	GCC GAGCTC TTTTGAAACAAACTCACCCAGA	restriction
		sequence to
		reconstituted
		BST1
		BST1 upstream
JB1	CCACCAAGGAAAGCTGGTAG	Check
		BST1
JB3	GCTTCCACTGATGGTGCTAA	downstream
		Check
JB2	ATGGTTGGGTGGCTTTAGTG	BST1 Check
BST1(S202A)		BST1 with
R1	AGTCCACCCATTGCATGACC	S202A mutation
BST1(S202A)		BST1 with
F2	GGTCATGCAATGGGTGGACT	S202A mutation
		ALS1 upstream
uA1	TTGCAAAAATTTCCAACTGGT	Check for one
		allele disruption
		ALS1
14.0	CAACTTGCTTTGCTCTGCAC	downstream
dA2		Check for one
		allele disruption
ARG4 JR	CTCAATAAAACAATCCTGGGT	ARG4 check
ARG4 JF	TTCAAAATAGGTATCACGGGC	ARG4 check
		One region of
	GCC GGTACC AGCACAACCTCCGATTTGTC	ALS1 with Kpn
		I restriction
ALSI uF		sequence to add
		HA-tag into
		ALSI
ALSI uR	TTGGTTGTCTCCATTGCTTG	One region of

		ALS1 to add HA-tag into ALS1
<i>ALSI</i> HA F	CAAGCAATGGAGACAACCAA atcttttacccatacgatgttcct	One region of HA tag add HA-tag into ALS1
<i>ALSI</i> HA R	GCC CTCGAG ctgagcagcgtaatctggaa	One region of HA tag with Xho I restriction sequence to add HA-tag into <i>ALSI</i>
ALSI dF	GCC CCGCGG AGTGGTACTCATGATTCACAATCT	One region of ALS1 with Sac II restriction sequence to add HA-tag into ALS1
<i>ALSI</i> dR	GCC GAGCTC TGGAGATTTACCACCATTTTCA	One region of <i>ALS1</i> with Sac I restriction sequence to add HA-tag into ALS1
oA1	ATTTGCCACAACCACCAG	Check for HA-tagged <i>ALS1</i>
oA2	TCATTTGAAGCACTGGCAAC	Check for HA-tagged ALS1
JZR1	GCACGCTAGACAAATTCTTCC	Check for HA-tagged ALS1
JZF2	CAGCTCCTTGGCATACGATT	Check for HA-tagged ALS1

Supplementary Table S3. Twenty one GPI-APs with significantly

Proteins	Function	Relative fold change	
	Function	$(bst1\Delta/\Delta \text{ versus parent strain})$	
Pga4	1,3-beta-glucanosyltransferase	0.012	
Cht2	Hydrolysis of N-acetyl-beta-D-glucosaminide	0.009	
	(1->4)-beta-linkages in chitin and chitodextrins.		
Utr2	Extracellular glycosidase	0.036	
Dfg5	Endo-1,6-alpha-D-mannosidase	0.078	
Ecm33	Cell wall integrity and for the correct assembly of	0.014	
	the mannoprotein		
Dcw1	Endo-1,6-alpha-D-mannosidase	0	
Ccw14	Cell wall structure	0.009	
Ihd1	Cell wall organization, hyphal growth	0	
Crh11	Extracellular glycosidase.	0.038	
Als1	Mediates both yeast-to-host tissue adherence and	0.013	
	yeast aggregation		
Pga24/Ywp1	Anti-adhesive and promotes dispersal of yeast	0.283	
	forms		
Pga29/Rhd3	Hyphae development	0.049	
Sod4	Cell surface superoxide dismutase [Cu-Zn] 4	0	
Sod5	Cell surface superoxide dismutase [Cu-Zn] 5	0.047	
Plb5	Phospholipase activity	0.147	
Carp9	Secreted aspartic peptidases	0	
Csa	Heme-binding	0.024	
Rbt5	Heme-iron utilization	0.005	
Pga52	Unknown	0.123	
Pga30	Unknown	0.015	
Pga45	Unknown	0	
Kre9**	Beta-1,6-glucan biosynthesis	0.740	

impaired cell wall anchorage in BST1-deficient C. albicans strains

Kre9*, a cell wall non-GPI anchored protein was shown as a control.

Supplemental Experimental Procedures

Strain construction

The C. albicans strains and plasmids used in these studies and their relevant genotypes are listed in Supplementary Table S1. All strains were maintained on SDA agar (1% peptone, 4% dextrose, and 1.8% agar) plates and re-cultured at least monthly from -80°C stock. For use in the experiments, yeast-phase cells of the various strains were grown in YPD broth overnight in a rotary shaker at 30°C.

Construction of *CaBST1*-deleted and complemented strains (Supplementary Fig. S1). *CaBST1* gene was knocked out in the parental strain SN152 by using a two-step homologous recombination approach based on a fusion-PCR-based strategy¹ (Supplementary Fig. S1). Plasmid pSN52 and pSN40 were used as templates to amplify the auxotrophic markers *Candida dubliniensis* HIS1 or *Candida maltosa* LEU2 by PCR with primer P2 and P5. 3' and 5'flanking homologous sequences were amplified by PCR with primer pairs *BST1P1-BST1P3* and *BST1P4-BST1* P6 (Supplementary Table S2), using strain SN152 genomic DNA as templates. The knockout cassettes (*bst1* Δ ::*C.d*.HIS1 and *bst1* Δ ::*C.m*.LEU2) containing auxotrophic markers and homologous sequences were generated by fusion-PCR with primers *BST1P1* and *BST1P6* (Table S2). PCR products were used to transform parent strain SN152 using yeast transformation II kit (Clotech) following the manufacturer's protocol and selected on synthetic defined (SD) medium (2% glucose, 0.67% yeast nitrogen base and 0.2% amino acid mix) lacking histidine for the first allele deletion of the *CaBST1*, and lacking both histidine and leucine for the second allele deletion of the *CaBST1*. To construct the *BST1*-complemented strain (*bst1* Δ/Δ ::*BST1*), ApaI-XhoI fragment containing 5' homologous sequence and the entire *BST1* coding sequence, and SacII-SacI fragment containing 3' homologous fragment were cloned into the plasmid pSFS2A, respectively². The resulting plasmid, containing SAT1-flipper cassette was linearized by digestion with SacI and transformed into *bst1* Δ/Δ using yeast transformation II kit (Clotech), as described by the manufacturer, and selected on YPD agar (1% yeast extract, 2% peptone, 2% dextrose, and 1.8% agar) plates with 200 µg/ml nourseothricin. The genotype of *bst1* null mutant (*bst1* Δ/Δ) and *BST1*-complemented strains were confirmed by PCR with primers uB1-oLY366, uB1-oLY364, dB2-oLY365, dB2-oLY367, oB1-oB2 and oB3-oB4 listed in Table S2 (Supplementary Fig. S1B and C).

BST1 S202A mutant was constructed in *bst1* Δ/Δ mutant strain (Supplementary Fig. S2A). ApaI-XhoI fragment containing 5' homologous sequences and the *BST1* coding sequence with the putative catalytic serine 202 substituted by alanine, and SacII-SacI fragment containing 3' homologous fragment were cloned into the plasmid pSFS2A, respectively². The resulting plasmid, containing SAT1-flipper cassette was linearized by digestion with SacI and transformed into *bst1* Δ/Δ using yeast transformation II kit (Clotech) following the manufacturer's protocol and selected on YPD agar plates with 200 µg/ml nourseothricin. The genotype of *BST1*(S202A) mutants were confirmed by PCR with primers JB1-oLY366, JB1-oLY364, JB3-oLY365, JB3-oLY367, JB1- JB2 and JZF2-JB3 listed in Supplementary Table S2 (Supplementary Fig. S2B and C).

Strains expressed hemagglutinin (HA)-tag fused Als1p ($bst1\Delta/\Delta als1\Delta/ALS1$ -HA and $als1\Delta/ALS1$ -HA) were generated in strain $bst1\Delta/\Delta$ and parent strain SN152 (Supplementary Fig. S3A). One allele of ALS1 was replaced by auxotrophic markers C. dubliniensis ARG4 by homologous recombination approach based on a fusion-PCR-based strategy as described above. A 102 bp fragment containing three repeated sequence of hemagglutinin (HA)-tag was inserted into the ALS1 gene allele by SAT1 flipping method. The resulting plasmid was linearized by digestion with SacI and transformed into the above strain $bst1\Delta/\Delta$ and SN152 with one allele of ALS1 deletion. The genotype of $bst1\Delta/\Delta$ als1 Δ /ALS1-HA and $als1\Delta/ALS1$ -HA strains were confirmed by PCR with primers uA1-uAG1, dA2-dAG2, oA1-ASA1 and oA2-ASA2 listed in Supplementary Table S2 (Supplementary Fig S3B and C).

Supplementary Reference List:

- 1 Noble, S. M. & Johnson, A. D. Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen *Candida albicans*. *Eukaryotic cell* **4**, 298-309, doi:10.1128/EC.4.2.298-309.2005 (2005).
- 2 Reuss, O., Vik, A., Kolter, R. & Morschhauser, J. The SAT1 flipper, an optimized tool for gene disruption in *Candida albicans. Gene* **341**, 119-127, doi:10.1016/j.gene.2004.06.021 (2004).