Cyclin-dependent kinase 5 stabilizes hypoxia-inducible factor-1a: a novel approach for inhibiting angiogenesis in hepatocellular carcinoma

Supplementary Material

Methods

Transfection procedures

HUVECs were either transfected with a Targefect/Virofect mixture used for siRNA or a Targefect/Peptide Enhancer mixture used for plasmids (Targeting Systems, USA) or by electroporation using Nucleofector[™]II (Amaxa, Germany) according to the manufacturer's protocol. HUH7 cells were transfected with DharmaFECT Transfection reagent (Thermo Scientific, USA) following the manufacturer's instructions.

CDK5 siRNA: CDK5 was silenced with an equal mixture of two different ON-TARGETplus CDK5 siRNAs (J-003239-09 and J-003239-10; Dharmacon, USA). ON-TARGETplus Non-targeting (nt) siRNA (D-001810-01; Dharmacon, USA) served as a control.

CDK5 shRNA: In HUH7 cells CDK5 silencing by shRNA was performed as previously described ¹. Cdk5 MISSION® shRNA Lentiviral Transduction Particles (Vector: pLKO.1-puro; SHCLNV-NM_004935; Clone ID: (1) TRCN0000021465, (2) TRCN0000021466, (3) TRCN0000021467, (4) TRCN0000194974, (5) TRCN0000195513; Sigma-Aldrich, Germany) and MISSION® pLKO.1-puro Non-Mammalian shRNA Control Transduction Particles (Sigma-Aldrich SHC002V, Germany) were used according to the manufacturer's protocol.

CDK5 overexpression: HUVECs and HUH7 cells were cotransfected with 3 µg of CDK5-HA (Addgene 1872, van den Heuvel S. ²) and P35 (Addgene 1347, Tsai Li-Huei), respectively. Transfection of 3 µg of pCMV-Neo-Bam (Addgene, 16440, Vogelstein B. ³) served as a control.

S687A and S687E HA-HIF-1 α : 3 µg of Alanine-mutated HIF (S687A) and glutamate-mutated HIF (S687E), generated by site-directed mutagenesis, were transfected into HUH7 cells followed by an incubation time of 24 h. Wildtype HIF-1 α (wt, Addgene 18949, Kaelin W. ⁴) and an empty pcDNA3 (Invitrogen, Germany) vector served as control (3 µg, 24 h). For Luciferase assay 0.3 µg of either pcDNA3, wt, S687A or S687E vector were used for transfection.

pGL4.27(HIF-REluc2P), pGL4.74(hRluc/TK): HUH7 cells were transfected with 3 µg of the firefly luciferase containing vector pGL4.27(HIF-REluc2P) (Promega, USA) and with 0.3 µg of the renilla luciferase containing vector pGL4.74(hRluc/TK) (Promega E692A, USA).

Western Blot

Membranes were incubated with primary antibodies overnight at 4°C (Actin, Santa Cruz sc-1615, 1:1000; β -Tubulin, Cell Signaling 2146, 1:1000; CDK5 Invitrogen AHZ0492, 1:1000; HA Covance MMS-101R, 1:1000; HIF-1 α , BD Biosciences 610958, 1:750, Src , Cell Signaling 2110, 1:1000, phospho-Src (Tyr 416) Cell Signaling 6943, 1:1000). Dependent on the detection system the membranes were incubated with different secondary antibodies (2 h, RT): HRP-coupled (anti-mouse, Biozol, BZL07046; anti-rabbit, Dianova, 111-035-144) antibodies were used for chemiluminescence detection by x-ray films whereas IR-fluorescent Reagent conjugated antibodies (Invitrogen, A – 21057, A – 21109; LI-COR IRDye®, 926-32210D, 926-32211D) were used to detect the bands via fluorescence signal at the Odyssey Infrared Imaging system version 2.1 (LI-COR Biosciences, USA).

Mass spectrometry

Mass spectrometry of in vitro phosphorylated HIF-1a: 250 ng of HIF-1a (50 ng/µl) was reduced for 30 minutes with 0.5 µl 45 mM dithiothreitol and alkylated with 0.5 µl 100 mM iodoacetamide for 30 minutes in the dark. Tryptic digestion was done overnight with 5 ng trypsin (Promega,

Madison, USA) at 37°C. LC-MS/MS analysis was performed on a NanoLC Ultra system (Eksigent, CA, USA) coupled to an LTQ Orbitrap XL mass analyzer (Thermo Fisher Scientific, CA, USA). As mobile phase A 0.1% formic acid and as mobile phase B 84% acetonitrile/0.1% formic acid was used. The samples were injected onto a C18 trap column (C18 PepMap100, Particle size: 5 µm, 100 Å, Column size: 300 µm x 5 mm, Dionex, CA, USA) and separated on a reversed phase column (Reprosil-Pur C18 AQ, 3 µm; 150 mm x 75 µm, Dr. Maisch, Germany) at flow rate of 280 nl/min using two consecutive gradients (1 to 30% B in 120 minutes and 30 to 60% B in 10 minutes). Mass spectra were acquired in cycles of one MS Orbitrap scan followed by five data dependent ion trap MS/MS scans (CID, collision energy of 35%). MS data were analyzed with MASCOT 2.4 (Matrix Science, UK) using the human subset of the SwissProt Database and the following parameters: a) "Fixed modifications": Carbamidomethyl (C) b) Variable modifications: Oxidation (M); c) Decoy database: checked, d) Peptide charge: 2+ and 3+; e) Peptide tol. ±: 10 ppm; f) MS/MS tol. ±: 0.8 Da.

Mass spectrometry of immunoprecipitated HIF-1a: The gel slice containing HIF-1a was equilibrated twice with 50 mM NH₄HCO₃ for 10 minutes. For reduction and alkylation the gel slice was incubated in 45 mM dithiothreitol (30 minutes, 55 °C), followed by an incubation in 100 mM iodoacetamide (30 minutes). Tryptic digestion was performed overnight at 37°C with 100 ng porcine trypsin (Promega, WI, USA). Peptides were further extracted from the gel slices with 50 mM NH₄HCO₃ followed by a 80% acetonitrile wash. Chromatography was performed with an Ettan MDLC system (GE Healthcare, Germany) coupled to an LTQ ion trap mass spectrometer (Thermo Fisher Scientific, CA, USA). Injection was performed as described for the *in vitro* phosphorylated HIF-1a and separation on a Reprosil-Pur C18 AQ column (3 μ m; 150 mm x 75 μ m, Dr. Maisch, Germany) applying consecutive gradients from 1 to 30% B in 80 minutes and 30 to 60% B in 30 minutes at a flow rate of 280 nl/min (solvent A: 0.1% formic acid in water, solvent B: 0.1% formic acid in 84% acetonitrile). MS acquisition was performed in cycles of one MS-scan followed by three data dependent ion trap MS/MS scans (collision energy 35%). MS

3

data were analyzed as described for the *in vitro* phosphorylated HIF-1 α sample with the difference that a peptide tolerance of ±: 2 Da was used.

Image Analysis

Fluorescence signals were quantified using ImageJ and integrated density of fluorescence detected in the nucleus compared to total fluorescence. For the analysis 8-bit pictures of CDK5 and Hoechst channels were used. Integrated density was first measured of the CDK5 channel representing the total fluorescence intensity. Hoechst Channel was then adjusted by applying Auto Threshold (Method Triangle) and colours inverted. By Image Calculator Hoechst Channel was substracted from CDK5 channel resulting in a new channel showing only the fluorescence signal in the nuclei of the cells. Integrated density was measured again and percentages of fluorescence intensity in the nuclei compared to total fluorescence calculated.

Supplementary Fig. 1: The protein level of HIF-1 α also correlates with CDK5 protein level in human hepatic sinusoidal endothelial cells. (A) Immunoblots of lysates from HHSECs for HIF-1 α and β -Tubulin. Cells were pretreated with roscovitine (30 µM) for 30 minutes, followed by DFO stimulation (100 µM) for 6 h. The quantification of the corresponding immunoblot is shown. One Way ANOVA on Newman-Keuls, **P* < .05, n = 4. (B) Immunoblots of lysates from HHSECs for HIF-1 α and β -Tubulin. CDK5 was transiently down-regulated by siRNA. Cells were stimulated with DFO (100 µM) for 6 h. The quantification of the corresponding immunoblot is shown. One Way ANOVA on Newman-Keuls, **P* < .05, n = 4.

Supplementary Fig. 2: Knockdown level of two independent HUH7 CDK5 knockdown clones. Immunoblot for CDK5 and HIF-1α of lysates from HUH7 cells, either transfected with nt shRNA or *CDK5* shRNA is shown. The CDK5 knockdown level of CDK5 knockdown clone 1 and 4 in comparison to the control is summarized in the graph.

Supplementary Fig. 3: MS/MS spectrum and fragmentation table of peptide

 $_{683}$ SHPRSPNVLSVALSQR $_{698}$ of HIF-1 α . The phosphorylated serines within the peptide sequence are underlined and marked as bold. Detected b ions are highlighted in red and y ions are highlighted in blue. Further signals which could be assigned to other fragment types are highlighted in green.

Supplementary Fig.4: MS/MS spectrum and fragmentation table of peptide

 $_{683}$ SHPR**S**PNVLSVALSQR₆₉₈ of HIF-1 α . The phosphorylated serine within the peptide sequence is underlined and marked as bold. Detected b ions are highlighted in red and y ions are highlighted in blue. Further signals which could be assigned to other types of fragments are highlighted in green.

<u>S687A:</u>

CLUSTAL 2.1 multiple sequence alignment

1	ΨT	TCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGA	60
	XL1A1	AGCAGA ******	7
	WT XL1A1	GCTCTCTGGCTAACTAGAGAACCCACTGCTTACTGGCTTATCGAAATTAATACGACTCAC GCTCTCTGGCTAACTAGAGAACCCACTGCTTACTGGCTTATCGAAATTAATACGACTCAC *********************************	120 67
	WT XL1A1	TATAGGGAGACCCAAGCTTACCATGGCCTACCCNTACGACGTGCCCGACTACGCCTCCCT TATAGGGAGACCCAAGCTTACCATGGCCTACCCCTACGACGTGCCCGACTACGCCTCCCT ******************************	180 127
	WT XL1A1	CGGATCCGCCACCATGGAGGGCGCCGCCGCGCGCGCGACGACAAGAAAAAGATAAGTTCTGA CGGATCCGCCACCATGGAGGGCGCCGCGGCGCGCGCGACGACAAGAAAAGATAAGTTCTGA ************************************	240 187
	WT XL1A1	ACGTCGAAAAGAAAAGTCTCGAGATGCAGCCAGATCTCGGCGAAGTAAAGAATCTGAAGT ACGTCGAAAAGAAAA	300 247
	WT XL1A1	TTTTTATGAGCTTGCTCATCAGTTGCCACTTCCACATAATGTGAGTTCGCATCTTGATAA TTTTTATGAGCTTGCTCATCAGTTGCCACTTCCACATAATGTGAGTTCGCATCTTGATAA ********************************	360 307
	WT XL1A1	GGCCTCTGTGATGAGGCTTACCATCAGCTATTTGCGTGTGAGGAAACTTCTGGATGCTGG GGCCTCTGTGATGAGGCTTACCATCAGCTATTTGCGTGTGAGGAAACTTCTGGATGCTGG *********************************	420 367
	WT XL1A1	TGATTTGGATATTGAAGATGACATGAAAGCACAGATGAATTGCTTTTATTTGAAAGCCTT TGATTTGGATATTGAAGATGACATGAAAGCACAGATGAATTGCTTTTATTTGAAAGCCTT **********************************	480 427
	WT XL1A1	GGATGGTTTTGTTATGGTTCTCACAGATGATGGTGACATGATTTACATTTCTGATAATGT GGATGGTTTTGTTATGGTTCTCACAGATGATGGTGACATGATTTACATTTCTGATAATGT ******************************	540 487
	WT XL1A1	GAACAAATACATGGGATTAACTCAGTTTGAACTAACTGGACACAGTGTGTTTGATTTTAC GAACAAATACATGGGATTAACTCAGTTTGAACTAACTGGACACAGTGTGTTTGATTTTAC ********************************	600 547
1	WT XL1A1	TCATCCATGTGACCATGAGGAAATGAGAGAAATGCTTACACACAGAAATGGCCTTGTGAA TCATCCATGTGACCATGAGGAAATGAGAGAAATGCTTACACACAGAAATGGCCTTGTGAA ********************************	660 607
	WT XL1A1	AAAGGGTAAAGAACAAAAACACACAGCGAAGCTTTTTTCTCAGAATGAAGTGTACCCTAAC AAAGGGTAAAGAACAAAAACACACAGCGAAGCTTTTTTCTCAGAATGAAGTGTACCCTAAC ******************************	720 667
	WT XL1A1	TAGCCGAGGAAGAACTATGAACATAAAGTCTGCAACATGGAAGGTATTGCACTGCACAGG TAGCCGAGGAAGAACTATGAACATAAAGTCTGCAACATGGAAGGTATTGCACTGCACAGG ********************************	780 727
	WT XL1A1	CCACATTCACGTATATGATACCAACAGTAACCAACCTCAGTGTGGGTATAAGAAACCACC CCACATTCACGTATATGATACCAACAGTAACCAACCTCAGTGTGGGTATAAGAAACCACC ****************************	840 787
	WT XL1A1	TATGACCTGCTTGGTGCTGATTTGTGAACCCATTCCTCACCCATCAAATATTGAAATTCC TATGACCTGCTTGGTGCTGATTTGTGAACCCATTCCTCACCCATCAAATATTGAAATTCC	900 847

WT XL1A1	TTTAGATAGCAAGACTTTCCTCAGTCGACACAGCCTGGATATGAAATTTTCTTATTGTGA TTTAGATAGCAAGACTTTCCTCAGTCGACACAGCCTGGATATGAAATTTTCTTATTGTGA ******************************	960 907
WT XL1A1	TGAAAGAATTACCGAATTGATGGGATATGAGCCAGAAGAACTTTTAGGCCGCTCAATTTA TGAAAGAATTACCGAATTGATGGGATATGAGCCAGAAGAACTTTTAGGCCGCTCAATTTA ******	1020 967
WT XL1A1	TGAATATTATCATGCTTTTGGACTCTGATCATCTGACCAAAACTCATCATGATATGTTTAC TGAATATTATCATGCTTTGGACTCTGATCATCTGACCAAAACTCATCATGATATGTTTAC **********************************	1080 1027
WT XL1A1	TAAAGGACAAGTCACCACAGGACAGTACAGGATGCTTGCCAAAAGAGGTGGATATGTCTG TAAAGGACAAGTCACCACAGGACAGTACAGGATGCTTGCCAAAAGAGGTGGATATGTCTG *********************************	1140 1087
WT XL1A1	GGTTGAAACTCAAGCAACTGTCATATATAACACCAAGAATTCTCAACCACAGTGCATTGT GGTTGAAACTCAAGCAACTGTCATATATAACACCAAGAATTCTCAACCACAGTGCATTGT **********************************	1200 1147
WT XL1A1	ATGTGTGAATTACGTTGTGAGTGGTATTATTCAGCACGACTTGATTTTCTCCCCTTCAACA ATGTGTGAATTACGTTGTGAGTGGTATTATTCAGCACGACTTGATTTTCTCCCCTTCAACA *********************	1260 1207
WT XL1A1	AACAGAATGTGTCCTTAAACCGGTTGAATCTTCAGATATGAAAATGACTCAGCTATTCAC AACAGAATGTGTCCTTAAACCGGTTGAATCTTCAGATATGAAAATGACTCAGCTATTCAC *******************************	1320 1267
WT XL1A1	CAAAGTTGAATCAGAAGATACAAGTAGCCTCTTTGACAAACTTAAGAAGGAACCTGATGC CAAAGTTGAATCAGAAGATACAAGTAGCCTCTTTGACAAACTTAAGAAGGAACCTGATGC ************************************	1380 1327
WT XL1A1	TTTAACTTTGCTGGCCCCAGCCGCTGGAGACACAATCATATCTTTAGATTTTGGCAGCAA TTTAACTTTGCTGGCCCCCAGCCGCTGGAGACACAATCATATCTTTAGATTTTGGCAGCAA *******************************	1440 1387
WT XL1A1	CGACACAGAAACTGATGACCAGCAACTTGAGGAAGTACCATTATATAATGATGTAATGCT CGACACAGAAACTGATGACCAGCAACTTGAGGAAGTACCATTATATAATGATGTAATGCT ***********************************	1500 1447
WT XL1A1	CCCCTCACCCAACGAAAAATTACAGAATATAAATTTGGCAATGTCTCCATTACCCACCGC CCCCTCACCCAACGAAAAATTACAGAATATAAATTTGGCAATGTCTCCATTACCCACCGC ******************************	1560 1507
WT XL1A1	TGAAACGCCAAAGCCACTTCGAAGTAGTGCTGACCCTGCACTCAATCAA	1620 1567
WT XL1A1	AAAATTAGAACCAAATCCAGAGTCACTGGAACTTTCTTTTACCATGCCCCAGATTCAGGA AAAATTAGAACCAAATCCAGAGTCACTGGAACTTTCTTTTACCATGCCCCAGATTCAGGA **********************************	1680 1627
WT XL1A1	TCAGACACCTAGTCCTTCCGATGGAAGCACTAGACAAAGTTCACCTGAGCCTAATAGTCC TCAGACACCTAGTCCTTCCGATGGAAGCACTAGACAAAGTTCACCTGAGCCTAATAGTCC ***********************************	1740 1687
WT XL1A1	CAGTGAATATTGTTTTTATGTGGATAGTGATATGGTCAATGAATTCAAGTTGGAATTGGT CAGTGAATATTGTTTTTATGTGGATAGTGATATGGTCAATGAATTCAAGTTGGAATTGGT *************************	1800 1747
WT XL1A1	AGAAAAACTTTTTGCTGAAGACACAGAAGCAAAGAACCCATTTTCTACTCAGGACACAGA AGAAAAACTTTTTGCTGAAGACACAGAAGCAAAGAACCCATTTTCTACTCAGGACACAGA	1860 1807

WT XL1A1	TTTAGACTTGGAGATGTTAGCTCCCTATATCCCAATGGATGACTGAC	1920 1867
WT XL1A1	CTTCGATCAGTTGTCACCATTAGAAAGCAGTTCCGCAAGCCCTGAAAGCGCAAGTCCTCA CTTCGATCAGTTGTCACCATTAGAAAGCAGTTCCGCAAGCCCTGAAAGCGCAAGTCCTCA *********************************	1980 1927
WT XL1A1	AAGCACAGTTACAGTATTCCAGCAGACTCAAATACAAGAACCTACTGCTAATGCCACCAC AAGCACAGTTACAGTATTCCAGCAGACTCAAATACAAGAACCTACTGCTAATGCCACCAC *******************************	2040 1987
WT XL1A1	TACCACTGCCACCACTGATGAATTAAAAACAGTGACAAAAGACCGTATGGAAGACATTAA TACCACTGCCACCACTGATGAATTAAAAACAGTGACAAAAGACCGTATGGAAGACATTAA ********************************	2100 2047
WT XL1A1	AATATTGATTGCATCTCCATCTCCTACCCACATACATAAAGAAACTACTAGTGCCACATC AATATTGATTGCATCTCCCATCTCCTACCCACATACATAAAGAAACTACTAGTGCCACATC ********************************	2160 2107
WT XL1A1	ATCACCATATAGAGATACTCAAAGTCGGACAGCCTCACCAAACAGAGCAGGAAAAGGAGT ATCACCATATAGAGATACTCAAAGTCGGACAGCCTCACCAAACAGAGCAGGAAAAGGAGT ***************************	2220 2167
WT XL1A1	CATAGAACAGACAGAAAAATCTCATCCAAGAAGCCCTAACGTGTTATCTGTCGCTTTGAG CATAGAACAGACAGAAAAATCTCATCCAAGAGCTCCTAACGTGTTATCTGTCGCTTTGAG *********************************	2280 2227
WT XL1A1	TCAAAGAACTACAGTTCCTGAGGAAGAACTAAATCCAAAGATACTAGCTTTGCAGAATGC TCAAAGAACTACAGTTCCTGAGGAAGAACTAAATCCAAAGATACTAGCTTTGCAGAATGC ************************************	2340 2287
WT XL1A1	TCAGAGAAAGCGAAAAATGGAACATGATGGTTCACTTTTTCAAGCAGTAGGAATTGGAAC TCAGAGAAAGCGAAAAATGGAACATGATGGTTCACTTTTTCAAGCAGTAGGAATTGGAAC **********************************	2400 2347
WT XL1A1	ATTATTACAGCAGCCAGACGATCATGCAGCTACTACATCACTTTCTTGGAAACGTGTAAA ATTATTACAGCAGCCAGACGATCATGCAGCTACTACATCACTTTCTTGGAAACGTGTAAA ********************************	2460 2407
WT XL1A1	AGGATGCAAATCTAGTGAACAGAATGGAATGGAGCAAAAGACAATTATTTTAATACCCTC AGGATGCAAATCTAGTGAACAGAATGGAATG	2520 2467
WT XL1A1	TGATTTAGCATGTAGACTGCTGGGGGCAATCAATGGATGAAAGTGGATTACCACAGCTGAC TGATTTAGCATGTAGACTGCTGGGGCAATCAATGGATGAAAGTGGATTACCACAGCTGAC ************************************	2580 2527
WT XL1A1	CAGTTATGATTGTGAAGTTAATGCTCCTATACAAGGCAGCAGAAACCTACTGCAGGGTGA CAGTTATGATTGTGAAGTTAATGCTCCTATACAAGGCAGCAGAAACCTACTGCAGGGTGA ********************************	2640 2587
WT XL1A1	AGAATTACTCAGAGCTTTGGATCAAGTTAACTGACAATTCTGCAGATATCCATCACACTG AGAATTACTCAGAGCTTTGGATCAAGTTAACTGACAATTCTGCAGATATCCATCACACTG ************************************	2700 2647
WT XL1A1	GCGGCCGCTCGAGCATGCATCTAGAGG 2727 GCGGCC 2653	

S687E: CLUSTAL 2.1 multiple sequence alignment

WT XL1E11	TCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGA CAGA ****	60 4
WT XL1E11	GCTCTCTGGCTAACTAGAGAACCCACTGCTTACTGGCTTATCGAAATTAATACGACTCAC GCTCTCTGGCTAACTAGAGAACCCACTGCTTACTGGCTTATCGAAATTAATACGACTCAC *********************************	120 64
WT XL1E11	TATAGGGAGACCCAAGCTTACCATGGCCTACCCNTACGACGTGCCCGACTACGCCTCCCT TATAGGGAGACCCAAGCTTACCATGGCCTACCCCTACGACGTGCCCGACTACGCCTCCCT ******************************	180 124
WT XL1E11	CGGATCCGCCACCATGGAGGGCGCCGGCGGCGGCGCGAACGACAAGAAAAGATAAGTTCTGA CGGATCCGCCACCATGGAGGGCGCCGGCGGCGCGCGAACGACAAGAAAAGATAAGTTCTGA ************************************	240 184
WT XL1E11	ACGTCGAAAAGAAAAGTCTCGAGATGCAGCCAGATCTCGGCGAAGTAAAGAATCTGAAGT ACGTCGAAAAGAAAA	300 244
WT XL1E11	TTTTTATGAGCTTGCTCATCAGTTGCCACTTCCACATAATGTGAGTTCGCATCTTGATAA TTTTTATGAGCTTGCTCATCAGTTGCCACTTCCACATAATGTGAGTTCGCATCTTGATAA ********************************	360 304
WT XL1E11	GGCCTCTGTGATGAGGCTTACCATCAGCTATTTGCGTGTGAGGAAACTTCTGGATGCTGG GGCCTCTGTGATGAGGCTTACCATCAGCTATTTGCGTGTGAGGAAACTTCTGGATGCTGG ******	420 364
WT XL1E11	TGATTTGGATATTGAAGATGACATGAAAGCACAGATGAATTGCTTTTATTTGAAAGCCTT TGATTTGGATATTGAAGATGACATGAAAGCACAGATGAATTGCTTTTATTTGAAAGCCTT **********************************	480 424
WT XL1E11	GGATGGTTTTGTTATGGTTCTCACAGATGATGGTGACATGATTTACATTTCTGATAATGT GGATGGTTTTGTTATGGTTCTCACAGATGATGGTGACATGATTTACATTTCTGATAATGT ******************************	540 484
WT XL1E11	GAACAAATACATGGGATTAACTCAGTTTGAACTAACTGGACACAGTGTGTTTGATTTTAC GAACAAATACATGGGATTAACTCAGTTTGAACTAACTGGACACAGTGTGTTTGATTTTAC ********************************	600 544
WT XL1E11	TCATCCATGTGACCATGAGGAAATGAGAGAAATGCTTACACACAGAAATGGCCTTGTGAA TCATCCATGTGACCATGAGGAAATGAGAGAAATGCTTACACACAGAAATGGCCTTGTGAA ********************************	660 604
WT XL1E11	AAAGGGTAAAGAACAAAACACACAGCGAAGCTTTTTTCTCAGAATGAAGTGTACCCTAAC AAAGGGTAAAGAACAAAACACACAGCGAAGCTTTTTTCTCAGAATGAAGTGTACCCTAAC ******************************	720 664
WT XL1E11	TAGCCGAGGAAGAACTATGAACATAAAGTCTGCAACATGGAAGGTATTGCACTGCACAGG TAGCCGAGGAAGAACTATGAACATAAAGTCTGCAACATGGAAGGTATTGCACTGCACAGG ********************************	780 724
WT XL1E11	CCACATTCACGTATATGATACCAACAGTAACCAACCTCAGTGTGGGTATAAGAAACCACC CCACATTCACGTATATGATACCAACAGTAACCAACCTCAGTGTGGGTATAAGAAACCACC ****************************	840 784
WT XL1E11	TATGACCTGCTTGGTGCTGATTTGTGAACCCATTCCTCACCCATCAAATATTGAAATTCC TATGACCTGCTTGGTGCTGATTTGTGAACCCATTCCTCACCCATCAAATATTGAAATTCC	900 844

WT XL1E11	TTTAGATAGCAAGACTTTCCTCAGTCGACACAGCCTGGATATGAAATTTTCTTATTGTGA TTTAGATAGCAAGACTTTCCTCAGTCGACACAGCCTGGATATGAAATTTTCTTATTGTGA ******************************	960 904
WT XL1E11	TGAAAGAATTACCGAATTGATGGGATATGAGCCAGAAGAACTTTTAGGCCGCTCAATTTA TGAAAGAATTACCGAATTGATGGGATATGAGCCAGAAGAACTTTTAGGCCGCTCAATTTA ******************************	1020 964
WT XL1E11	TGAATATTATCATGCTTTGGACTCTGATCATCTGACCAAAACTCATCATGATATGTTTAC TGAATATTATCATGCTTTGGACTCTGATCATCTGACCAAAACTCATCATGATATGTTTAC **********************************	1080 1024
WT XL1E11	TAAAGGACAAGTCACCACAGGACAGTACAGGATGCTTGCCAAAAGAGGTGGATATGTCTG TAAAGGACAAGTCACCACAGGACAGTACAGGATGCTTGCCAAAAGAGGTGGATATGTCTG *********************************	1140 1084
WT XL1E11	GGTTGAAACTCAAGCAACTGTCATATATAACACCAAGAATTCTCAACCACAGTGCATTGT GGTTGAAACTCAAGCAACTGTCATATATAACACCAAGAATTCTCAACCACAGTGCATTGT **********************************	1200 1144
WT XL1E11	ATGTGTGAATTACGTTGTGAGTGGTATTATTCAGCACGACTTGATTTTCTCCCCTTCAACA ATGTGTGAATTACGTTGTGAGTGGTATTATTCAGCACGACTTGATTTTCTCCCCTTCAACA *********************	1260 1204
WT XL1E11	AACAGAATGTGTCCTTAAACCGGTTGAATCTTCAGATATGAAAATGACTCAGCTATTCAC AACAGAATGTGTCCTTAAACCGGTTGAATCTTCAGATATGAAAATGACTCAGCTATTCAC *******************************	1320 1264
WT XL1E11	CAAAGTTGAATCAGAAGATACAAGTAGCCTCTTTTGACAAACTTAAGAAGGAACCTGATGC CAAAGTTGAATCAGAAGATACAAGTAGCCTCTTTGACAAACTTAAGAAGGAACCTGATGC ************************************	1380 1324
WT XL1E11	TTTAACTTTGCTGGCCCCAGCCGCTGGAGACACAATCATATCTTTAGATTTTGGCAGCAA TTTAACTTTGCTGGCCCCAGCCGCTGGAGACACAATCATATCTTTAGATTTTGGCAGCAA *******************************	1440 1384
WT XL1E11	CGACACAGAAACTGATGACCAGCAACTTGAGGAAGTACCATTATATAATGATGTAATGCT CGACACAGAAACTGATGACCAGCAACTTGAGGAAGTACCATTATATAATGATGTAATGCT ***********************************	1500 1444
WT XL1E11	CCCCTCACCCAACGAAAAATTACAGAATATAAATTTGGCAATGTCTCCATTACCCACCGC CCCCTCACCCAACGAAAAATTACAGAATATAAATTTGGCAATGTCTCCATTACCCACCGC ******************************	1560 1504
WT XL1E11	TGAAACGCCAAAGCCACTTCGAAGTAGTGCTGACCCTGCACTCAATCAA	1620 1564
WT XL1E11	AAAATTAGAACCAAATCCAGAGTCACTGGAACTTTCTTTTACCATGCCCCAGATTCAGGA AAAATTAGAACCAAATCCAGAGTCACTGGAACTTTCTTTTACCATGCCCCAGATTCAGGA **********************************	1680 1624
WT XL1E11	TCAGACACCTAGTCCTTCCGATGGAAGCACTAGACAAAGTTCACCTGAGCCTAATAGTCC TCAGACACCTAGTCCTTCCGATGGAAGCACTAGACAAAGTTCACCTGAGCCTAATAGTCC ***********************************	1740 1684
WT XL1E11	CAGTGAATATTGTTTTTATGTGGATAGTGATATGGTCAATGAATTCAAGTTGGAATTGGT CAGTGAATATTGTTTTTATGTGGATAGTGATATGGTCAATGAATTCAAGTTGGAATTGGT *************************	1800 1744
WT XL1E11	AGAAAAACTTTTTGCTGAAGACACAGAAGCAAAGAACCCATTTTCTACTCAGGACACAGA AGAAAAACTTTTTGCTGAAGACACAGAAGCAAAGAACCCATTTTCTACTCAGGACACAGA ******	1860 1804

WT XL1E11	TTTAGACTTGGAGATGTTAGCTCCCTATATCCCAATGGATGATGACTTCCAGTTACGTTC TTTAGACTTGGAGATGTTAGCTCCCTATATCCCAATGGATGATGACTTCCAGTTACGTTC **********************************	1920 1864
WT XL1E11	CTTCGATCAGTTGTCACCATTAGAAAGCAGTTCCGCAAGCCCTGAAAGCGCAAGTCCTCA CTTCGATCAGTTGTCACCATTAGAAAGCAGTTCCGCAAGCCCTGAAAGCGCAAGTCCTCA *********************************	1980 1924
WT XL1E11	AAGCACAGTTACAGTATTCCAGCAGACTCAAATACAAGAACCTACTGCTAATGCCACCAC AAGCACAGTTACAGTATTCCAGCAGACTCAAATACAAGAACCTACTGCTAATGCCACCAC *******************************	2040 1984
WT XL1E11	TACCACTGCCACCACTGATGAATTAAAAACAGTGACAAAAGACCGTATGGAAGACATTAA TACCACTGCCACCACTGATGAATTAAAAACAGTGACAAAAGACCGTATGGAAGACATTAA ********************************	2100 2044
WT XL1E11	AATATTGATTGCATCTCCATCTCCTACCCACATACATAAAGAAACTACTAGTGCCACATC AATATTGATTGCATCTCCATCTCCTACCCACATACATAAAGAAACTACTAGTGCCACATC ********************************	2160 2104
WT XL1E11	ATCACCATATAGAGATACTCAAAGTCGGACAGCCTCACCAAACAGAGCAGGAAAAGGAGT ATCACCATATAGAGATACTCAAAGTCGGACAGCCTCACCAAACAGAGCAGGAAAAGGAGT ***************************	2220 2164
WT XL1E11	CATAGAACAGACAGAAAAATCTCATCCAAGA <mark>GAGC</mark> CCTAACGTGTTATCTGTCGCTTTGAG CATAGAACAGACAGAAAAATCTCATCCAAGA <mark>GAG</mark> CCTAACGTGTTATCTGTCGCTTTGAG *********************************	2280 2224
WT XL1E11	TCAAAGAACTACAGTTCCTGAGGAAGAACTAAATCCAAAGATACTAGCTTTGCAGAATGC TCAAAGAACTACAGTTCCTGAGGAAGAACTAAATCCAAAGATACTAGCTTTGCAGAATGC ************************************	2340 2284
WT XL1E11	TCAGAGAAAGCGAAAAATGGAACATGATGGTTCACTTTTTCAAGCAGTAGGAATTGGAAC TCAGAGAAAGCGAAAAATGGAACATGATGGTTCACTTTTTCAAGCAGTAGGAATTGGAAC **********************************	2400 2344
WT XL1E11	ATTATTACAGCAGCCAGACGATCATGCAGCTACTACATCACTTTCTTGGAAACGTGTAAA ATTATTACAGCAGCCAGACGATCATGCAGCTACTACATCACTTTCTTGGAAACGTGTAAA ********************************	2460 2404
WT XL1E11	AGGATGCAAATCTAGTGAACAGAATGGAATGGAGCAAAAGACAATTATTTTAATACCCTC AGGATGCAAATCTAGTGAACAGAATGGAATG	2520 2464
WT XL1E11	TGATTTAGCATGTAGACTGCTGGGGCAATCAATGGATGAAAGTGGATTACCACAGCTGAC TGATTTAGCATGTAGACTGCTGGGGCAATCAATGGATGAAAGTGGATTACCACAGCTGAC ************************************	2580 2524
WT XL1E11	CAGTTATGATTGTGAAGTTAATGCTCCTATACAAGGCAGCAGAAACCTACTGCAGGGTGA CAGTTATGATTGTGAAGTTAATGCTCCTATACAAGGCAGCAGAAACCTACTGCAGGGTGA ********************************	2640 2584
WT XL1E11	AGAATTACTCAGAGCTTTGGATCAAGTTAACTGACAATTCTGCAGATATCCATCACACTG AGAATTACTCAGAGCTTTGGATCAAGTTAACTGACAATTCTGCAGATATCCATCACACTG ************************************	2700 2644
WT XL1E11	GCGGCCGCT-CGAGCATGCATCTAGAGG 2727 GCGGCCGCTTCGA 2657 ******** ***	

Supplementary Fig. 5: Point mutations at serine 687 to either alanine or glutamate were introduced in HIF-1 α by site-directed mutagenesis. Sequence alignment of wildtype HIF-1 α (wt) with the alanine (clone XL1A1) and glutamate (clone XL1E11) mutant of serine 687 is shown. Mutated sites are indicated in red.

С

Tubulin

Supplementary Fig. 6: CDK5 is not directly activated by DFO treatment, but is enriched in the nucleus. (A) Kinase assay in HUVECs treated with 100 µM DFO for 2h: no increase of Histone 1 phosphorylation can be detected. Overexpression of p35 served as positice control. (B) Neither the CDK5 activator p35, nor phosphorylation of the downstream target pSrc is increased by DFO treatment. (C) Left panel: Quantitative analysis of CDK5 in the cytoplasm and the nucleus by confocal microscopy shows enrichment of CDK5 in the nucleus. Right: representative images for staining of CDK5 (green), Hoechst (blue, for identification of nuclei), and F-actin (Rhodamin phalloidin, as indicator of cell morphology).

References:

- 1. Ehrlich SM, Liebl J, Ardelt MA, et al. Targeting cyclin dependent kinase 5 in hepatocellular carcinoma a novel therapeutic approach. J Hepatol 2015.
- van den Heuvel S, Harlow E. Distinct roles for cyclin-dependent kinases in cell cycle control. Science 1993;262:2050-4.
- Baker SJ, Markowitz S, Fearon ER, et al. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 1990;249:912-5.
- 4. Kondo K, Klco J, Nakamura E, et al. Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 2002;1:237-46.