Supporting Information

for

Stereocontrolled Total Synthesis of Muraymycin D₁ Having a Dual Mode of Action against *Mycobacterium tuberculosis*

Katsuhiko Mitachi, Bilal A. Aleiwi, Christopher M. Schneider, Shajila Siricilla and Michio Kurosu*

Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison, Memphis, TN 38163-0001, United States <u>mkurosu@uthsc.edu</u>

Table of Contents

Table of contents	-S1
General	S 2
Experimental	\$3-\$28

Copies of 1H and 13C NMR spectra-----S29-S93

General

All chemicals were purchased from commercial sources and used without further purification unless otherwise noted. Tetrahydrofuran (THF), methylene chloride (CH₂Cl₂), and DMF were purified via Innovative Technology's Pure-Solve System. All reactions were performed under an Argon atmosphere. All stirring was performed with an internal magnetic stirrer. Reactions were monitored by thin-layer chromatography (TLC) performed with 0.25 mm coated commercial silica gel plates (EMD, Silica Gel $60F_{254}$) using UV light for visualization at 254 nm, or developed with ceric ammonium molybdate or anisaldehyde or copper sulfate or ninhydrin solutions by heating on a hot plate. Reactions were also monitored by using SHIMADZU LCMS-2020 with solvents: A: 0.1% formic acid in water, B: acetonitrile. And reactions were also monitored by SHIMADZU prominence HPLC using Phenomenex Kinetex 1.7 µ XB-C18 100A column (150 x 2.10 mm) and monitoring at 220, 254 nm with solvents: A: 0.05 M ammonium bicarbonate in water, B: methanol. Flash chromatography was performed with SiliCycle silica gel (Purasil 60 Å, 230-400 Mesh). Proton magnetic resonance (¹H-NMR) spectral data were recorded on 400, and 500 MHz instruments. Carbon magnetic resonance (¹³C-NMR) spectral data were recorded on 100 and 125 MHz instruments. For all NMR spectra, chemical shifts (δH , δC) were quoted in parts per million (ppm), and J values were quoted in Hz. ¹H and ¹³C NMR spectra were calibrated with residual undeuterated solvent (CDCl₃: δ H =7.26 ppm, δ C =77.16ppm; CD₃CN: δ H=1.94ppm, δ C =1.32ppm; CD₃OD: δH =3.31ppm, δC =49.00 ppm; DMSO-d₆: δH=2.50ppm, δC =39.52ppm; D₂O: δ H=4.79 ppm) as an internal reference. The following abbreviations were used to designate the multiplicities: s=singlet, d=doublet, dd=double doublets, t=triplet, g=quartet, quin=quintet, hept=heptet, m=multiplet, br=broad. Infrared (IR) spectra were recorded on a Perkin-Elmer FT1600 spectrometer.

Boc-L-Leu-OH +
$$Ph^{-N}NH_2$$
 $\xrightarrow{Oxyma}_{EDCI} H_3C + H_3C$

To a stirred solution of Boc-L-Leu-OH·H₂O (7.48 g, 30 mmol), phenylhydrazine (4.43 mL, 45 mmol), NaHCO₃ (25.2 g, 300 mmol) and oxyma (3.69 g, 45 mmol) in DMF (60 mL) was added EDCI (28.8 g, 150 mmol). The reaction mixture was stirred for 15 h at rt, quenched with aq. saturated NaHCO₃, extracted with EtOAc. The combined organic extracts were washed with 1M HCl, brine, dried over Na₂SO₄ and concentrated in vacuo. The crude mixture was purified by silica gel column chromatography (Hexanes/EtOAc 80:20 to 70:30) to afford **S1** (6.50 g, 20.2 mmol, 67%): TLC (hexanes/EtOAc 67:33) $R_f = 0.40$; $[\alpha]^{22}{}_D - 0.528$ (c = 0.95, CHCl₃); IR (thin film) $\nu_{max} = 3278$ (br), 2958, 2934, 2871, 1671, 1603, 1497, 1391, 1366, 1252, 1167, 1046, 1026, 750, 692 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.31 (brs, 1H), 7.20 (dd, J = 8.5, 7.3 Hz, 2H), 6.88 (t, J = 7.4 Hz, 1H), 6.82 – 6.78 (m, 2H), 6.12 (brs, 1H), 5.00 (d, J = 8.4 Hz, 1H), 4.21 (q, J = 7.9 Hz, 1H), 1.72 – 1.66 (m, 2H), 1.55 – 1.49 (m, 1H), 1.46 (s, 9H), 0.95 (d, J = 6.1 Hz, 3H), 0.93 (d, J = 6.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.54, 147.80, 129.13 (2C), 121.16, 113.55 (2C), 51.53, 40.42, 28.33 (3C), 24.72 (2C), 22.78, 22.10; HRMS (ESI+) m/z calcd for C₁₇H₂₇N₃O₃Na [M + Na] 344.1950, found 344.1952.

To a stirred solution of **S1** (18.8 g, 58.6 mmol) in CH_2Cl_2 (41 mL) was added TFA (18 mL). The reaction mixture was stirred for 2 h at rt, and all volatiles were evaporated in vacuo to provide **14** as an oil. The crude mixture was use for the next reaction without purification.

To a stirred solution of **14** and 2-hydroxypyridine (12.6 g, 133 mmol) in toluene (13.3 mL) was added **13**⁻¹ (6.04 g, 13.3 mmol). The reaction mixture was stirred at 70 °C for 3 h and cooled to rt. Purification by silica gel column chromatography (hexanes/EtOAc 50:50 to 40:60) provided **15** (5.01 g, 7.41 mmol, 56%) as a red oil: TLC (hexanes/EtOAc 33:67) $R_f = 0.40$; $[\alpha]^{22}{}_{\rm D}$ -0.081 (c = 0.79, CHCl₃); IR (thin film) $\nu_{\rm max} = 3292$ (br), 3032, 2959, 2872, 1685, 1603, 1497, 1469, 1453, 1366, 1252, 1169, 1055, 752, 734, 695 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.62 (brs, 1H), 7.36 – 7.30 (m, 9H), 7.27 – 7.23 (m, 2H), 7.19 (dd, J = 8.5, 7.2 Hz, 4H), 6.86 (t, J = 7.3 Hz, 1H), 6.79 (d, J = 7.7 Hz, 1H), 6.15 (brs, 1H), 6.07 (brs, 1H), 5.56 (d,

J = 9.5 Hz, 1H), 5.18 (d, *J* = 12.2 Hz, 1H), 5.09 (d, *J* = 12.2 Hz, 1H), 4.89 (d, *J* = 15.4 Hz, 1H), 4.43 – 4.36 (m, 1H), 4.35 – 4.29 (m, 1H), 4.26 (d, *J* = 15.6 Hz, 1H), 4.10 (d, *J* = 7.1 Hz, 1H), 1.84 – 1.68 (m, 4H), 1.54 – 1.46 (m, 1H), 1.42 (s, 9H), 0.81 (d, *J* = 6.3 Hz, 3H), 0.76 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.42, 169.00, 156.76, 147.98, 135.53, 129.15 (2C), 129.08 (2C), 128.61 (2C), 128.46 (2C), 128.16 (4C), 120.99, 113.61, 80.02, 68.47, 60.39, 58.75, 52.24, 50.77, 47.51, 41.29, 39.96, 34.66, 28.32 (3C), 25.27, 24.49, 22.87, 22.64, 21.40, 20.69, 14.09.; HRMS (ESI+) *m*/*z* calcd for C₃₇H₄₉N₅O₇Na [M + Na] 698.3530, found 698.3544.

To a stirred solution of **15** (5.01 g, 7.41 mmol) in CH₂Cl₂ (15 mL) were added pyridine (3.0 mL, 37.0 mmol) and acetic anhydride (3.5 mL, 37.0 mmol). The reaction mixture was stirred for 3 h at rt, and all volatiles were evaporated in vacuo. Purification by silica gel column chromatography (hexanes/EtOAc 60:40 to 50:50) gave **16** (3.66 g, 5.10 mmol, 69%) as a brown foam: TLC (hexanes/EtOAc 50:50) $R_f = 0.50$; $[\alpha]^{22}_{D} +0.095$ (c = 0.81, CHCl₃); IR (thin film) $v_{max} = 3297$ (br), 2959, 1693, 1603, 1497, 1454, 1366, 1246, 1168, 1046, 753, 733, 695 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.51 (brs, 1H), 7.38 – 7.31 (m, 9H), 7.31 – 7.27 (m, 2H), 7.23 – 7.17 (m, 4H), 6.87 (t, J = 7.4 Hz, 1H), 6.79 (d, J = 8.0 Hz, 1H), 6.01 (brs, 1H), 5.80 (brs, 1H), 5.17 – 5.10 (m, 2H), 5.05 – 4.98 (m, 2H), 4.24 (d, J = 15.4 Hz, 1H), 4.14 – 4.10 (m, 2H), 4.06 (d, J = 7.1 Hz, 1H), 2.04 (s, 3H), 1.74 – 1.62 (m, 4H), 1.42 (s, 9H), 1.11 – 1.06 (m, 1H), 0.80 (d, J = 6.2 Hz, 3H), 0.75 (d, J = 6.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.27, 171.13, 168.90, 155.62, 148.06, 135.64, 129.25 (2C), 129.08 (2C), 128.64 (2C), 128.48 (2C), 128.28 (2C), 128.15 (2C), 121.00, 113.61, 79.75, 68.44, 63.17, 61.63, 60.41, 51.80, 50.66, 48.33, 41.30, 39.75, 30.01, 28.33 (3C), 24.48, 22.86, 21.30, 20.99; HRMS (ESI+) m/z calcd for C₃₉H₅₁N₅O₈Na [M + Na] 740.3635, found 740.3566.

To a stirred suspension of **16** (3.42 g, 4.76 mmol), MS3A (6.84 g), NaHCO₃ (2.00 g, 23.8 mmol) and 2-(trimethylsilyl)ethanol (2.05 mL, 14.3 mmol) was added NBS (2.54 g, 14.3 mmol) at rt. The reaction mixture was stirred for 1 h, diluted with CH₂Cl₂, filtered through Celite. The combined organic phase was washed with 1M HCl (aq), saturated NaHCO₃ (aq) and brine and dried over Na₂SO₄, and concentrated in vacuo. The crude mixture was purified by silica gel column chromatography to give **17** as white foam (2.75 g, 3.78 mmol, 79%): TLC (hexanes/EtOAc 67:33) $R_f = 0.40$; [α]²⁰_D +0.140 (c = 1.11, CHCl₃); IR (thin film) $v_{max} = 3339$ (br), 2957, 1740, 1718, 1675, 1522, 1453, 1366, 1249, 1174, 1045, 861, 838, 696 cm⁻¹; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 – 7.35 (m, 2H), 7.35 – 7.27 (m, 4H), 7.22 (brs, 4H), 5.18 (brs, 2H), 4.66 – 4.59 (m, 1H), 4.53 (d, J = 30.7 Hz, 1H), 4.46 – 4.38 (m, 1H), 4.36 – 4.23 (m, 3H), 4.19 – 4.02 (m, 5H), 2.03 (s, 3H), 1.69 (brs, 4H), 1.57 – 1.46 (m, 1H),

1.39 (s, 9H), 1.00 – 0.92 (m, 3H), 0.85 – 0.76 (m, 3H), 0.04 (s, 9H); 13 C NMR (101 MHz, CDCl₃) δ 172.32, 171.01, 168.25, 155.44, 135.94, 128.87 (2C), 128.49 (2C), 128.13 (2C), 127.84 (2C), 79.47, 68.06, 63.94, 63.55, 61.34, 50.79, 41.35, 30.76, 28.31 (3C), 24.77, 22.73, 21.91, 20.94, 17.35, -1.54 (3C); HRMS (ESI+) *m*/*z* calcd for C₃₈H₅₇N₃O₉NaSi [M + Na] 750.3762, found 750.3814.

To a stirred suspension of the HCl·H-L-Val-O^{*t*}Bu (1.50 g, 7.15 mmol) in CH₂Cl₂ (21 mL) were added Et₃N (2.19 mL, 15.7 mmol) and DMAP (87.4 mg, 0.72 mmol), and N,N-carbonyldiimidazole (1.28 g, 7.87 mmol) was added at 0 °C. The reaction mixture was warmed to rt and stirred for 2 h. The reaction mixture was diluted with CH₂Cl₂, and the combined organic phase was washed with H₂O and brine and dried over Na₂SO₄. The crude material was purified by basic alumina column chromatography to give **18** as colorless oil (1.66 g, 6.22 mmol, 87%): TLC (CHCl₃/MeOH 90:10) R_f = 0.25; ¹H NMR (500 MHz, CDCl₃) δ 8.19 (s, 1H), 7.43 (s 1H), 6.75 (d, *J* = 8.0 Hz, 1H), 4.59 (m, 1H), 3.81 (s, 3H), 2.28 (m, 1H), 1.01 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 172.1, 148.9, 136.1, 130.7, 115.9, 58.8, 52.6, 31.4, 18.9, 17.9; HRMS (ESI+) *m*/*z* calcd for C₁₃H₂₂N₃O₃ [M + H] 268.1661, found 268.1658.

To a stirred solution of 17 (1.73 g, 2.38 mmol) in MeOH (100 mL) were added AcOH (0.2 mL) and Pd(OH)₂/C (20 wt % 0.17 g) under N₂. H₂ gas was introduced via a doublefolded balloon, and the reaction mixture was stirred for 21 h under H_2 . Upon completion, the solution was filtered through Celite and concentrated in vacuo to yield the desired primary amine. To a stirred solution of the primary amine and 18 (1.27 g, 4.76 mmol) in CH₂Cl₂ (2.4 mL) was added Et₃N (0.33 mL, 2.38 mmol) at rt. After 12 h, the reaction mixture was diluted with EtOAc, washed with $NaHCO_3$ (aq) and brine, and dried over Na_2SO_4 . The crude material was purified by silica gel column chromatography to give 19 as white foam (1.14 g, 1.62 mmol, 68% for 2 steps): TLC (hexanes/EtOAc 33:67) $R_f = 0.30$; $[\alpha]_{D}^{22}$ -0.055 (c = 0.37, CHCl₃); IR (thin film) v_{max} = 3300 (br), 2959, 2933, 2873, 1740, 1688, 1634, 1553, 1527, 1367, 1248, 1162, 1046, 861, 838 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 6.82 (d, J = 8.1 Hz, 1H), 6.21 (s, 1H), 5.06 (d, J = 8.7 Hz, 1H), 4.99 (d, J = 8.4 Hz, 1H), 4.52 (dd, J = 7.8, 5.2 Hz, 2H), 4.29 (ddd, J = 22.3, 9.9, 4.9 Hz, 2H), 4.19 (td, J = 8.0, 2.8 Hz, 2H), 4.08 (dt, J = 10.011.9, 6.3 Hz, 1H), 3.95 (quin, J = 7.6 Hz, 1H), 2.17 – 2.08 (m, 1H), 2.06 (s, 3H), 1.97 – 1.88 (m, 2H), 1.65 - 1.52 (m, 3H), 1.46 (s, 9H), 1.41 (s, 9H), 1.01 (dd, J = 9.4, 8.1 Hz, 2H), 0.95 (d, J = 1.52 (m, 3H), 1.46 (s, 9H), 1.41 (s, 9H), 1.01 (dd, J = 9.4, 8.1 Hz, 2H), 0.95 (d, J = 1.52 (m, 3H), 1.46 (s, 9H), 1.41 (s, 9H), 1.01 (dd, J = 9.4, 8.1 Hz, 2H), 0.95 (d, J = 1.52 (m, 3H), 1.46 (s, 9H), 1.41 (s, 9H), 1.01 (dd, J = 9.4, 8.1 Hz, 2H), 0.95 (d, J = 1.52 (m, 3H), 1.46 (s, 9H), 1.41 (s, 9H), 1.01 (dd, J = 9.4, 8.1 Hz, 2H), 0.95 (d, J = 1.52 (m, 3H), 1.46 (s, 9H), 1.41 (s, 9H), 1.01 (dd, J = 9.4, 8.1 Hz, 2H), 0.95 (d, J = 1.52 (m, 3H), 1.46 (s, 9H), 1.41 (s, 9H), 1.01 (dd, J = 9.4, 8.1 Hz, 2H), 0.95 (d, J = 1.52 (m, 3H), 1.46 (s, 9.1 (m, 1.65 (m, 1.6.9 Hz, 3H), 0.93 – 0.89 (m, 9H), 0.04 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 172.56, 171.72, 171.37, 170.36, 157.67, 81.78, 79.97, 63.60, 61.46, 58.57, 51.04, 41.37, 31.57, 28.30 (3C), 28.08 (3C), 24.79, 22.79, 21.94, 21.01, 18.93, 17.65, 17.39, -1.52 (3C); HRMS (ESI+) m/z calcd for $C_{33}H_{62}N_4O_{10}NaSi$ [M + Na] 725.4133, found 725.4094.

To a stirred solution of 19 (1.13 g, 1.61 mmol) was added a 4 M solution of HCl in dioxane (2.0 mL). The reaction mixture was stirred for 1 h at rt, and all volatiles were evaporated in vacuo to provide the free amine as an oil: TLC (CHCl₃/MeOH 90:10) $R_f =$ 0.40. To a stirred solution of the free amine in DMF (3.2 mL) were added N,N-bis(tertbutoxycarbonyl-S-methylisothiourea (0.70 g, 2.42 mmol), Et₃N (1.12 mL, 8.06 mmol), and HgCl₂ (0.66 g, 2.42 mmol). The reaction mixture was stirred at 0 $^{\circ}$ C for 1.5 h. Upon completion, the reaction mixture was diluted with EtOAc and filtered through Celite. The combined organic phase was washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The crude material was purified by silica gel column chromatography (hexanes/EtOAc 80:20 to 67:33) to give 20 (0.66 g, 0.78 mmol, 49% for 2 steps): TLC (hexanes/EtOAc 67:33) $R_f = 0.30$; $[\alpha]_{D}^{22} - 0.049$ (c = 0.39, CHCl₃); IR (thin film) $v_{max} = 3282$ (br), 2965, 1793, 1723, 1638, 1614, 1541, 1485, 1368, 1326, 1251, 1154, 1136, 1057, 1029, 860, 839, 810, 778 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 11.36 (s, 1H), 8.65 (d, J = 7.8 Hz, 1H), 7.93 (br s, 1H), 6.89 (d, J = 8.3 Hz, 1H), 5.03 (d, J = 8.9 Hz, 1H), 4.60 (dd, J = 7.4, 5.9 Hz, 1H), 4.54 – 4.47 (m, 1H), 4.44 - 4.36 (m, 1H), 4.33 (dd, J = 8.8, 4.7 Hz, 1H), 4.23 - 4.06 (m, 5H), 2.25 - 1.94 (m, 5H), 2.06 (s, 3H), 1.65 – 1.54 (m, 4H), 1.52 (s, 9H), 1.48 (s, 9H), 1.46 (s, 9H), 1.01 – 0.96 (m, 2 H), 0.94 (d, J = 6.9 Hz, 3H), 0.92 – 0.87 (m, 9H), 0.04 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 172.40, 171.81, 171.20, 170.34, 162.42, 157.90, 152.62, 83.43, 81.50, 79.76, 63.38, 61.24, 58.29, 57.71, 50.89, 41.14, 36.64, 31.67, 28.33 (3C), 28.06 (3C), 28.05 (3C), 24.79, 22.88, 21.82, 20.92, 19.05, 17.72, 17.31, -1.52 (3C); HRMS (ESI+) m/z calcd for $C_{39}H_{73}N_6O_{12}Si [M + H] 845.5056$, found 845.4957.

To a stirred solution of **20** (0.54 g, 0.64 mmol) in MeOH (1.3 mL) was added [^{*t*}Bu₂Sn(OH)Cl]₂ (0.18 g, 0.32 mmol). After 5 h at rt, all volatiles were evaporated in vacuo. The crude product was passed through a silica gel pad (hexanes/EtOAc 50:50) to provide the free alcohol **S2** (0.47 g, 0.58 mmol, 91%) as a white foam: TLC (hexanes/EtOAc 60:40) R_f = 0.30; [α]²²_D -0.082 (c = 0.67, CHCl₃); IR (thin film) v_{max} = 3318 (br), 2961, 2873, 1730, 1648, 1611, 1543, 1412, 1392, 1368, 1307, 1251, 1227, 1155, 1132, 1058, 857, 839 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 11.37 (s, 1H), 8.90 (d, J = 8.4 Hz, 1H), 6.63 (d, J = 8.5 Hz, 1H), 6.10 (d, J = 6.2 Hz, 1H), 5.18 (d, J = 8.8 Hz, 1H), 4.61 (td, J = 8.7, 7.7, 3.5 Hz, 2H),

4.53 (ddd, J = 11.3, 8.0, 3.9 Hz, 1H), 4.26 (dd, J = 8.7, 4.5 Hz, 1H), 4.22 – 4.15 (m, 2H), 3.69 (dq, J = 10.6, 3.0 Hz, 1H), 3.54 (td, J = 11.7, 2.6 Hz, 1H), 2.18 – 2.08 (m, 1H), 1.97 – 1.78 (m, 3H), 1.70 – 1.54 (m, 2H), 1.50 (s, 9H), 1.46 (s, 18H), 1.02 – 0.98 (m, 2H), 0.96 (d, J = 7.0 Hz, 3H), 0.92 – 0.87 (m, 9H), 0.04 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 172.78, 171.78, 170.35, 162.59, 157.40, 156.52, 152.58, 83.49, 81.71, 79.53, 63.81, 58.63, 57.94, 56.37, 51.05, 50.84, 41.27, 34.77, 31.46, 28.21 (3C), 28.09 (3C), 28.07 (3C), 24.76, 22.99, 21.54, 18.94, 17.70, 17.38, -1.52 (3C); HRMS (ESI+) m/z calcd for C₃₇H₇₁N₆O₁₁Si [M + H] 803.4950, found 803.5033.

The alcohol S2 (49.2 mg, 0.061 mmol) was dissolved in CH_2Cl_2 (0.6 mL), and TsCl (58.4 mg, 0.31 mmol) and DMAP (74.8 mg, 0.61 mmol) were added at 0 °C. The reaction mixture was warmed to rt and stirred for 1 h. Upon completion, the reaction mixture was quenched with 1N HCl (aq), extracted with EtOAc. The combined organic extracts were washed with saturated NaHCO₃ (aq), dried with Na₂SO₄, concentrated in vacuo. The crude product was purified by silica gel column chromatography (hexanes/EtOAc 60:40 to 50:50) to yield 7 (29.0 mg, 0.037 mmol, 60%) as a colorless oil: TLC (hexanes/EtOAc 50:50) $R_f = 0.30$; $[\alpha]_{D}^{22}$ -0.115 (c = 0.75, CHCl₃); IR (thin film) $v_{max} = 3283$ (br), 2960, 2933, 2873, 1733, 1639, 1542, 1367, 1337, 1250, 1148, 1056, 985, 936, 857, 838, 771 cm⁻¹; ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 9.79 \text{ (brs, 1H)}, 8.15 \text{ (brs, 1H)}, 6.14 \text{ (brs, 1H)}, 5.11 \text{ (d, } J = 7.5 \text{ Hz}, 1\text{ H)}, 4.65 \text{ (d)}$ -4.50 (m, 1H), 4.50 - 4.43 (m, 2H), 4.26 (dd, J = 8.5, 4.2 Hz, 1H), 4.19 - 4.15 (m, 2H), 4.06 (dt, J = 11.5, 3.5 Hz, 1H), 3.87 (dd, J = 12.4, 3.5 Hz, 1H), 3.33 (td, J = 12.8, 4.2 Hz, 1H), 2.17 - 2.07(m, 1H), 2.07 – 2.00 (m, 1H), 1.71 (t, J = 9.1 Hz, 1H), 1.65 – 1.59 (m, 2H), 1.51 (s, 9H), 1.47 (s, 9H), 1.45 (s, 9H), 1.02 - 0.98 (m, 2H), 0.93 (d, J = 6.9 Hz, 3H), 0.91 - 0.87 (m, 9H), 0.02 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 172.58, 171.66, 157.50, 153.20, 83.89, 81.38, 81.00, 63.21, 58.38, 57.95, 57.21, 54.17, 51.28, 50.83, 44.30, 40.19, 31.54, 28.27 (3C), 28.20, 28.08 (6C), 24.82, 23.02, 21.51, 18.92, 17.66, 17.32, -1.52 (3C); HRMS (ESI+) m/z calcd for C₃₇H₆₉N₆O₁₀Si [M + H] 785.4844, found 785.4847.

To a stirred solution of 7 (50.0 mg, 0.064 mmol) in DMF (0.6 mL) was added PS-F (1.1 mmol/g, 0.29 g, 0.32 mmol). After 2 h at 55 $^{\circ}$ C, the reaction was cooled to rt, TFA/DMF (1%, 0.6 mL) was added. The reaction mixture was stirred for 1.5 h and filtered. The filtered PS-F was washed with a solution of DMF/MeOH (10%, 1.8 mL) and combined organic solution was evaporated in vacuo. This was used in the following reactions.

The complex **28** was treated with 4N HC (in dioxane). The polymers were filtered off via a glass filter, and all volatiles were evaporated in vacuo to furnish **23**-HCl in quantitative yield: $[\alpha]^{20}_{D}$ +0.108 (*c* = 0.95, MeOH); IR (thin film) v_{max} = 3282 (br), 3069 (br), 2964, 2874, 1665, 1552, 1469, 1369, 1314, 1252, 1201, 1179, 1137, 837, 800, 721 cm⁻¹; ¹H NMR (500 MHz, CD₃OD) δ 4.55 (d, *J* = 5.5 Hz, 1H), 4.44 (q, *J* = 7.2 Hz, 1H), 4.08 (d, *J* = 4.9 Hz, 1H), 3.90 (dt, *J* = 9.6, 5.1 Hz, 1H), 3.54 (dt, *J* = 13.4, 5.0 Hz, 1H), 3.45 (dt, *J* = 8.4, 4.3 Hz, 1H), 2.12 (tt, *J* = 13.5, 5.3 Hz, 2H), 1.87 (dtd, *J* = 13.9, 9.0, 5.0 Hz, 1H), 1.70 – 1.66 (m, 3H), 1.54 (s, 9H), 1.47 (s, 9H), 0.99 – 0.92 (m, 12H); ¹³C NMR (101 MHz, CD₃OD) δ 173.37, 171.98, 160.08, 156.15, 82.83, 69.13, 60.35, 57.19, 52.64, 41.45, 40.20, 37.97, 31.63, 30.14, 28.77, 28.46, 28.36 (3C), 28.11 (3C), 26.13, 24.97, 24.02, 23.41, 21.81, 19.57, 18.03, 14.37, 11.40; HRMS (ESI+) m/z calcd for C₂₇H₄₉N₆O₈ [M + H] 585.3612, found 585.3630.

To a stirred suspension of LiAlH₄ (11 g, 295 mmol) in dry THF (200 mL) was added a solution of 3,3-dimethylglutaric acid (23.5 g, 147 mmol) in dry THF (100 mL) dropwise at 0 °C under N₂ atmosphere, and the reaction mixture was warmed to rt. After 4h, the reaction was stirred at reflux for 4h and cooled to 0 °C. The reaction was quenched by NaOH (aq). Extraction with EtOAc was conducted. The combined EtOAc phase was dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The residue was purified by distillation to obtain pure **S3** (16.4 g, 124 mmol, 84 %): TLC (hexanes/EtOAc 20:80) $R_f = 0.20$; IR (thin film) $v_{max} = 3317$ (br), 2955, 2934, 1676, 1469, 1366, 1030, 1006, 990 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.73 (t, *J* = 7.0 Hz, 4H), 2.04 (brs, 2H), 1.57 (t, *J* = 7.0 Hz, 4H), 0.94 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 59.60 (2C), 44.06 (2C), 31.67, 28.08 (2C); HRMS (ESI+) *m/z* calcd for C₇H₁₆O₂ 132.1150, found 132.1144.

To a stirred suspension of NaH (2.27 g, 56.7 mmol) in dry THF (56.7 mL) was added **S3** (7.50 g, 56.7 mmol) at rt. After being stirred for 1 h, BnBr (6.75 mL, 56.7 mmol) was added to the reaction solution dropwisely at 0 °C. The reaction mixture was warmed to rt and stirred for 18 h. The reaction was quenched with saturated NH₄Cl (aq.) at 0 °C and extracted with EtOAc. The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuo. The crude mixture was purified by silica gel column chromatography (hexanes/EtOAc 80:20 to 50:50) to obtain **S4** (7.90 g, 35.5 mmol, 63%)

as a colorless oil: TLC (hexanes/EtOAc 80:20) $R_f = 0.20$; IR (thin film) $v_{max} = 3357$ (br), 2955, 2930, 2869, 1719, 1469, 1453, 1365, 1274, 1203, 1098, 1070, 1045, 1027, 735, 696 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.27 (m, 5H), 4.50 (s, 2H), 3.70 (t, J = 7.2 Hz, 2H), 3.55 (t, J = 6.9 Hz, 2H), 1.62 (t, J = 6.9 Hz, 2H), 1.56 (t, J = 7.2 Hz, 2H), 0.93 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 138.29, 128.39 (2C), 127.66 (2C), 127.58, 73.12, 67.32, 59.72, 44.36, 41.10, 31.67, 28.03 (2C); HRMS (ESI+) *m*/*z* calcd for C₁₄H₂₂O₂ 222.1620, found 222.1622.

To a stirred solution of **S4** (7.90 g, 35.5 mmol) and imidazole (3.38 g, 49.7 mmol) in dry THF (125 mL) were added TIPSCl (11.4 mL, 53.3 mmol) and DMAP (0.43 g, 3.55 mmol) at 0 °C. The reaction mixture was warmed to rt and stirred for 16 h. The reaction was quenched with saturated NaHCO₃ (aq.) and extracted with EtOAc. The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuo. The crude mixture was purified by silica gel column chromatography (hexanes/EtOAc 97:3 to 80:20) to obtain **S5** (12.4 g, 32.7 mmol, 92%) as a colorless oil: TLC (hexanes) $R_f = 0.20$; IR (thin film) $v_{max} = 2941$, 2891, 2865, 1742, 1463, 1384, 1365, 1245, 1096, 1069, 1028, 1012, 996, 881, 732, 679 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.26 (m, 5H), 4.49 (s, 2H), 3.73 (dd, J = 7.9, 7.1 Hz, 2H), 3.54 (dd, J = 7.9, 7.1 Hz, 2H), 1.63 – 1.57 (m, 2H), 1.53 (dd, J = 8.0, 7.1 Hz, 2H), 1.13 – 1.00 (m, 21H), 0.93 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 138.60, 128.33 (2C), 127.58 (2C), 127.45, 73.01, 67.46, 60.14, 44.83, 41.44, 31.44, 27.80 (2C), 18.05 (6C), 11.96 (3C); HRMS (ESI+) *m/z* calcd for C₂₃H₄₃O₂Si [M + H] 379.3032, found 379.3062.

To a stirred solution of **S5** (12.4 g, 32.7 mmol) in EtOH (100 mL) was added Pd/C (10 wt % 200 mg). H₂ gas was introduced and the reaction mixture was stirred for 18 h under H₂. The solution was filtered through Celite and concentrated in vacuo. The crude mixture was purified by silica gel column chromatography (hexanes/EtOAc 95:5 to 80:20) to obtain **S6** (8.02 g, 27.8 mmol, 85%) as a colorless oil: TLC (hexanes/EtOAc 80:20) $R_f = 0.40$; IR (thin film) $v_{max} = 3343$ (br), 2941, 2891, 2866, 1463, 1384, 1366, 1096, 1065, 1012, 995, 881, 745, 678, 656 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.76 (t, *J* = 6.9 Hz, 2H), 3.72 (t, *J* = 7.2 Hz, 2H), 1.57 (td, *J* = 7.1, 2.8 Hz, 4H), 1.12 – 1.03 (m, 21H), 0.94 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 60.30, 59.85, 44.31, 31.67, 28.14 (2C), 18.05 (6C), 11.95 (3C); HRMS (ESI+) *m*/*z* calcd for C₁₆H₃₆O₂Si 288.2485, found 288.2473.

To a stirred solution of **S6** (8.02 g, 27.8 mmol) and TEMPO (0.22 g, 1.39 mmol) in MeCN (56 mL) an phosphate buffer (pH=6.8, 56 mL) were added NaClO₂ (3.02 g, 33.4 mmol) and bleach (8.25%, 14 mL) at 35 °C. After being stirred for 4 h, the reaction mixture was extracted with EtOAc and combined organic phase was dried over Na₂SO₄ and concentrated in vacuo. The crude mixture was purified by silica gel column chromatography (hexanes/EtOAc 95:5 to 80:20) to give **S7** (8.13 g, 26.9 mmol, 97%) as an orange oil: TLC (hexanes/EtOAc 50:50) R_f = 0.50; IR (thin film) v_{max} = 2942, 2892, 2866, 1705, 1463, 1246, 1097, 1052, 996, 881, 738, 678, 656 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.88 (t, *J* = 5.8 Hz, 2H), 2.38 (s, 2H), 1.71 (t, *J* = 5.8 Hz, 2H), 1.20 – 1.11 (m, 3H), 1.09 (s, 12H), 1.08 (s, 6H), 1.07 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 173.89, 60.72, 46.82, 42.60, 32.40, 28.52 (2C), 17.91 (6C), 11.79 (3C); HRMS (ESI+) *m*/*z* calcd for C₁₆H₃₄O₃NaSi [M + Na] 325.2175, found 325.2171.

To a stirred solution of β-D-Ribofuranose 1,2,3,5-tetraacetate (25.3 g, 79.5 mmol) and thiocresol (10.9 g, 87.5 mmol) in CH₂Cl₂ (240 mL) was added BF₃ OEt₂ (30.2 mL, 238.6 mmol) dropwise at -78 °C. The reaction mixture was warmed to 0 °C and stirred for 30 min. The reaction was quenched with saturated NaHCO₃ (aq.) and extracted with CH₂Cl₂. The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuo. The crude mixture was purified by silica gel column chromatography (hexanes/EtOAc 90:10 to 70:30) to get **S8** (29.3 g, 76.6 mmol, 96%): TLC (hexanes/EtOAc 50:50) R_f = 0.60; [α]²⁰ – 0.411 (c = 0.51, CHCl₃); IR (thin film) v_{max} = 1742, 1371, 1214, 1091, 1045, 1017, 899, 810 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 8.1 Hz, 2H), 7.14 (d, J = 7.7 Hz, 2H), 5.25 – 5.22 (m, 1H), 5.21 – 5.17 (m, 2H), 4.26 – 4.20 (m, 2H), 4.07 (dd, J = 12.9, 5.5 Hz, 1H), 2.34 (s, 3H), 2.09 (s, 3H), 2.06 (s, 3H), 2.04 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.50, 169.63, 169.42, 138.80, 134.18 (2C), 129.81 (2C), 127.45, 87.95, 79.97, 73.67, 71.41, 63.46, 21.15, 20.75, 20.53 (2C); HRMS (ESI+) m/z calcd for C₁₈H₂₂O₇NaS [M + Na] 405.0984, found: 405.0970.

To a stirred solution of **S8** (24.7 g, 64.6 mmol) in MeOH (300 mL) was added K₂CO₃ (44.5 g, 322 mmol). After being stirred for 30 min, the reaction mixture filtered and concentrated in vacuo. The crude mixture was purified by silica gel column chromatography (CHCl₃/MeOH 75:25) to obtain **S9** (11.7 g, 45.6 mmol, 71%): TLC (EtOAc) $R_f = 0.50$; $[\alpha]^{20}_{D}$ -2.247 (c = 1.82, MeOH); IR (thin film) $v_{max} = 3353$ (br), 2921, 1492, 1399, 1331, 1199, 1034, 1015, 940, 806, 703 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 8.1 Hz, 2H), 7.11 (d, J = 7.8 Hz, 2H), 5.21 (d, J = 4.6 Hz, 1H), 4.15 (t, J = 5.1 Hz, 1H), 4.06 (t, J = 5.1 Hz, 2H), 7.20 (the start of the sta

4.9 Hz, 1H), 4.01 (q, J = 3.8 Hz, 1H), 3.75 (dd, J = 12.2, 3.5 Hz, 1H), 3.62 (dd, J = 12.2, 3.8 Hz, 1H), 3.21 (s, 3H), 2.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 138.25, 132.73 (2C), 129.91 (2C), 128.78, 90.45, 84.81, 75.26, 71.42, 62.48, 21.11; HRMS (ESI+) *m*/*z* calcd for C₁₂H₁₆O₄NaS [M + Na] 279.0667, found: 279.0670.

To a stirred solution of **S9** (11.7 g, 45.6 mmol) and trityl chloride (19.1 g, 68.5 mmol) in CH₂Cl₂ (230 mL) were added Et₃N (12.7 mL, 91.3 mmol) and DMAP (1.12 g, 9.13 mmol) at 0 °C, and the reaction mixture was warmed to rt. After being stirred for 16 h, the reaction was quenched with water and extracted with CH₂Cl₂. The combined organic solution was dried over Na₂SO₄ and concentrated in vacuo. The crude mixture was purified by silica gel column chromatography (hexanes/EtOAc 80:20 to 50:50) to get **S10** (17.3 g, 34.7 mmol, 76%): TLC (hexanes/EtOAc 50:50) $R_f = 0.50$; $[\alpha]^{21}_{D} -1.029$ (c = 1.42, CHCl₃); IR (thin film) $v_{max} = 3395$ (br), 3058, 3021, 2921, 2870, 1596, 1491, 1448, 1399, 1319, 1216, 1184, 1154, 1075, 1031, 1012, 1001, 950, 900, 808, 745, 698, 666 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 7.3 Hz, 6H), 7.41 (d, J = 7.9 Hz, 2H), 7.32 – 7.21 (m, 9H), 7.07 (d, J = 7.8 Hz, 2H), 5.22 (d, J = 4.9 Hz, 1H), 4.16 (q, J = 4.7 Hz, 1H), 4.08 (dq, J = 12.9, 4.7 Hz, 2H), 3.26 (qd, J = 10.0, 4.4 Hz, 2H), 2.59 (d, J = 4.7 Hz, 1H), 2.41 (d, J = 4.0 Hz, 1H), 2.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.73 (2C), 137.84, 132.83 (3C), 129.73 (2C), 129.43, 128.74 (6C), 127.86 (6C), 127.07 (3C), 90.49, 86.96, 83.40, 75.27, 72.48, 64.20, 21.11; HRMS (ESI+) m/z calcd for C₃₁H₃₀O₄NaS [M + Na] 521.1762, found: 521.1721.

S10 (12.4 g, 24.8 mmol) and Dibutyltin(IV) oxide (9.25 g, 37.2 mmol) were dissolved in toluene (250 mL). The reaction mixture was stirred at reflux for 3 h and water was removed by Dean-Stark trap. After the reaction was cooled to rt, MeI (3.08 mL, 49.5 mmol) and n-Bu₄NI were added. After being stirred for 16 h at reflux, the reaction was cooled to rt and concentrated under reduced pressure. The crude mixture was purified by silica gel column chromatography (hexanes/EtOAc 80:20 to 67:33) to get **S11** and **S12** (9.03 g, 17.6 mmol, 71%) as diastereomeric mixture. Data for major diastereomer: TLC (hexanes/EtOAc 67:33) $R_f = 0.40$; IR (thin film) $v_{max} = 3471$ (br), 3058, 3021, 2924, 1597, 1491, 1448, 1399, 1323, 1216, 1183, 1154, 1107, 1075, 1031, 1017, 982, 950, 899, 808, 745, 698, 666 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.39 (m, 8H), 7.32 – 7.21 (m, 9H), 7.07 (d, *J* = 8.0 Hz, 2H), 5.33 (d, *J* = 4.2 Hz, 1H), 4.09 – 4.03 (m, 2H), 3.79 – 3.76 (m, 1H), 3.48 (s, 3H), 3.28 (dd, *J* = 10.2, 3.5 Hz, 1H), 3.19 (q, *J* = 5.4 Hz, 1H), 2.50 (d, *J* = 6.0 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.87 (2C), 137.78, 132.75 (3C), 129.73 (2C), 128.83 (6C), 127.78 (6C), 126.97 (3C), 90.75, 87.91, 86.77, 84.34, 80.87, 73.83, 71.08, 64.16, 58.41, 21.12; HRMS (ESI+) *m*/*z* calcd for C₃₂H₃₂O₄NaS [M + Na] 535.1919, found: 535.1835. Data for minor

diastereomer: TLC (hexanes/EtOAc 67:33) $R_f = 0.40$; ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.39 (m, 8H), 7.32 – 7.21 (m, 9H), 7.07 (d, J = 7.7 Hz, 2H), 5.17 (d, J = 5.4 Hz, 1H), 4.14 – 4.09 (m, 2H), 3.81 – 3.79 (m, 1H), 3.38 (s, 3H), 3.19 – 3.15 (m, 2H), 2.79 (d, J = 6.8 Hz, 1H), 2.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.78 (2C), 137.60, 132.75 (3C), 129.64 (2C), 128.73 (6C), 127.82 (6C), 127.04 (3C), 90.75, 87.91, 86.83, 84.10, 81.32, 73.83, 71.08, 63.81, 58.02, 21.12.

To a stirred solution of S11 and S12 (9.03 g, 17.6 mmol) and S7 (6.39 g, 21.1 mmol) in CH₂Cl₂ (50 mL) were added DMAP (3.23 g, 26.4 mmol) and DIC (3.31 mL, 21.1 mmol). The reaction mixture was stirred for 20 h at rt and concentrated in vacuo. The crude mixture was purified by silica gel column chromatography (hexanes/EtOAc 95:5 to 90:10) to afford desired ester (11.6 g, 14.5 mmol, 82%) as diastereomeric mixture. To a stirred solution of ester (11.6 g, 14.5 mmol) and thiocresol (3.60 g, 29.0 mmol) in CH₂Cl₂ was added BF₃OEt₂ (0.73 mL, 5.80 mmol) at 0 °C. After being stirred for 1 h, the reaction was quenched with saturated NaHCO₃ (aq.) and extracted with EtOAc. The combined organic solution was dried over Na₂SO₄ and concentrated in vacuo. The crude mixture was purified by silica gel column chromatography (hexanes/EtOAc 93:7 to 80:20) to afford desired S13 (3.23 g, 5.82 mmol, 40%) and undesired S14 (3.36 g, 6.05 mmol, 42%). Data for desired S13: TLC (hexanes/EtOAc 80:20) $R_f = 0.45$; $[\alpha]_{D}^{21} - 0.378$ (c = 0.82, CHCl₃); IR (thin film) $v_{max} = 3475$ (br), 2940, 2865, 1735, 1493, 1462, 1389, 1367, 1223, 1189, 1093, 1051, 1017, 994, 882, 808, 743, 679, 657 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 8.2 Hz, 2H), 7.15 (d, J = 7.9 Hz, 2H), 5.20 (d, J = 6.0 Hz, 1H), 5.16 (dd, J = 5.3, 3.9 Hz, 2000 Hz)1H), 4.13 (q, J = 3.3 Hz, 1H), 3.81 - 3.72 (m, 4H), 3.57 (dd, J = 12.4, 3.2 Hz, 1H), 3.40 (s, 3H), 2.34 (s, 3H), 2.32 (s, 2H), 1.62 (dd, J = 7.5, 6.5 Hz, 2H), 1.11 – 1.00 (m, 27H); ¹³C NMR (101 MHz, CDCl₃) δ 171.46, 138.51, 133.36 (2C), 129.87 (2C), 128.38, 88.22, 83.70, 82.51, 71.50, 62.29, 60.03, 58.81, 46.28, 44.47, 32.62, 27.48, 27.46, 21.15, 18.03 (6C), 11.89 (3C); HRMS (ESI+) m/z calcd for C₂₉H₅₀O₆NaSSi [M + Na] 577.2995, found: 577.3037. Data for undesired **S14**: TLC (hexanes/EtOAc 80:20) $R_f = 0.40$; $[\alpha]^{22}_{D} - 0.362$ (c = 0.58, CHCl₃); IR (thin film) $v_{max} =$ 3473 (br), 2940, 2865, 1736, 1493, 1463, 1389, 1367, 1220, 1191, 1098, 1052, 1017, 996, 939, 882, 809, 742, 680, 657 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 8.2 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 5.35 (d, J = 2.5 Hz, 1H), 5.32 (dd, J = 4.5, 2.5 Hz, 1H), 4.05 (dt, J = 7.2, 2.9 Hz, 1H), 3.98 (dd, *J* = 7.3, 4.6 Hz, 1H), 3.82 (dd, *J* = 12.3, 2.8 Hz, 1H), 3.77 (t, *J* = 7.0 Hz, 2H), 3.60 (dd, J = 12.3, 3.2 Hz, 1H), 3.36 (s, 3H), 2.35 (s, 2H), 2.33 (s, 3H), 1.64 (td, J = 6.9, 1.2 Hz, 2H),1.11 - 0.99 (m, 27H); ¹³C NMR (101 MHz, CDCl₃) δ 170.99, 138.37, 132.76 (2C), 129.96 (2C), 128.73, 89.49, 82.60, 78.47, 74.69, 61.45, 60.03, 58.78, 46.41, 44.49, 32.66, 27.48 (2C), 21.13, 18.03 (6C), 11.89 (3C); HRMS (ESI+) m/z calcd for $C_{29}H_{50}O_6NaSSi$ [M + Na] 577.2995, found: 577.2998.

To a stirred solution of **S13** (2.50 g, 4.50 mmol) and PPh₃ (2.36 g, 9.01 mmol) in dry benzene (15 mL) were added HN₃ (0.6 M in benzene, 75 mL, 45.0 mmol) and DIAD (1.77 mL, 9.01 mmol). The reaction mixture was stirred for 12 h at rt and concentrated in vacuo. The crude mixture was purified by silica gel column chromatography (hexanes/EtOAc 95:5) to afford **9** (2.29 g, 4.11 mmol, 91%): TLC (hexanes/EtOAc 80:20) $R_f = 0.70$; $[\alpha]^{22}_{D} -0.117$ (c = 0.86, CHCl₃); IR (thin film) $v_{max} = 2941$, 2865, 2101, 1736, 1493, 1463, 1389, 1367, 1281, 1255, 1219, 1189, 1096, 1052, 1014, 995, 918, 882, 808, 754, 679, 657 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 8.1 Hz, 2H), 7.14 (d, J = 7.9 Hz, 2H), 5.20 (d, J = 5.3 Hz, 1H), 4.99 (t, J = 5.2 Hz, 1H), 4.16 (td, J = 5.0, 4.0 Hz, 1H), 3.83 (t, J = 5.4 Hz, 1H), 3.76 (t, J = 7.0 Hz, 2H), 3.41 (t, J = 4.6 Hz, 2H), 3.38 (s, 3H), 2.34 (s, 3H), 2.32 (s, 2H), 1.62 (td, J = 6.9, 0.9 Hz, 2H), 1.11 – 1.01 (m, 27H); ¹³C NMR (101 MHz, CDCl₃) δ 171.31, 138.31, 133.40 (2C), 129.77 (2C), 128.82, 88.87, 82.32, 81.05, 72.14, 60.08, 58.71, 52.73, 46.25, 44.51, 32.65, 27.49, 27.47, 21.14, 18.05 (6C), 11.98 (3C); HRMS (ESI+) m/z calcd for C₂₉H₄₉N₃O₅NaSSi [M + Na] 602.3060, found: 602.3016.

MTPM-protected uridine **11** was synthesized according to the reported procedure ²: TLC (hexanes/EtOAc 33:67) $R_f = 0.50$; $[\alpha]^{22}{}_{D} -2.315$ (c = 8.98, CHCl₃); IR (thin film) $\nu_{max} = 3478$ (br), 3057, 2986, 2940, 1715, 1663, 1598, 1556, 1455, 1374, 1265, 1212, 1066, 1039, 853, 808, 787, 732, 702 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (ddd, J = 17.3, 8.5, 0.7 Hz, 1H), 7.33 – 7.27 (m, 2H), 7.18 (ddd, J = 8.8, 6.9, 2.1 Hz, 1H), 6.85 (d, J = 5.1 Hz, 2H), 6.51 (d, J = 3.7 Hz, 1H), 5.72 (dd, J = 8.1, 4.0 Hz, 1H), 5.60 – 5.51 (m, 2H), 5.48 (dd, J = 12.6, 2.1 Hz, 1H), 4.95 – 4.93 (m, 1H), 4.92 (t, J = 2.4 Hz, 1H), 4.30 – 4.25 (m, 1H), 3.89 (ddd, J = 11.7, 9.1, 2.6 Hz, 1H), 3.82 – 3.73 (m, 4H), 1.57 (s, 3H), 1.36 (d, J = 2.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.10, 162.05, 159.51, 150.97, 150.91, 141.55, 141.31, 136.88, 135.28, 135.22, 134.02, 134.00, 133.84, 133.71, 131.17, 129.38, 126.22, 126.18, 125.44, 125.40, 115.33, 114.29, 114.26, 102.05, 102.01, 97.16, 96.82, 87.15, 87.06, 83.76, 83.65, 80.29, 69.50, 62.76, 62.72, 55.69, 27.25, 25.25; HRMS (ESI+) *m*/*z* calcd for C₂₇H₂₆N₂O₈NaCl₄ [M + Na] 669.0324.

To a stirred solution of 11 (0.65 g, 1.0 mmol) and dichloroacetic acid (0.12 mL, 1.5 mmol) in CH_2Cl_2 (5.0 mL) and DMSO (1.0 mL) was added DIC (0.23 mL, 1.5 mmol) at 0 °C, and the reaction mixture was warmed to rt. After 8 h, the reaction was quenched with saturated NaHCO₃ (aq.) and extracted with EtOAc. The combined organic extracts were dried over Na_2SO_4 and concentrated in vacuo. The precipitates were filtered, and the crude mixture was used for next reaction without purification. To a suspension of $Zn(OTf)_2$ (1.45 g, 4.0 mmol) and (+)-N-methylephedrine (0.79 g, 4.8 mmol) in toluene (6 mL) was added Et₃N (0.61 mL, 4.8 mmol) at rt. After 2 h, 4-phenyl-1-butyne (0.62 mL, 4.8 mmol) was added. After 4 h, a solution of crude aldehyde (0.65 g, 1.0 mmol) in toluene (5 mL) was added. The reaction mixture was stirred for 16 h and quenched with saturated NaHCO₃ (aq.), extracted with EtOAc. The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuo. The crude mixture was purified by silica gel column chromatography (hexanes/EtOAc 60:40) to afford desired 10 (0.62 g, 0.80 mmol, 80% for 2 steps). Data for desired 10: TLC (hexanes/EtOAc 50:50) $R_f = 0.30$; $[\alpha]_{D}^{22}$ -0.116 (c = 2.17, CHCl₃); IR (thin film) $v_{max} = 3387$ (br), 3087, 2981, 2937, 1716, 1664, 1597, 1556, 1454, 1374, 1276, 1211, 1156, 1065, 1039, 916, 856, 807, 786, 733, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.53 (ddd, J = 20.4, 8.5, 0.7 Hz, 1H), 7.35 – 7.27 (m, 4H), 7.24 – 7.15 (m, 4H), 6.85 (d, J = 5.1 Hz, 2H), 6.51 (d, J = 5.4 Hz, 1H), 5.68 (dd, J = 8.1, 4.1 Hz, 1H), 5.60 – 5.50 (m, 3H), 4.89 - 4.78 (m, 2H), 4.57 (ddt, J = 12.0, 4.3, 2.0 Hz, 1H), 4.24 (dd, J = 4.4, 3.1 Hz, 1H),3.78 (d, J = 3.3 Hz, 3H), 2.83 (t, J = 7.5 Hz, 2H), 2.53 (td, J = 7.4, 2.0 Hz, 2H), 1.57 (s, 3H), 1.36 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.11, 162.08, 159.50, 150.87, 150.85, 141.07, 140.84, 140.30, 140.27, 136.90, 135.36, 135.29, 133.99, 133.95, 133.79, 133.64, 131.21, 129.37, 129.34, 128.41, 128.39, 126.40, 126.21, 126.18, 125.49, 125.44, 115.34, 115.32, 114.28, 114.24, 101.79, 101.74, 96.69, 96.37, 89.23, 89.19, 86.83, 86.73, 84.09, 83.93, 80.91, 69.46, 63.02, 62.99, 55.68, 34.72, 34.70, 27.16, 25.29, 20.87, 20.85; HRMS (ESI+) m/z calcd for $C_{37}H_{34}N_2O_8NaCl_4$ [M + Na] 797.0967, found: 797.1004.

To a stirred solution of **11** (1.02 g, 1.58 mmol) and dichloroacetic acid (0.20 mL, 2.37 mmol) in CH₂Cl₂ (8 mL) and DMSO (1.58 mL) was added DIC (0.37 mL, 2.37 mmol) at 0 °C, and the reaction mixture was warmed to rt. After 16 h, the reaction was quenched with saturated NaHCO₃ (aq.) and extracted with EtOAc. The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuo. The precipitates were filtered, and the crude mixture was used for next reaction without purification. To a stirred solution of

4-phenyl-1-butyne (1.1 mL, 7.90 mmol) in toluene (5 mL) was added i-PrMgCl (2.0M in THF, 4.0 mL, 7.90 mmol) at 0 °C. After 3 h, dry Zn(OTf)₂ was added and the reaction mixture was warmed up to rt. After 3 h, a solution of crude aldehyde (xxx g, 1.58 mmol) in toluene (5 mL) was added. The reaction mixture was stirred for 20 h and quenched with saturated NaHCO₃ (aq.), extracted with EtOAc. The combined organic extracts were dried over Na_2SO_4 and concentrated in vacuo. The crude mixture was purified by silica gel column chromatography (hexanes/EtOAc 60:40) to afford desired 10 (0.64 g, 0.84 mmol, 53% for 2 steps) and undesired epimer (0.28 g, 0.35 mmol, 22% for 2 steps). Data for undesired epimer: TLC (hexanes/EtOAc 50:50) $R_f = 0.40$; $[\alpha]^{22}_D - 0.851$ (c = 2.80, CHCl₃); IR (thin film) $v_{max} = 3429$ (br), 3087, 2987, 2938, 1716, 1663, 1597, 1556, 1454, 1374, 1342, 1276, 1239, 1213, 1066, 1039, 917, 859, 807, 787, 750, 699 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (dd, J = 14.6, 8.5 Hz, 1H), 7.37 - 7.27 (m, 4H), 7.25 - 7.15 (m, 4H), 6.85 (d, J = 3.4 Hz, 2H),6.52 (d, J = 4.2 Hz, 1H), 5.70 (dd, J = 8.1, 2.3 Hz, 1H), 5.63 - 5.52 (m, 3H), 4.91 (ddd, J = 11.6, 6.4, 2.4 Hz, 1H), 4.78 (ddd, J = 18.8, 6.3, 3.7 Hz, 1H), 4.59 (ddt, J = 8.7, 3.0, 2.0 Hz, 1H), 4.28 (t, J = 2.7 Hz, 1H), 3.78 (d, J = 1.9 Hz, 3H), 2.84 (t, J = 7.4 Hz, 2H), 2.54 (td, J = 7.5, 2.0 Hz, 2H), 1.59 (s, 3H), 1.38 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.05, 159.48, 150.95, 140.65, 140.43, 140.27, 140.24, 136.92, 135.42, 133.91, 133.75, 133.64, 131.22, 129.34, 128.42 (4C), 126.42, 126.14, 126.12, 125.56, 115.31, 114.22, 114.19, 101.96, 101.92, 96.06, 95.70, 88.25, 88.20, 87.57, 87.51, 83.36, 83.22, 80.21, 80.15, 69.64, 69.57, 62.99, 55.68, 34.68, 34.66, 27.29, 25.32, 20.89, 20.88; HRMS (ESI+) m/z calcd for $C_{37}H_{34}N_2O_8NaCl_4$ [M + Na] 797.0967, found: 797.0894.

To a stirred suspension of **10** (0.42 g, 0.54 mmol), **9** (0.63 g, 1.08 mmol), MS3A (1.70 g) and SrCO₃ (0.80 g, 5.40 mmol) in CH₂Cl₂ (22 mL) were added AgBF₄ (53 mg, 0.27 mmol) and NIS (0.24 g, 1.08 mmol) at 0 °C. After 8 h, the reaction mixture was added Et_3N (2 mL) and passed through a silica gel pad (hexanes/EtOAc 1:1). The combined organic phase was concentrated in vacuo. The crude mixture was purified by silica gel column chromatography (hexanes/EtOAc 90:10 to 80:20 to 70:30) to afford 24 (0.60 g, 0.49 mmol, 91%): TLC (hexanes/EtOAc 70:30) $R_f = 0.40$; $[\alpha]^{23}_{D} + 0.020$ (c = 0.48, CHCl₃); IR (thin film) $v_{max} = 2940, 2866, 2101, 1723, 1675, 1600, 1556, 1455, 1374, 1278, 1214, 1099, 1070,$ 882, 747, 681 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (dd, J = 20.0, 8.5 Hz, 1H), 7.35 – 7.27 (m, 4H), 7.24 - 7.16 (m, 4H), 6.85 (d, J = 6.0 Hz, 2H), 6.51 (d, J = 2.4 Hz, 1H), 5.71 - 5.65 (m, 2H), 5.60 - 5.49 (m, 2H), 5.22 (d, J = 4.5 Hz, 1H), 4.95 (ddd, J = 6.7, 4.9, 3.0 Hz, 1H), 4.79 (td, J= 6.9, 3.2 Hz, 1H), 4.60 (dddd, J = 16.8, 10.2, 5.2, 2.3 Hz, 2H), 4.29 (ddd, J = 6.5, 3.2, 1.6 Hz, 1H), 4.22 (tdd, J = 7.0, 3.6, 1.6 Hz, 1H), 3.88 (d, J = 4.9 Hz, 1H), 3.79 – 3.74 (m, 5H), 3.50 – $3.42 \text{ (m, 1H)}, 3.38 - 3.34 \text{ (m, 1H)}, 3.33 \text{ (d, } J = 1.4 \text{ Hz}, 3\text{H}), 2.84 \text{ (t, } J = 7.3 \text{ Hz}, 2\text{H}), 2.56 \text{ (tt, } J = 7.3 \text{ Hz}, 2\text{Hz}), 2.56 \text{ (tt, } J = 7.3 \text{ Hz}, 2\text{Hz}), 2.56 \text{ (tt, } J = 7.3 \text{ Hz}, 2\text{Hz}), 2.56 \text{ (tt, } J = 7.3 \text{ Hz}, 2\text{Hz}), 2.56 \text{ (tt, } J = 7.3 \text{ Hz}, 2\text{Hz}), 2.56 \text{ (tt, } J = 7.3 \text{ Hz}, 2\text{Hz}), 2.56 \text{ (tt, } J = 7.3 \text{ Hz}, 2\text{Hz}), 2.56 \text{ (tt, } J = 7.3 \text{ Hz}, 2\text{Hz}), 2.56 \text{ (tt, } J = 7.3 \text{ Hz}, 2\text{Hz}), 2.56 \text{ (tt, } J = 7.3 \text{ Hz}, 2\text{Hz}), 2.56 \text{ (tt, } J = 7.3 \text{ Hz}), 2.56 \text{ (tt, } J = 7.3 \text{ Hz}), 3.56 \text{ (tt, } J = 7.3 \text{ Hz}), 3.56 \text{ (tt, } J = 7.3 \text{ Hz}), 3.56 \text{ (tt, } J = 7.3 \text{ Hz}), 3.56 \text{ (tt, } J = 7.3 \text{ Hz}), 3.56 \text{ (tt, } J = 7.3 \text{ Hz}), 3.56 \text{ (tt, } J = 7.3 \text{ Hz}), 3.56 \text{ (tt, } J = 7.3 \text{ Hz}), 3.56 \text{ (tt, } J = 7.3 \text{ Hz}), 3.56 \text{ (tt, } J = 7.3 \text{ Hz}), 3.56 \text{ (tt, } J = 7.3 \text{ Hz}), 3.56 \text{ (tt, } J = 7.3 \text{ Hz}), 3.56 \text{ (tt, } J = 7.3 \text{ Hz}), 3.56 \text{ (tt, } J = 7.3 \text$ 7.7, 2.0 Hz, 2H), 2.33 (s, 2H), 1.62 (t, J = 6.9 Hz, 2H), 1.57 (s, 3H), 1.36 (s, 3H), 1.11 – 1.01 (m, 27H); 13C NMR (101 MHz, CDCl3) & 171.42, 162.11, 162.10, 159.48, 150.72, 150.67, 140.23, 140.15, 140.12, 140.00, 136.92, 135.43, 135.31, 133.93, 133.88, 133.76, 133.61, 131.24, 129.36,

129.30, 128.47 (2C), 128.46 (2C), 128.39 (2C), 126.47, 126.45, 126.17, 126.12, 125.55, 125.44, 115.31, 115.28, 114.28, 104.40, 104.36, 101.81, 101.78, 94.95, 94.67, 88.70, 88.21, 88.01, 84.38, 84.30, 82.15, 81.37, 81.28, 80.02, 73.26, 73.20, 69.54, 69.41, 68.58, 68.49, 60.03, 58.51, 58.50, 55.66, 53.60, 53.55, 46.18, 44.51, 36.62, 34.49, 34.47, 32.64, 27.41, 27.39, 27.10, 25.38, 20.84, 18.03 (6C), 11.93 (3C) ; HRMS (ESI+) m/z calcd for C₅₉H₇₅N₅O₁₃NaSiCl₄ [M + Na] 1252.3782, found: 1252.3826.

A suspended solution of 24 (0.60 g, 0.49 mmol), NH_4Cl (0.52 g, 9.8 mmol) and Zn (0.64 g, 9.8 mmol) in EtOH/H₂O (9:1, 9.8 mL) was stirred at 80 °C for 8 h and cooled to rt. The precipitates were filtered and the combined organic solution was concentrated in vacuo. The crude mixture was used for the next reaction without purification. To a stirred solution of crude mixture in THF (9.8 mL) were added saturated NaHCO₃ (aq., 9.8 mL) and Boc₂O (0.32 g, 1.47 mmol). The reaction mixture was stirred for 6 h at rt, and the aqueous layer was extracted with EtOAc. The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuo. The crude mixture was purified by silica gel column chromatography (hexanes/EtOAc 80:20 to 67:33) to afford 25 (0.57 g, 0.44 mmol, 90% for 2 steps): TLC (hexanes/EtOAc 67:33) $R_f = 0.20$; $[\alpha]^{22}_{D}$ -0.060 (c = 2.93, CHCl₃); IR (thin film) $v_{\text{max}} = 3387$ (br), 2939, 2866, 1717, 1672, 1598, 1556, 1512, 1454, 1365, 1276, 1247, 1212, 1160, 1096, 1067, 1045, 881, 786, 680 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.53 (dd, J = 18.8, 8.8 Hz, 1H), 7.34 - 7.26 (m, 4H), 7.23 - 7.16 (m, 4H), 6.84 (d, J = 6.4 Hz, 2H), 6.50 (d, J = 3.7Hz, 1H), 5.71 – 5.63 (m, 2H), 5.59 – 5.48 (m, 2H), 5.41 – 5.31 (m, 1H), 5.29 – 5.20 (m, 1H), 4.99 -4.89 (m, 1H), 4.84 - 4.75 (m, 1H), 4.67 - 4.59 (m, 1H), 4.58 - 4.42 (m, 1H), 4.33 - 4.27 (m, 1H), 4.22 - 4.15 (m, 1H), 3.91 - 3.86 (m, 1H), 3.79 - 3.74 (m, 5H), 3.49 - 3.39 (m, 1H), 3.36 -3.32 (m, 1H), 3.31 (d, J = 0.9 Hz, 2H), 3.22 (dt, J = 13.2, 6.1 Hz, 1H), 2.83 (t, J = 7.3 Hz, 2H),2.57 (tt, J = 7.6, 2.2 Hz, 2H), 2.31 (s, 2H), 1.62 (t, J = 6.9 Hz, 2H), 1.57 (s, 3H), 1.41 (s, 9H), 1.37 (s, 3H), 1.10 – 1.01 (m, 27H); ¹³C NMR (101 MHz, CDCl₃) δ 171.39, 159.49, 156.27, 150.73, 140.02, 136.91, 135.37, 135.28, 133.96, 133.91, 131.23, 129.36, 129.32, 128.48 (2C), 128.34 (2C), 126.48, 126.13, 125.38, 115.32, 115.28, 114.17, 104.40, 101.84, 84.39, 84.31, 79.65, 69.37, 60.05, 58.50, 55.66, 46.19, 44.66, 34.49, 32.60, 28.40, 28.21 (3C), 27.40, 27.31, 27.12, 25.40, 20.81, 18.03 (6C), 11.94 (3C); HRMS (ESI+) m/z calcd for C₆₄H₈₅N₃O₁₅NaSiCl₄ [M + Na] 1326.4402, found: 1326.4432.

To a stirred solution of 25 (0.26 g, 0.20 mmol) and quinoline (46.4 μ L, 0.39 mmol) in EtOAc (100 mL) was added Lindlar catalyst (100 mg). H₂ gas was introduced and the reaction mixture was stirred for 10 h under H₂ atmosphere at rt. The solution was filtered through Celite and washed with 1N HCl (aq.). The combined organic solution was dried over Na₂SO₄, concentrated in vacuo. The crude mixture was used for the next reaction without purification. To a stirred solution of the crude mixture and NMO (0.23 g, 2.0 mmol) in t-BuOH/acetone (1:1, 5.0 mL) was added OsO_4 (4% in water, 2.5 mL, 0.39 mmol) at rt. The reaction mixture was stirred for 8 h, diluted with EtOAc and guenched with saturated NaHCO₃ ag./ saturated Na₂SO₃ ag. (2:1). The heterogeneous mixture was stirred for 30 min, extracted with EtOAc. The combined organic extracts were dried over Na_2SO_4 and concentrated in vacuo. The crude mixture was passed through a silica gel pad (hexanes/EtOAc 33:67) to afford diol. To a stirred solution of diol (0.21 g, 0.16 mmol) and NaHCO₃ (0.13 g, 1.56 mmol) in CH₂Cl₂ (1.6 mL) was added Pb(OAc)₄ (0.12 g, 0.28 mmfol) at 0 °C. The reaction mixture was stirred for 1 h at 0 °C and quenched with saturated NaHCO₃ ag., extracted with EtOAc. The combined organic extracts were dried over Na_2SO_4 and concentrated in vacuo. The crude mixture was used for the next reaction without purification. A CH_2Cl_2 (1.0 mL) solution of the crude mixture of 8, Cbzprotected 1,3-diaminopropane (0.11 g, 0.47 mmol) and MgSO₄ (0.19 g, 1.56 mmol) were stirred at rt. After 3 h, the reaction was added TMSCN (58.4 µL, 0.47 mmol) and stirred for 20 h at rt. After completion, the reaction mixture was quenched with saturated NaHCO₃ aq., extracted with EtOAc. The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by silica gel column chromatography (hexanes/EtOAc 67:33 to 50:50) to afford **26** (0.17 g, 0.12 mmol, 60% for 4 steps): TLC (hexanes/EtOAc 50:50) $R_f = 0.40$; $[\alpha]^{22}_{D}$ -0.034 (c = 0.17, CHCl₃); IR (thin film) $v_{max} = 3359$ (br), 2927, 2865, 1716, 1678, 1600, 1525, 1456, 1367, 1251, 1070 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.45 (dd, J = 17.6, 8.4 Hz, 1H), 7.41 – 7.28 (m, 5H), 7.24 – 7.16 (m, 4H), 6.88 (d, J = 5.3 Hz, 2H), 6.46 (d, J = 12.9 Hz, 1H), 6.03 – 5.96 (m, 1H), 5.74 – 5.68 (m, 1H), 5.58 - 5.48 (m, 2H), 5.43 (d, J = 8.7 Hz, 2H), 5.36 - 5.16 (m, 3H), 5.07 (dd, J = 11.9, 6.7 Hz, 3H), 5.00 (d, J = 2.9 Hz, 1H), 4.93 (t, J = 6.6 Hz, 1H), 4.86 (d, J = 15.2 Hz, 1H), 4.22 (d, J = 4.2Hz, 2H), 4.18 (s, 2H), 4.03 (dd, J = 7.8, 4.9 Hz, 1H), 3.84 - 3.74 (m, 3H), 3.46 - 3.16 (m, 5H), 3.04 (q, J = 5.7 Hz, 1H), 2.99 - 2.88 (m, 1H), 2.88 - 2.73 (m, 1H), 2.73 - 2.47 (m, 2H), 2.38 - 2.382.25 (m, 2H), 1.69 (t, J = 5.8 Hz, 2H), 1.59 (s, 3H), 1.47 – 1.37 (m, 12H), 1.11 – 1.02 (m, 27H); ¹³C NMR (101 MHz, CDCl₃) δ 171.11, 159.62, 156.44, 156.22, 142.48, 136.86, 136.81, 134.66, 134.30, 134.06, 131.10, 129.55, 128.68 (2C), 128.50 (2C), 128.44, 128.35, 128.17, 128.12, 128.08, 126.45, 125.01, 115.44, 114.18, 108.03, 101.87, 98.74, 84.87, 82.92, 82.30, 79.06, 66.57, 60.37, 60.09, 58.48, 55.72, 51.72, 46.22, 45.29, 44.71, 41.29, 32.61, 29.68, 28.47 (3C), 28.45, 28.37, 28.35, 27.37, 27.29, 26.95, 25.19, 21.02, 18.06 (6C), 14.19, 14.09, 11.96 (3C); HRMS (ESI+) m/z calcd for C₆₇H₉₃N₆O₁₇SiCl₄ [M + H] 1421.5121, found: 1421.5131.

To a stirred solution of 26 (0.17 g, 0.12 mmol) in EtOH/H₂O (9:1, 2.4 mL) were added HgCl₂ (64.1 mg, 0.24 mmol) and acetaldoxime (72.0 µL, 1.18 mmol) at rt. The reaction mixture was stirred for 6 h at rt, added E_3N (49.4 μ L, 0.35 mmol) and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (CHCl₃/MeOH 98:2 to 95:5) to afford 6 (0.12 g, 0.082 mmol, 69%): TLC (CHCl₃/MeOH 95:5) $R_f = 0.40$; $[\alpha]_{D}^{21} + 0.198$ (c = 0.32, MeOH); IR (thin film) $v_{max} = 3334$ (br), 2928, 2865, 1715, 1701, 1677, 1524, 1456, 1367, 1250, 1100, 1071, 1047, 882 cm⁻¹; ¹H NMR (500 MHz, CD_3OD) δ 7.64 (d, J = 8.5 Hz, 1H), 7.56 – 7.50 (m, 1H), 7.40 (dt, J = 6.0, 3.0 Hz, 1H), 7.37 – 7.31 (m, 5H), 7.28 (ddd, J = 8.4, 5.3, 2.6 Hz, 2H), 6.96 (d, J = 23.0 Hz, 2H), 6.55 (d, J = 69.8 Hz, 1H), 5.75 - 5.68 (m, 1H), 5.64 (dd, J = 15.7, 1.8 Hz, 1H), 5.61 - 5.52 (m, 2H), 5.28 (ddd, J = 15.7, 1.8 Hz, 1H), 5.61 - 5.52 (m, 2H), 5.28 (ddd, J = 15.7, 1.8 Hz, 1.8 H 27.8, 6.7, 3.4 Hz, 1H, 5.13 - 5.01 (m, 4H), 4.94 - 4.81 (m, 1H), 4.35 (dd, J = 21.6, 9.5 Hz, 1H), 4.24 (d, J = 7.6 Hz, 1H), 4.14 (tq, J = 5.6, 2.7 Hz, 1H), 3.91 (dd, J = 7.0, 4.9 Hz, 1H), 3.83 (td, J= 6.8, 1.5 Hz, 2H), 3.80 (d, J = 13.5 Hz, 3H), 3.43 – 3.38 (m, 1H), 3.36 (d, J = 3.5 Hz, 3H), 3.22 (t, J = 6.8 Hz, 2H), 3.18 - 3.10 (m, 1H), 2.72 - 2.59 (m, 1H), 2.58 - 2.46 (m, 1H), 2.35 (dd, J = 3.10 (m, 2H), 3.18 - 3.10 (m, 2H), 3.18 + 3.10 (m, 2H), 3.1813.5, 1.1 Hz, 1H), 2.32 - 2.27 (m, 1H), 1.69 - 1.60 (m, 4H), 1.58 (s, 3H), 1.45 (d, J = 4.7 Hz, 2H), 1.42 (d, J = 2.8 Hz, 9H), 1.40 (d, J = 8.4 Hz, 3H), 1.13 – 1.05 (m, 27H); ¹³C NMR (101 MHz, CD₃OD) δ 172.91, 164.65, 161.41, 158.91, 158.26, 152.32, 138.54, 138.13, 135.21, 134.97, 132.64, 130.31, 129.51 (2C), 128.98, 128.81 (2C), 127.40, 126.71, 116.49, 115.31, 108.56, 102.45, 98.20, 85.76, 84.69, 84.24, 84.06, 81.34, 80.39, 79.47, 78.22, 77.69, 73.60, 70.88, 67.37, 63.12, 61.50, 58.75, 56.53, 47.09, 46.85, 45.39, 39.70, 35.70, 33.59, 32.75, 31.11, 28.92 (3C), 28.27, 28.22, 27.51, 25.76, 25.70, 23.70, 18.60 (6C), 13.22 (3C); HRMS (ESI+) m/z calcd for $C_{67}H_{95}N_6O_{18}SiCl_4$ [M + H] 1439.5226, found: 1439.5168.

To a stirred solution of **6** (12.0 mg, 8.37 µmol) in IPA/H₂O/AcOH (95:5:1, 6.0 mL) was added Pd/C (10wt % 6.0 mg) under N₂ atmosphere. H₂ gas was introduced and the reaction mixture was stirred for 3 h under H₂. The solution was filtered through Celite and concentrated in vacuo. The crude mixture was use for the next reaction without purification: ¹H NMR (500 MHz, CD₃OD) δ 7.64 (d, *J* = 8.5 Hz, 1H), 7.56 – 7.50 (m, 1H), 7.40 (dd, *J* = 6.3, 2.1 Hz, 1H), 7.28 (ddd, *J* = 8.4, 5.3, 2.5 Hz, 2H), 6.96 (d, *J* = 23.0 Hz, 2H), 6.55 (d, *J*

= 69.8 Hz, 1H), 5.71 (dd, J = 8.0, 3.6 Hz, 1H), 5.64 (dd, J = 15.7, 1.8 Hz, 1H), 5.28 (ddd, J = 27.8, 6.7, 3.3 Hz, 1H), 5.14 – 5.01 (m, 1H), 4.35 (dd, J = 21.6, 9.5 Hz, 1H), 4.24 (q, J = 3.4 Hz, 1H), 4.19 – 4.09 (m, 1H), 3.91 (dd, J = 7.0, 4.9 Hz, 1H), 3.87 – 3.76 (m, 6H), 3.44 – 3.34 (m, 1H), 3.25 – 3.09 (m, 1H), 2.65 (tq, J = 16.8, 9.8, 8.3 Hz, 1H), 2.52 (ddd, J = 27.7, 12.2, 6.7 Hz, 1H), 2.39 – 2.25 (m, 2H), 1.64 (ddt, J = 14.2, 7.6, 4.1 Hz, 2H), 1.58 (s, 3H), 1.46 – 1.35 (m, 12H), 1.15 – 1.03 (m, 21H); HRMS (ESI+) m/z calcd for C₅₉H₈₉N₆O₁₆SiCl₄ [M + H] 1305.4858, found: 1305.4887.

To a stirred solution of 27 (10.5 mg, 8.05 μ mol), 23 (9.4 mg, 0.016 mmol), NaHCO₃ (13.5 mg, 0.16 mmol) and **29** (9.1 mg, 0.040 mmol) in DMF/H₂O (25:1, 0.3 mL) was added EDCI (7.7 mg, 0.040 mmol). The reaction mixture was stirred for 3 h at rt, quenched with saturated NaHCO₃ (aq.), extracted with CHCl₃. The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuo. The crude mixture was purified by silica gel column chromatography (CHCl₃/MeOH 95:5 to 90:10) to afford desired 4 (13.8 mg, 7.33 µmol, 91%): ¹H NMR (500 MHz, CD₃OD) δ 7.74 – 7.46 (m, 2H), 7.41 (t, J = 2.9 Hz, 1H), 7.38 – 7.22 (m, 2H), 6.97 (d, J = 15.2 Hz, 2H), 6.57 (d, J = 62.4 Hz, 1H), 5.76 (t, J = 6.7 Hz, 1H), 5.70 (d, J = 15.1 Hz, 1H), 5.58 (q, J = 10.3 Hz, 2H), 5.28 (d, J = 27.5 Hz, 1H), 5.04 (d, J = 8.3 Hz, 1H), 4.92 (dd, J = 10.0, 4.3 Hz, 1H), 4.74 (dd, J = 23.4, 5.7 Hz, 1H), 4.51 (d, J = 4.8 Hz, 2H), 4.42 - 4.36 (m, 1H), 4.33 (q, J = 7.1 Hz, 2H), 4.24 (s, 1H), 4.17 - 4.07(m, 2H), 4.04 (d, J = 4.0 Hz, 1H), 3.91 (d, J = 5.1 Hz, 1H), 3.88 - 3.78 (m, 6H), 3.72 - 3.62 (m, 1H), 3.54 – 3.43 (m, 2H), 3.43 – 3.34 (m, 2H), 2.76 – 2.49 (m, 2H), 2.38 – 2.28 (m, 2H), 2.22 – 2.07 (m, 2H), 2.04 (dq, J = 13.7, 4.5 Hz, 2H), 1.82 (dtd, J = 14.0, 9.3, 4.9 Hz, 4H), 1.70 – 1.56 (m, 10H), 1.48 (d, J = 3.1 Hz, 9H), 1.46 (d, J = 3.9 Hz, 19H), 1.45 – 1.38 (m, 4H), 1.09 (d, J = 3.1 Hz, 9H), 1.46 (d, J = 3.9 Hz, 19H), 1.45 – 1.38 (m, 4H), 1.09 (d, J = 3.1 Hz, 9H), 1.46 (d, J = 3.9 Hz, 19H), 1.45 – 1.38 (m, 4H), 1.09 (d, J = 3.1 Hz, 9H), 1.46 (d, J = 3.9 Hz, 19H), 1.45 – 1.38 (m, 4H), 1.09 (d, J = 3.1 Hz, 9H), 1.46 (d, J = 3.9 Hz, 19H), 1.45 – 1.38 (m, 4H), 1.09 (d, J = 3.1 Hz, 9H), 1.46 (d, J = 3.9 Hz, 19H), 1.45 – 1.38 (m, 4H), 1.09 (d, J = 3.1 Hz, 9H), 1.46 (d, J = 3.9 Hz, 19H), 1.45 – 1.38 (m, 4H), 1.09 (d, J = 3.1 Hz, 9H), 1.46 (d, J = 3.9 Hz, 19H), 1.45 – 1.38 (m, 4H), 1.09 (d, J = 3.1 Hz, 19H), 1.46 (d, J = 3.1 Hz, 19H), 1.45 (d, J = 3.1 Hz, 19H), 1.46 (d, J = 3.1 4.4 Hz, 21H), 0.99 - 0.89 (m, 12H); HRMS (ESI+) m/z calcd for $C_{86}H_{135}N_{12}O_{23}SiCl_4$ [M + H] 1871.8286, found: 1871.8354.

To a stirred solution of 4 (4.1 mg, 2.17 μ mol) in CH₂Cl₂ (0.30 mL) was added TFA (0.20 mL). The reaction mixture was stirred for 5 h at rt, and all volatile were evaporated in vacuo. To a stirred solution of the crude mixture in H_2O (0.2 mL) was added TFA (0.3 mL). The reaction mixture was stirred for 20 h at 60 °C, and all volatile were evaporated in vacuo. The crude mixture was purified by C18 reverse-phase HPLC [column: HYPERSIL GOLD[™] (175 Å, 12 μm, 250 x 10 mm), solvents: a gradient elution of 15:85 to 25:75 MeOH:0.1% TFA in H₂O over 20 min, flow rate: 2.0 mL/min, UV: 254 nm] to afford 1 (1.7 mg, 0.0018 mmol, 84%, retention time: 10 min): ¹H NMR (500 MHz, CD₃OD) δ 7.69 (d, J = 8.0 Hz, 1H), 5.78 (d, J = 8.1 Hz, 1H), 5.68 (d, J = 3.4 Hz, 1H), 5.25 (d, J = 2.1 Hz, 1H), 5.25 (d, J = 2.1 Hz, 1H), 5.25 (d, J = 2.1 Hz, 1H) 1H), 4.49 (s, 1H), 4.46 (t, J = 4.4 Hz, 1H), 4.38 (d, J = 5.0 Hz, 1H), 4.36 (d, J = 5.6 Hz, 1H), 4.34 (d, J = 3.9 Hz, 1H), 4.32 (d, J = 7.1 Hz, 1H), 4.30 (s, 2H), 4.23 (t, J = 5.3 Hz, 1H), 4.19 (d, J = 5.3 Hz, 1Hz, 1Hz), 4.19 (d, J = 5.3 Hz, 1Hz), 4.19 (d, J = 5.3 Hz, 1Hz), 4.19 (d, J = 5.3 Hz), 4.19 (d, J = 5.5.0 Hz, 2H), 4.13 – 4.07 (m, 2H), 3.85 – 3.80 (m, 2H), 3.50 (s, 3H), 3.46 – 3.41 (m, 4H), 2.91 – 2.87 (m, 2H), 2.21 – 2.13 (m, 2H), 2.07 (dt, J = 13.9, 5.9 Hz, 2H), 1.87 (s, 2H), 1.64 (t, J = 7.2 Hz, 2H), 1.02 – 0.85 (m, 12H); ¹³C NMR (101 MHz, CD₃OD) δ 173.76, 173.14, 171.45, 170.55, 159.89, 82.72, 79.49, 61.53, 60.15, 56.84, 52.91, 41.77, 38.25, 37.62, 36.24, 32.20, 28.90, 28.57, 28.50, 28.46, 28.40, 28.36, 28.33, 28.26, 28.21, 26.06, 26.03, 23.60, 21.92, 19.63, 18.59, 18.03, 17.27, 17.08, 14.57, 13.22; HRMS (ESI+) m/z calcd for $C_{38}H_{64}N_{11}O_{16}$ [M + H] 930.4533, found 930.4516.

Conditions:

column: Phenomenex Kinetex 1.7 μ XB-C18 100 Å 150 x 2.10 mm column, solvents: 25 : 75 MeOH : 0.1% TFA in water, UV: 254 nm

To a stirred solution of 4 (7.6 mg, 4.03 μ mol) in CH₂Cl₂ (0.30 mL) was added TFA (0.20 mL). The reaction mixture was stirred for 6 h at rt, and all volatile were evaporated in vacuo. To a stirred solution of the crude mixture in H_2O (0.3 mL) was added TFA (0.2 mL). The reaction mixture was stirred for 4 h at rt, and all volatile were evaporated in vacuo. The crude mixture was purified by C18 reverse-phase HPLC [column: HYPERSIL GOLDTM (175 Å, 12 μm, 250 x 10 mm), solvents: a gradient elution of 15 : 85 to 25 : 75 MeOH : 0.1% TFA in H₂O over 20 min, flow rate: 2.0 mL/min, UV: 254 nm], to afford 2 (3.3 mg, 0.0035 mmol, 88% retention time: 17.5 min): ¹H NMR (400 MHz, CD₃OD) δ 7.69 (d, J = 8.0 Hz, 1H), 5.78 (d, J = 8.0 Hz, 1H), 5.68 (d, J = 3.4 Hz, 1H), 5.27 -5.24 (m, 1H), 4.50 - 4.48 (m, 1H), 4.46 (dd, J = 5.0, 3.5 Hz, 1H), 4.38 (d, J = 4.4 Hz, 1H), 4.36(d, J = 5.4 Hz, 1H), 4.34 (d, J = 3.5 Hz, 1H), 4.33 - 4.31 (m, 1H), 4.30 - 4.29 (m, 2H), 4.25 - 4.31 (m, 1H), 4.30 - 4.29 (m, 2H), 4.25 - 4.31 (m, 1H), 4.30 - 4.29 (m, 2H), 4.25 - 4.31 (m, 1H), 4.30 - 4.29 (m, 2H), 4.25 - 4.31 (m, 1H), 4.30 - 4.29 (m, 2H), 4.25 - 4.31 (m, 1H), 4.30 - 4.29 (m, 2H), 4.25 - 4.31 (m, 1H), 4.30 - 4.29 (m, 2H), 4.25 - 4.31 (m, 1H), 4.30 - 4.29 (m, 2H), 4.25 - 4.31 (m, 1H), 4.30 - 4.29 (m, 2H), 4.25 - 4.31 (m, 1H), 4.30 - 4.29 (m, 2H), 4.25 - 4.31 (m, 1H), 4.30 - 4.29 (m, 2H), 4.25 - 4.31 (m, 1H), 4.30 - 4.29 (m, 2H), 4.25 - 4.31 (m, 1H), 4.30 - 4.29 (m, 2H), 4.25 - 4.31 (m, 1H), 4.30 - 4.29 (m, 2H), 4.25 - 4.31 (m, 2H), 4.31 (m, 2H), 4.30 - 4.31 (m, 2H), 4.30 - 4.31 (m, 2H), 4.31 (m, 2H)4.22 (m, 1H), 4.19 (d, J = 5.1 Hz, 2H), 4.10 (d, J = 7.1 Hz, 2H), 3.84 – 3.81 (m, 2H), 3.50 (s, 3H), 3.46 - 3.42 (m, 4H), 2.93 - 2.91 (m, 2H), 2.20 - 2.13 (m, 2H), 2.09 - 2.02 (m, 2H), 1.92 - 1.83 (m, 2H), 1.68 - 1.60 (m, 2H), 1.02 - 0.88 (m, 12H); HRMS (ESI+) m/z calcd for $C_{38}H_{65}N_{12}O_{15}$ [M + H] 929.4692, found 929.4710. HPLC analysis of 2.

Conditions:

column: Phenomenex Kinetex 1.7 μ XB-C18 100 Å 150 x 2.10 mm column, solvents: 25 : 75 MeOH : 0.1% TFA in water, UV: 254 nm

To a stirred solution of **2** (1.9 mg, 2.04 µmol), NH₄Cl (5.4 mg, 0.10 mmol), NaHCO₃ (2.6 mg, 0.030 mmol) and GOx (1.4 mg, 0.010 mmol) in DMF (0.2 mL) was added EDCI (1.9 mg, 0.010 mmol). The reaction mixture was stirred for 6 h at rt, filtered and concentrated in vacuo. The crude mixture was purified by C18 reverse-phase HPLC [column: HYPERSIL GOLDTM (175 Å, 12 µm, 250 x 10 mm), solvents: a gradient elution of 15 : 85 to 25 : 75 MeOH : 0.1% TFA in H₂O over 20 min, flow rate: 2.0 mL/min, UV: 254 nm] to afford **3** (1.40 mg, 1.51 µmol, 75%, retention time: 18 min): ¹H NMR (500 MHz, CD₃OD) δ 7.70 (d, *J* = 8.0 Hz, 1H), 5.77 (d, *J* = 8.0 Hz, 1H), 5.27 – 5.23 (m, 1H), 4.48 (s, 1H), 4.44 (t, *J* = 4.2 Hz, 1H), 4.38 (d, *J* = 4.9 Hz, 1H), 4.37 (d, *J* = 6.3 Hz, 1H), 4.34 (d, *J* = 6.3 Hz, 1H), 4.32 (d, *J* = 5.8 Hz, 1H), 4.31 – 4.28 (m, 2H), 4.26 – 4.22 (m, 2H), 4.21 – 4.19 (m, 1H), 4.19 – 4.16 (m, 2H), 4.09 (dd, *J* = 12.2, 6.1 Hz, 2H), 3.85 – 3.78 (m, 1H), 3.49 (s, 3H), 3.46 – 3.41 (m, 4H), 2.92 – 2.89 (m, 2H), 2.16 (p, *J* = 7.5, 6.5 Hz, 2H), 2.10 – 1.99 (m, 2H), 1.91 – 1.81 (m, 2H), 1.67 – 1.57 (m, 2H), 1.02 – 0.85 (m, 12H); HRMS (ESI+) m/z calcd for C₃₈H₆₆N₁₃O₁₄ [M + H] 928.4852, found 928.4864.

HPLC analysis of **3**. \mathbb{N}^{W}

Conditions:

column: Phenomenex Kinetex 1.7 μ XB-C18 100 Å 150 x 2.10 mm column, solvents: 25 : 75 MeOH : 0.1% TFA in water, UV: 254 nm

The following experiments were performed to characterize the key intermediates via ¹H-NMR and ¹³C-NMR. **S15**, **S16**, **S17** do not show diatereomers caused by the MTPM group.

To a stirred solution of 6 (79.3 mg, 0.055 mmol) in CH_2Cl_2 (0.60 mL) was added TFA (0.40 mL). The reaction mixture was stirred for 3 h at rt, and all volatile were evaporated in vacuo. To a stirred solution of the crude mixture in H_2O (0.6 mL) was added TFA (0.4 mL). The reaction mixture was stirred for 3 h at rt, and all volatile were evaporated in vacuo. To a stirred solution of the crude mixture and NaHCO₃ (23.1 mg, 0.27 mmol) in dioxane/H₂O (5:1, 1.2 mL) was added Boc₂O (60.0 mg, 0.27 mmol). The reaction mixture was stirred for 2 h at rt, filtered and concentrated in vacuo. The crude product was purified by silica gel column chromatography (CHCl₃/MeOH 95:5 to 90:10 to 80:20) to afford **S15** (32.6 mg, 0.043 mmol, 79%): TLC (CHCl₃/MeOH 70:30) $R_f = 0.30$; $[\alpha]^{21}_{D}$ +0.137 (c = 0.53, MeOH); IR (thin film) $v_{max} = 3336$ (br), 2934, 1690, 1525, 1455, 1366, 1253, 1167 cm⁻¹; ¹H NMR (500 MHz, CD₃OD) δ 7.90 (d, J = 8.1 Hz, 1H), 7.39 – 7.32 (m, 5H), 7.31 – 7.26 (m, 1H), 5.81 (d, J = 2.7 Hz, 1H), 5.77 (d, J = 8.1 Hz, 1H), 5.16 (d, J = 2.7 Hz, 1H), 5.07 (s, 2H), 4.21 - 4.13 (m, 3H), 4.08 (t, J = 5.0 Hz, 1H), 4.06 - 4.01 (m, 1H), 3.93 (q, J = 5.2 Hz, 1H), 3.68 - 3.60 (m, 1H), 3.43 (d, J = 5.9 Hz, 2H), 3.40 (s, 3H), 3.35 (d, J = 0.9 Hz, 1H), 3.28 (d, J = 0.9 Hz, 1 5.6 Hz, 1H), 3.21 (td, J = 6.7, 2.8 Hz, 2H), 2.64 (hept, J = 6.1, 5.1 Hz, 2H), 1.69 (p, J = 6.8 Hz, 2H), 1.44 (s, 9H); ¹³C NMR (101 MHz, CD₃OD) δ 142.36, 129.46 (2C), 128.93, 128.79 (2C), 108.22, 102.74, 91.85, 85.90, 85.28, 84.48, 81.23, 80.36, 75.39, 71.95, 71.32, 67.38, 65.09, 58.56, 46.58, 43.84, 39.73, 31.08, 28.87 (3C); HRMS (ESI+) m/z calcd for $C_{33}H_{49}N_6O_{14}$ [M + H] 753.3307, found: 753.3340.

To a stirred solution of **S15** (19.0 mg, 0.025 mmol) in IPA/H₂O (9:1, 1.0 mL) was added Pd/C (10wt % 9.5 mg) under N₂ atmosphere. H₂ gas was introduced and the reaction mixture was stirred for 2 h under H₂. The solution was filtered through Celite and concentrated in vacuo. The crude mixture was use for the next reaction without purification.

To a stirred solution of **S16** (3.7 mg, 0.006 mmol), **23** (14.7 mg, 0.025 mmol), NaHCO₃ (10.6 mg, 0.13 mmol) and **29** (5.8 mg, 0.025 mmol) in DMF/H₂O (25:1, 0.4 mL) was added EDCI (14.5 mg, 0.076 mmol). The reaction mixture was stirred for 4 h at rt, filtered and concentrated in vacuo. The crude mixture was purified by C18 reverse-phase HPLC [column: HYPERSIL GOLDTM (175 Å, 12 µm, 250 x 10 mm), solvents: elution of 70 : 30 MeOH : 0.05M NH₄HCO₃ in H₂O, flow rate: 2.0 mL/min, UV: 254 nm] to afford **S17** (4.8 mg, 0.004 mmol, 68%, retention time: 17 min): ¹H NMR (500 MHz, CD₃OD) δ 7.93 (d, *J* = 8.1 Hz, 1H), 5.82 (d, *J* = 3.1 Hz, 1H), 5.76 (d, *J* = 8.1 Hz, 1H), 5.15 (d, *J* = 2.3 Hz, 1H), 4.42 (d, *J* = 4.5 Hz, 1H), 4.33 – 4.28 (m, 1H), 4.20 – 4.13 (m, 5H), 4.09 (tt, *J* = 10.1, 5.1 Hz, 5H), 4.01 – 3.92 (m, 1H), 3.83 – 3.74 (m, 1H), 3.67 – 3.62 (m, 1H), 3.46 – 3.44 (m, 4H), 3.41 (s, 3H), 3.19 – 3.15 (m, 2H), 2.36 – 2.28 (m, 1H), 2.18 – 2.08 (m, 2H), 2.02 – 1.95 (m, 2H), 1.72 – 1.65 (m, 1H), 1.65 – 1.57 (m, 2H), 1.48 (s, 9H), 1.47 (s, 9H), 1.44 (s, 9H), 1.00 – 0.88 (m, 12H); HRMS (ESI+) m/z calcd for C₅₂H₈₉N₁₂O₁₉ [M + H] 1185.6367, found 1185.6391. HPLC analysis of **S17**.

Conditions:

column: Phenomenex Kinetex 1.7 μ XB-C18 100 Å 150 x 2.10 mm column, solvents: 25 : 75 MeOH : 0.1% TFA in water, UV: 254 nm

Bacterial strains and growth of bacteria

Mycobacterium tuberculosis (H_{37} Rv) was obtained through BEI Resources, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH). *Mycobacterium smegmatis* (ATCC 607), *Klebsiella pneumoniae* (ATCC 8047), *Pseudomonas aeruginosa* (ATCC 27853), *Acinetobacter baumannii* (ATCC 19606), *Staphylococcus aureus* (ATCC 6538D-5), *Clostridium difficile* (ATCC 700057), *Enterococcus faecium* (ATCC 349) and *E. coli* (ATCC 29425) were obtained from

American Type Culture Collection (ATCC). A single colony of *Mycobacterium* was obtained on Difco Middlebrook 7H10 nutrient agar enriched with 10% oleic acid, albumin, dextrose, and catalase (OADC) for *M. tuberculosis* by incubating for 15 days, and with albumin, dextrose, and catalase (ADC) for *M. smegmatis* by incubating for 48 h at 37°C in a static incubator. Seed cultures and larger cultures were obtained using Middlebrook 7H9 broth enriched with OADC (for *M. tuberculosis*) by incubating for 15 days and ADC (for *M. smegmatis*) by incubating for 48 h at 37°C in a shaking incubator (200rpm). Single colonies of *P. aeruginosa*, *K. pneumoniae*, *A. baumannii*, *S.aureus*, *E. faecium and E. coli* were grown on tryptic soy agar for 24 h at 37°C in a static incubator and cultured in tryptic soy broth until log phase to be an optical density (OD) of 0.4-0.5. The OD was monitored at 600 nm using a 96-well microplate reader. A single colony of *C. difficile* was obtained on ATCC medium:

2107 Modified reinforced clostridial agar (pre-reduced), and liquid cultures were obtained in ATCC medium: 2107 Modified reinforced clostridial broth (pre-reduced) under anaerobic conditions.

Preparation of membrane fraction P-60 containing MurX/MraY and WecA

M. tuberculosis cells were harvested by centrifugation (4700 rpm) at 4 °C followed by washing with 0.9% saline solution (thrice), and approximately 5 g of pellet (wet weight) was collected. The washed cell pellets were suspended in homogenization buffer (containing 50 mM MOPS [pH = 8.0], 0.25 M sucrose, 10 mM MgCl₂, and 5 mM 2-mercaptoethanol) and disrupted by probe sonication on ice (10 cycles of 60 s on and 90 s off). The resulting suspension was centrifuged at 1,000 xg for 10 min at 4 °C to remove unbroken cells. The supernatant was centrifuged at 25,000 xg for 40 min at 4 °C (3 or 4 times). All pellets in each tube were pooled, and a second sonication was performed (10 cycles of 60 s on and 90 s off). The lysate was centrifuged once at 25,000 xg for 1 h, and the supernatant was subjected to ultracentrifugation at 60,000 xg for 1 h at 4 °C. The supernatant was discarded, and the membrane fraction containing MurX enzyme (P-60) was suspended in the Tris-HCl buffer (pH = 7.5) containing 2-mercaptoethanol. Total protein concentrations were approximately 8 to 10 mg/mL. Aliquots were stored in Eppendorf tubes at -80 °C. Similarly, the membrane fractions containing MraY and WecA enzyme (P-60) were prepared from *M. smegmatis* and *E. coli*, respectively.

MurX/MraY assay

MurX/MraY assay substrates, Park's nucleotide- N^{ε} -C6-dansyl, neryl phosphate, were chemically synthesized according to the reported procedures.³

Park's nucleotide- N^{ε} -C6-dansyl (2 mM stock solution, 3.75µL [75µM]), MgCl₂ (0.5 M, 10µL [50mM]), KCl (2 M, 10µL [200mM]), Triton X-100 (0.5%, 11.25µL), Tris buffer (pH 8.0, 50 mM, 2.5µL), nervl phosphate (6, 10 mM, 45µL), and inhibitor (0 - 100µM, in DMSO, $[2.5\mu L]$) were place in a 500 μL Eppendorf tube. To a stirred reaction mixture, P-60 (15µL) was added (total volume of reaction mixture: 100µL). The reaction mixture was incubated for 1 h at room temperature (26 °C) and quenched with CHCl₃ (200µL). Two phases were mixed via vortex and centrifuged at 25,000 xg for 10 min. The upper aqueous phase was assayed via reverse-phase HPLC. The water phase (10 μ L) was injected into HPLC (solvent: CH₃CN/0.05 M aq. NH₄HCO₃ = 25:75; UV: 350 nm; flow rate: 0.5 mL/min; column: Kinetex 5µm C8, 100 A, 150 x 4.60 mm), and the area of the peak for lipid I-neryl derivative was quantified to obtain the IC_{50} value. The IC_{50} values were calculated from plots of the percentage product inhibition versus the inhibitor concentration.

WecA assay

WecA assay substrate, UDP-Glucosamine-C6-FITC was chemically synthesized according to the reported procedures.⁴

UDP-Glucosamine-C6-FITC (2 mM stock solution, 0.56 μL), MgCl₂ (0.5 M, 4 μL), βmercaptoethanol (50 mM, 5 µL), CHAPS (5%, 11.25 µL), Tris buffer (pH 8.0, 50 mM, 6.19 μ L), undecaprenyl phosphate (4 mM, 2.5 μ L), and synthesized compounds (10 μ M,

in DMSO, 0.5 μ L) were place in a 500 μ L Eppendorf tube. To a stirred reaction mixture, P-60 (20 μ L) was added (total volume of reaction mixture: 50 μ L). The reaction mixture was incubated for 2 h at 37 °C and quenched with n-butanol (150 μ L). Two phases were mixed via vortex and centrifuged at 10,000 xg for 3 min. The upper organic phase was assayed via reverse-phase HPLC. The organic phase (25 μ L) was injected into HPLC (solvent: gradient elution of 85:15 to 95:5 MeOH/0.05 M aq. NH₄HCO₃; UV: 485 nm; flow rate: 0.5 ml/ min; column: Kinetex 5 μ m C8, 100 Å, 150 x 4.60 mm), and the area of the peak for C55-P-P-glucosamine-C₆-FITC was quantified to obtain the IC₅₀ value. The IC₅₀ values were calculated from plots of the percentage product inhibition versus the inhibitor concentration.

MIC assays

Minimum inhibitory concentrations were determined by broth dilution microplate alamar blue assay. All compounds were stored in DMSO (1 mg/100 μ L). This concentration was used as the stock solution for all MIC studies. Each compound (8 μ L) from stock solution was placed in the first well of a sterile 96 well plate and a serial dilution was conducted with the culturing broth (total volume of 100 μ L). The bacterial suspension at log phase (100 μ L) was added to each well (total volume of 200 μ L). *M. tuberculosis* plates were incubated for 15 days at 37 °C in a static incubator. for *M. smegmatis*, *P. aeruginosa*, *K. pneumoniae*, *A. baumannii*, *S. aureus*, *E. faecium*, *C. difficile* and *E. coli* were incubated for 48hrs at 37 °C. 20 μ L of resazurin (0.02%) was added to each well and incubated in a shaking incubator (120 rpm) for 4 h for *M. tuberculosis*, 2hrs for *M. smegmatis*, and 1hr for *P. aeruginosa*, *K. pneumoniae*, *A. baumannii*, *S. aureus*, *E. faecium*, *C. difficile* and *E. coli* to the National Committee for Clinical Laboratory Standards (NCCLS) method (pink = growth, blue = no visible growth). The absorbance of each well was also measured at 570 and 600 nm via a microplate reader.

Compound	growth inhibition [MIC ₅₀ (µg/mL)]								
	M. tuberculosis	M. smegmatis	P. aeruginosa	K. pneumoniae	A. baumannii	S. aureus	E. faecium	C. difficile	E. coli
Muraymycin D ₁ (1)	1.56	>100	>100	>100	>100	>100	>100	>100	>100
Muraymycin D1-amide (2)	1.56	>100	>100	>100	>100	>100	>100	>100	>100
Muraymycin D1-diamide (3)	6.25	>100	>100	>100	>100	>100	>100	>100	>100
Tunicamycin	12.5	-	-	-	-	-	-	-	-
Capuramycin	6.25	-	-	-	-	-	-	-	-
UT-01320 ⁵	1.25	-	-	-	-	-	-	-	-
	1								

Determination of cytotoxicity in Vero Cells

Selected molecules were tested for cytotoxicity (IC₅₀) in Vero cells via a MTT colorimetric assay. Vero cell line was cultured in Complete eagle's minimum essential growth medium (EMEM) containing L-glutamine, sodium pyruvate, minimum essential amino acids, penicillin-streptomycin and 10% fetal bovine serum. After 72h of exposure of molecules to this cell line at concentrations ranging from 0.4 to 400mg/mL, the culture medium was changed to complete EMEM without phenol red before addition of yellow tetrazolium dye; MTT. Viability was assessed on the basis of cellular conversion of MTT into a purple formazan product. The absorbance of the colored formazan product was measured at 600nm by BioTek Synergy HT Spectrophotometer.

Compound	IC ₅₀ (μg/mL)
Muraymycin D_1 (1)	>300
Muraymycin D_1 -amide (2)	>300
Muraymycin D_1 -diamide (3)	>300
Tunicamycin	0.62
Capuramycin	>300
UT-01320	>300

References

(1) Aleiwi, B. A.; Schneider, C. M.; Kurosu, M. J. Org. Chem. 2012, 77, 3859-3867.

(2) Wang, Y.; Kurosu, M. Tetrahedron 2012, 68,4797-4803.

(3) (a) Siricilla, S.; Mitachi, K.; Skorupinska-Tudek, K.; Swiezewska, E.; Kurosu, M. Anal. Biochem. 2014, 461, 36-45.

(4) (ref19b in the manuscript) Mitachi, K.; Siricilla, S.; Yang, D.; Kong, Y.; Skorupinska-Tudek, K.; Swiezewska, E.; Kurosu, M. *Anal. Biochem.* **2016**, accepted for publication.

(5) Siricilla, S.; Mitachi, K.; Wan, B.; Franzblau, S. G.; Kurosu, M. J. Antibiot. 2015, 68, 271-278.

