

4 Supplementary Figure 1: Biophysical analysis of the CD36:CIDRα2.8 complex

- 5 Analysis of the formation of a 1:1 complex of CD36 bound to the MCvar1
- 6 CIDR α 2.8 domain by SEC-MALLS.
- 7

9 Supplementary Figure 2: Stereo image of electron density

- 10 A stereo image of the electron density for residues 148-160 of CD36. This is
- 11 representative of the quality of electron density throughout the complex and
- 12 contains the important residue, F153, which lies at the interface with the MC179
- 13 CDIRα2.8 domain.

15 Supplementary Figure 3: Structural comparison of CIDRα domain structures

- 16 **A.** The structure of the MCvar1 CIDR α 2.8 domain determined in this study in
- 17 comparison with the previously determined 'open' conformation of the MCvar1
- 18 CIDRα domain, obtained in a pH 4.2 crystallisation condition (pdb:3C64). **B.**
- 19 Comparison of the MCvar1 CIDRα2.8 structure, determined in this study with
- 20 previous CIDRα1 (pdb:4V3D) and CIDRγ (pdb:2YK0) structures reveals these to
- 21 adopt a compact structure with a core three α -helical bundle and the insertion
- 22 linking the second and third helices packing against the rest of the domain.

24 Supplementary Figure 4: Analysis of CD36 and its homologues

25 An alignment of the sequence of CD36 with those of its homologues SR-BI and 26 LIMP2. Above the alignment is the secondary structure of CD36, derived from 27 the crystal structure. Orange and pink circles show residues that interact with 28 the two fatty acids while green squares show those that interact with the MCvar1 29 CIDR α 2.8 domain. Orange, green and purple lines show the positions of the 30 disulphide bonds of CD36; and dotted lines show the disulphide bonds of LIMP-31 2. Green hexagons show the positions of N-linked glycans on CD36 (above the 32 sequence) and LIMP-2 (below the sequence) while the purple hexagon shows a 33 position predicted to be glycosylated on CD36 but without a glycan.

37

38

39 Supplementary Figure 5: Fatty acid identification by mass spectrometry

40 Fatty acids were chloroform extracted from the protein used for crystallisation

41 and were converted to their corresponding trimethylsilyl esters and analysed by

42 GC/MS. Masses were consistent with the identification of the most prevalent

- 44
- 45
- 46
- 47
- ...
- 48

⁴³ species as palmitic acid and stearic acid.

Supplementary Figure 6: Analysis of crystal packing

A. In crystals of CD36 bound to the MCvar1 CIDRα2.8 domain, two CIDRα2.8 domains (dark and light pink) interact with each CD36 (blue). B. A close up of site 1 with CD36 residue F153 in orange and CIDRα2.8 residue F660 in green. **C.** A close up of site 2 with CIDR α 2.8 residue D680 in green. **D**. The expression of mutant forms of the CIDRα2.8 domain with N-linked glycosylation sites introduced in site 1 (F660N:Q662T) and site 2 (D680N:N682T). A small fraction of the site 1 mutant was glycosylated while the majority of the site 2 mutant was glycosylated. **E.** Surface plasmon resonance showing binding of CD36 and CIDR α mutants. Introduction of a partial site 1 glycan and the F153A mutation of CD36 both disrupted binding, while a glycan inserted in site 2 did not affect binding. This confirms that site 1 represents the interaction that occurs in solution while site 2 represents a crystal contact.

Supplementary Figure 7: Mutagenesis to assess the role of regions of the CIDRα domain in CD36 binding

72 Surface plasmon resonance analysis of the binding of MCvar1 CIDRα2.8 to CD36

and the effect of mutations on the interaction. The F660N:Q662T and

74 D680N:N682T mutants introduce glycosylation sites into potential binding

75 interfaces. The F153A mutation of CD36 and the F645A and L664 mutations of

76 MCvar1 CIDRα2.8 disrupted the hydrophobic core of the binding interface. The

77 Q643A, D650A and E672A mutations disrupted additional hydrogen bonds

formed between CD36 and MCvar1 CIDRα2.8. Each set of binding curves shows a

series of two-fold dilutions from a starting concentration of 400nM.

83 Supplementary Figure 8: Conservation across the CD36-binding CIDRα2-6 84 domains

- 85 Sequences of 2386 CIDRα2-6 domains were aligned and a sequence logo
- 86 generated of residues equivalent to those found in the MCvar1 CIDR α 2.8 domain.
- 87 Deletions (><) and insertions (<>) are indicated and underneath the sequence is
- a representation of the secondary structure. The green, purple and orange lines
- show the positions of disulphide bonds and the stars above the logo denote the
- 90 residues that directly interact with CD36.
- 91

92

93

95 Supplementary Figure 9: Analysis of the binding of CIDR a 2-6 variants to
96 CD36

97 Surface plasmon analysis of the binding of different CIDRα2-6 subclasses to

- 98 CD36. Each set of binding curves shows a series of two-fold dilutions from a
- 99 starting concentration of 400nM.

Supplementary Figure 10: The effect of the F153A mutation of CD36 on the binding of CIDRα2-6 variants

- 106 Surface plasmon analysis of the binding of equivalent concentrations of different
- 107 CIDRα2-6 subclasses to CD36 (black) and the F153A mutant of CD36 (blue). In

108 each case, the concentration of CIDR α domain was 400nM.

Supplementary Table 1: The interactions between CD36 ectodomain with

113 CIDRα2.8

CD36		MCvar1:CIDRα2.8			
Residue	Group	Residue	Group	Interaction	
TYR149	side chain	PRO652	side chain	Hydrophobic	
ASN151	side chain NH2	GLN648	side chain CO	Hydrogen bond	
ASN151	side chain NH2	ASP650	side chain	Hydrogen bond	
GLN152	side chain NH2	ASN583	side chain CO	Hydrogen bond	
PHE153	side chain	TRY582	side chain	Hydrophobic	
PHE153	side chain	ASN583	back bone	Hydrophobic	
PHE153	side chain	PHE586	side chain	Hydrophobic	
PHE153	side chain	TRP587	side chain	Hydrophobic	
PHE153	side chain	PHE645	side chain	Hydrophobic	
PHE153	side chain	PHE660	side chain	Hydrophobic	
PHE153	side chain	LEU664	side chain	Hydrophobic	
VAL154	side chain	PRO652	side chain	Hydrophobic	
VAL154	side chain	PHE660	side chain	Hydrophobic	
MET156	side chain	TRP587	side chain	Hydrophobic	
MET156	side chain	ILE664	side chain	Hydrophobic	
MET156	side chain	ILE673	side chain	Hydrophobic	
ILE157	side chain	TRP655	side chain	Hydrophobic	
ILE157	side chain	PHE660	side chain	Hydrophobic	
ILE157	side chain	THR663	side chain	Hydrophobic	
ILE157	side chain	LEU664	side chain	Hydrophobic	
ILE157	side chain	LEU669	side chain	Hydrophobic	
ASN159	side chain NH2	ASP676	side chain	Hydrogen bond	
SER160	side chain	GLU672	side chain	Hydrogen bond	
PRO191	backbone O	TRP655	side chain NH	Hydrogen bond	
TYR192	side chain	VAL154	side chain	Hydrophobic	
TYR192	side chain	TRP655	side chain	Hydrophobic	
TYR192	side chain	PRO652	side chain	Hydrophobic	
PRO193	side chain	TRP655	back bone	Hydrophobic	
PRO193	side chain	ASP654	back bone	Hydrophobic	
LYS398	side chain NH3	ASN583	side chain CO	Hydrogen bond	
GLN400	side chain NH2	ASP676	side chain	Hydrogen bond	

Supplementary Table 2: Primers used in cloning

	CD36 ectodomain(35-439)			
Primer 1	ctccaccggtcagaagacaattaaaaagcaag			
Primer 2	gtggggtaccctattagtttatttttccagttacttgacttc			
MCvar1 CIDRα2.8				
Primer 1	ctccaccggtgaggacaagattatgagctac			
Primer 2	gtggggtacc tggtgggcatgtgtc			

121 Primers for cloning CD36 and MC179var1 CIDRα2.8:

123 Primers for mutagenesis:

CD36_F153A
catatctatcaaaatcaagccgttcaaatgatc
gatcatttgaacggcttgattttgatagatatg
MCvar1 CIDRα2.8_ F645A
aagatcaaggaccacgccagaaagcagaaggac
gtccttctgctttctggcgtggtccttgatctt
MCvar1 CIDRα2.8_Q648A
gaccacttcagaaaggccaaggacatccccaag
cttggggatgtccttggcctttctgaagtggtc
MCvar1 CIDRα2.8_ D650A
ttcagaaagcagaaggccatccccaaggactgg
ccagtccttggggatggccttctgctttctgaa
MCvar1 CIDRα2.8_ L664A
gactttctgcagaccgccctgatgaaggacctg
caggtccttcatcagggcggtctgcagaaagtc
MCvar1 CIDRα2.8_ E672A
aaggacctgctgctggccatcatccaggacacc
ggtgtcctggatgatggccagcagcaggtcctt
MCvar1 CIDRα2.8_ F660N:Q662T
tggacccacgacgacaacctgaccaccctgctgatgaag
cttcatcagcagggtggtcaggttgtcgtcgtgggtcca
MCvar1 CIDRα2.8_ D680N:N682T
caggacacctacggcaacgccaccgagatcaagcggatc
gatccgcttgatctcggtggcgttgccgtaggtgtcctg

130	Supplementary Table 3: CIDR domain sequences for recombinant proteins
131	
132	> CIDRα2.8 MCvar1
133	EDKIMSYNAFFWMWVHDMLIDSIKWRDEHGRCINKDKGKTCIKGCNKKCICFQKWVE
134	QKKTEWGKIKDHFRKQKDIPKDWTHDDFLQTLLMKDLLLEIIQDTYGDANEIKRIEA
135	LLEQAGVGGIDFAALAGLYTKGFVAEKDTTIDKLLQHEQKEADKCLKTHTDDTCPPQ
136	EDRSVARS
137	
138	>CIDRα6 IT4var12
139	PWCGLKKQADGTWKRLYENDPQCPIKPKYEPPKGEEPTEIDVLYTGKENKDIIVKLR
140	EFCKTDGNTGFKNEEWNCYYQVGNDKCVLENGEELGGEKKVKDYDNFLMFWVAHMLK
141	DSIEWRSKLSNCLKSDKKTCIKKCNDNCKCYEKWIGKKKVEWTQIKKHFDKQTDFQG
142	WGRYFVLETVLEGDQFFTDITKAYGDAREIVHIQEMLQKKKEQVLHEDASNMKTIID
143	ETTDHETKEAKŐCIANHKDNUC
144	
145	>CIDRα5 IT4var14
146	PWCGIEEQKDGKWKRINDHSACKEEELYTPKENAKYTKINVLTSGEGHEDIAKRLKE
14/	FCTKTQNGGGGSDDCGGNSDSSLCEPWQCYQPDQLEKVGGGEVDDKLKGAGGLC1FE
140	
149	CLYVAICVENTKANDALADOLYI DAI EDREKEEYEDGI DIRE CLYVAICVENTKANDALADOLYI DAI EDREKEEYEDGI DIRE
150	QEMKUMI KENKQUKUKI KDDEDADD V DFDHEKEEAEDCDDI HE
151	
152	
155	
154	
155	FFINSILEMENDSLEWKDKENICINNKIGKCKKVCKNPCECIKKWIEKKKIEEKIK
157	
158	
150	Γ
160	
161	
162	VKSYNVFFWDWVYHMI.HDSI.EWRERI.NSCINNAKSONCKNNKCNRECGCFAKWVVKK
163	KDEWDKIKDHFNKOENIGONVGFIEFNHYGVLEGVLDKDELLKNIKDTHADAKDIER
164	IDKMLQQAGVVGGGRGGENNTIIDKFLQEEERFAKDCQQKQEEC
165	
166	>CIDR α 2.4 IT4var33
167	PLCGLGMOEPPWNPKKDTDCEDRGIKTFDDRNSTPINLLVKDVTGTSIVEKLGGLCG
168	NGAKKNIOTWKCRFESSONYYCVLONDKKNTPOOEIESFNSLFWHWITEMLKDSIDW
169	RKEHENCINNNNTCKKGCKSKCECFEKWVKRMKEEWKQVLEVYDKQPDFKEVFTPYF
170	TLGYLLKEYFTKIKAPYEEVESVQEFIKEMEQIIDENSNNINATKENNSITKFLQHE
171	EGIATECKKTHNEEKC
172	
173	>CIDRα2.9 IT4var45
174	PWCGVNGTKGNWTPKNDDDCKPGNEYKNYENTQIPILTGDKTKSEIVERYRKFCKNN
175	GKNGANGREGGVGGSENGAASNSDNATTGYCGTNNNDKDPSLCEKWTCYYKKKEKND
176	GKKAINFCVLQDDKVGKSQEKSMHYNSFFWDWVYHMLHDSLDWRKQLGRCINKKEET
177	KCIGSCNKKCECFAKWVGHKQQEWEQIKKHFLKQDDIGQETNCDPMVTLEILLDIDE
178	LLKNIKDTHANADDIDRIQNMLQQAGFDGGVAALVGRCTEGFVAEKDTTIDKFLEKE
179	LQEAEKCLETHKEKC
180	
181	>CIDRα2.7 IT4var61
182	PWCGVKRNGGGWKAKSDGECAKEKKTYKKKNITEIPVLTPDKEKHNILQKYENFCKN
183	SDGNNGDQIKNWQCYYEEKDESDNDGDSNICVLQNENIGKKEEKSMPYHPFFWKWVT
104	EMLIDSMYWRKELKRCINKETKACKNGCKNNCDCYKRWVEEKKKEWGQ1KTHFNTQE

185 186 187	DMREDIGENTDPGIILAALLNIEDLFENIKDTYGDVKEIKDINQMLEKENEENEGTA GADSKKKNTIDLMINHEQKDAQKCVTNNPDKDC
188	>CIDRα3.2 HB3var13
189	PLCGVKKEKGTWVRKDSMNDCPRIKLYKPINDKVGTPINFLYSGDGQTEIAEKLKKF
190	CRTENGSDGSSSARANGASGDKNGGSGSQELYQYWKCYQIGDLQKVREGEDDEDDGQ
191	YDQEVENAGGLCILQKTNGKENVNKQKTSHEIQKTFNPFFYYWVVHMLKDSIHWRTE
192	KIKSCINNTNELKACKNNKKCNSDCDCFKRWVKQKGKEWGQIKVHFKTQDIRGKVVN
195	GNIVVSFFDDHDELLEGVDDKGDLLESLQEAYGNAEDIKHIKKLLQEIDVVGGGEHK
195	
196	>CIDR α 3 5 IT4var15
197	PGCGVELIGNEWKEKNKGECKGGKRYNIPKGTKHNVIPVLSFGDEHKEIIEKIEOFC
198	AESNSDSSKLTEQWKCYYGDKEYEVCTLENRNKSEEDPEEIQKTFHNFFYFWIRHLL
199	NDSIEWRDKINNCIEKAKEGKCKNECKTDCGCFQRWIGKKKEEWGEIKKHFKTQDGF
200	SIFGNNYDFVLENVLNIDELFQDITEAYGNSQKIQGIKDTLAKKKTQAADDATEQKN
201	TIDLLFEYDSEEAEKCKKIQEEC
202	CIDD-2 1 MAL (D1 252
203	
204	TEHINHDIWKCHYENTDNDNCILONENTGSEKOKIMPEDAFFFI.WI.TOMI.DDSIEWR
206	KKLKTCINNEKPTNCIRGCKKPCECFERWVEQKEEEWISIEKHFDKQRDISEEERYI
207	TLEYILNEFFMDKIEKAYGIEKSKELKEKLKSNKGHGIIRDTEHSQDAIKILLEHEL
208	EDAKKCTETHNDEKC
209	
210	>CIDRα3.1 DD2var01
211	PYCGVKKVNNGGSSNEWEEKNNGKCKSGKLYEPKPDKEGTTITILKSGKGHDDIEEK
212	LINKFCDEKINGDIIINSGGSGIGGSGGGNSGKQELIEEWKCIKGEDVVKVGHDEDDEED ENKFCDEKINGDIINSGGSGIGGSGGGNSGKQELIEEWKCIKGEDVVKVGHDEDDEED
213	KKLORCLONGNRIKCGNNKCNNDCECFKRWITOKKDEWGKIVOHFKTONIKGRGGSD
215	NTAELIPFDHDYVLQYNLQEEFLKGDSEDASEEKSENSLDAEEAEELKHLREIIESE
216	DNNQEASVGGGVTEQKNIMDKLLNYEKDEADLCLEIH
217	
217	
218	
219	
220	
221	
222	
223	