Supporting Information

	AVERAGE MASS (Da)		
Protein	Theoretical	<u>Observed</u>	
	meoretical	ESI-MS	SDS-PAGE
Flag-His ₆ -SAMP1 ^b	10,912.81	10,912.50 ± 0.35	~14,500
		11,088.23 ± 0.33	
Flag-His₀-SAMP1∆GG	10,798.70	10,798.34 ± 0.11	~12,000
		$10,986.36 \pm 0.08$	
Flag-His ₆ -SAMP2 ^b	9,093.92	9,093.34 ± 0.25	~18,000
		9,191.43 ± 0.38	~16,000
Flag-His ₆ -SAMP3	12,153.44	12,153.07 ± 0.11	~15,500
His ₆ -UbaA	30,848.03	30,776.40 ^c	~35,000

Table S1. Theoretical and observed masses of SAMP and UbaA proteins^a.

^aSAMPs and UbaA were purified from recombinant *E. coli* and *Hfx. volcanii* HM1052, respectively, and analyzed by ESI-MS and reducing SDS-PAGE. ^bMasses of 11,010.31 ± 0.30 Da and 9,180.49 ± 0.20 Da were detected by ESI-MS at peak heights of >10-fold less than the major peaks observed for Flag-His-SAMP1 and Flag-His₆-SAMP2, respectively. ^cMass corresponds to theoretical mass of His₆-UbaA with N-terminal Met cleaved and associated with 2 Na⁺ adducts. Accurate mass of protein samples was determined by electrospray ionization time-of-flight mass spectrometry (ESI-TOF). Purified recombinant proteins were desalted by triple dialysis against 20 mM ammonium acetate in water. Samples were treated with acetonitrile (50% v/v) and formic acid (1% v/v) and loaded into an AB Sciex QSTAR XL quadrupole (Q) TOF MS equipped with a nanoelectrospray source (Protana XYZ manipulator). Concentrates of proteins (200 µl) were also pre-treated with 5 µl formic acid (1% v/v) and loaded into an Agilent 6210 time-of-flight mass spectrometer (Agilent Technologies, Inc., Santa Clara, CA) with a nanoelectrospray ionization source electrospray in positive mode. Mass Hunter software (Agilent Technologies, Inc., Santa Clara, CA) was used for analysis.

Strain, plasmid or primer	Description	Source or reference
Strains:		
E. coli		
Top10	F ⁻ recA1 endA1 hsdR17(r _K ⁻ m _K ⁺) supE44 thi-1 gyrA relA1	Invitrogen
GM2163	F [−] ara-14 leuB6 fhuA31 lacY1 tsx78 glnV44 galK2 galT22 mcrA dcm-6 hisG4 rfbD1 rpsL136 dam13::Tn9 xylA5 mtl-1 thi-1 mcrB1 hsdR2	New England Biolabs
Rosetta (DE3)	F- ompT hsdSB(rB- mB-) gal dcm (DE3) pRARE (Cmr)	Novagen
XL-1 Blue	recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac, F´ proAB lacl <code>qZΔM15 Tn10 Tet^r</code>	Stratagene
XL10-Gold	Tet ^r Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac Hte [F´ proAB lacIqZΔM15 Tn10 (Tet') Amy Cm ^r]	Stratagene
H. volcanii		
DS2	Dead Sea isolate	[1]
DS70	DS2 cured of plasmid pHV2	[2]
H26	DS70 pyrE2	[3]
HM1052	H26 ubaA	[4]
HM1096	H26 samp1 samp2 samp3	[4] This stucks
NHUZ Dicemide	H26 UbaA samp1 samp2 samp3 (HM1096 UbaA)	i nis study
Plasinius:	Ap ^r : expression vector	Novagon
pET130 pET24h	Km ^r expression vector	Novagen
p.IAM809	An ^r Nv ^r , n.IAM202 containing P2hvo1862-strenU	[5]
p0/ 11/000	(Kpn/ site upstream of StrepII coding sequence)	[5]
pJAM202c	Ap ^r Nv ^r : expression vector	[6]
pJAM957	Ap ^r Nv ^r : pJAM202 P2 _{m4} -hvo 0558-strep[] (UbaA-Strep[])	[4]
pJAM1209	$Ap^r Nv^r$: P2 _{rra} -His ₆ -thrombin cleavage site- <i>hvo</i> 0558 (His ₆ -UbaA)	This study
pJAM1214-35a	Ap ^r Nv ^r : pET15b P _{T7} -His ₆ -thrombin cleavage site- <i>hvo</i> 0558 (His ₆ -UbaA)	This study
pJAM1131	Km ^r ; pET24b P _{T7} -Flag-His ₆ -hvo 2619 (Flag-His ₆ -SAMP1)	[7]
pJAM1174	Km ^r : pET24b P _{ττ} -Flag-His _e -hvo 2619 (Flag-His _e -SAMP1ΔGG)	This study
pJAM1132	Km^{r} : pET24b P _{T7} -Flag-His ₆ - <i>hvo</i> 0202 (Flag-His ₆ -SAMP2)	This study
pJAM1175	Km ^r ; pET24b P _{T7} -Flag-His ₆ -hvo 0202 (Flag-His ₆ -SAMP2ΔGG)	This study
pJAM1196	Km ^r ; pET24b P _{T7} -Flag-His ₆ -hvo 2177 (Flag-His ₆ -SAMP3)	This study
pJAM 2704	Km ^r ; pET24b P _{T7} -Flag-His ₆ -hvo_2177 (Flag-His ₆ -SAMP3ΔGG)	This study

Table S2. List of strains and plasmids used in this study^a.

pJAM1860	Ap ^r ; Nv ^r ; pJAM202c P2 _{rm} -hvo_0558 G39,41A -StrepII (UbaA G39A,G41A -	This study
	StrepII)	
pJAM1849	Ap ^r ; Nv ^r ; pJAM202c P2 _{rm} -hvo_0558 G42A -StrepII (UbaA G42A -StrepII)	This study
pJAM1844	Ap ^r ; Nv ^r ; pJAM202c P2 _{rm} -hvo_0558 D63N -StrepII (UbaA D63N -StrepII)	This study
pJAM1837	Ap ^r ; Nv ^r ; pJAM202c P2 _{rm} -hvo_0558 D65N -StrepII (UbaA D65N -StrepII)	This study
pJAM1855	Ap ^r ; Nv ^r ; pJAM202c P2 _{rm} -hvo_0558 S70A -StrepII (UbaA S70A -StrepII)	This study
pJAM1861	Ap ^r ; Nv ^r ; pJAM202c P2 _{rm} -hvo_0558 L72P -StrepII (UbaA L72P -StrepII)	This study
pJAM1862	Ap ^r ; Nv ^r ; pJAM202c P2 _{rm} -hvo_0558 R74Q -StrepII (UbaA R74Q -StrepII)	This study
pJAM1124	Ap ^r ; Nv ^r ; pJAM202c P2 _{rm} -hvo_0558 K87R -StrepII (UbaA K87R -StrepII)	This study
pJAM1708	Ap ^r ; Nv ^r ; pJAM202c P2 _{rm} -hvo_0558 D131N -StrepII (UbaA D131N -StrepII)	This study
pJAM1121	Ap ^r ; Nv ^r ; pJAM202c P2 _{rm} -hvo_0558 R136A -StrepII (UbaA R136A -StrepII)	This study
pJAM1127	Ap ^r ; Nv ^r ; pJAM202c P2 _{rm} -hvo_0558 C171S -StrepII (UbaA C171S -StrepII)	This study
pJAM1123	Ap ^r ; Nv ^r ; pJAM202c P2 _{rm} -hvo_0558 C174S -StrepII (UbaA C174S -StrepII)	This study
pJAM1116	Ap ^r ; Nv ^r ; pJAM202c P2 _{rm} -hvo_0558 C188S -StrepII (UbaA C188S -StrepII)	[4]
pJAM1700	Ap ^r ; Nv ^r ; pJAM202c P2 _{rm} -hvo_0558 C188A -StrepII (UbaA C188A -StrepII)	This study
pJAM1126	Ap ^r ; Nv ^r ; pJAM202c P2 _{rm} -hvo_0558 C203S -StrepII (UbaA C203S -StrepII)	This study
pJAM1707	Ap ^r ; Nv ^r ; pJAM202c P2 _{rm} -hvo_0558 C245S -StrepII (UbaA C245S -StrepII)	This study
pJAM1706	Ap ^r ; Nv ^r ; pJAM202c P2 _{rm} -hvo_0558 C248S -StrepII (UbaA C248S -StrepII)	This study
pJAM1701	Ap ^r ; Nv ^r ; pJAM202c P2 _{rm} -hvo_0558 C265S -StrepII (UbaA C265S -StrepII)	This study
pJAM993	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP1, UbaA-StrepII	[4]
pJAM1860	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP1, UbaA G39,41A -StrepII	This study
pJAM1849	Ap ^r ; Nv ^r ; pJAM202c carries P2 _m -Flag-SAMP1, UbaA G42A -StrepII	This study
pJAM1853	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP1, UbaA D63N -StrepII	This study
pJAM1845	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP1, UbaA D65N -StrepII	This study
pJAM1869	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP1, UbaA S70A -StrepII	This study
pJAM1172	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP1, UbaA N71A -StrepII	This study
pJAM2708	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP1, UbaA L72P -StrepII	This study
pJAM1764	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP1, UbaA R74Q -StrepII	This study
pJAM1164	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP1, UbaA K87R -StrepII	This study
pJAM1731	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP1, UbaA D131N -StrepII	This study
pJAM1179	Ap ^r ; Nv ^r ; pJAM202c carries P2 _m -Flag-SAMP1, UbaA R136A -StrepII	This study
pJAM994	Ap ^r ; Nv ^r ; pJAM202c carries P2 _m -Flag-SAMP1, UbaA C188S -StrepII	[4]
pJAM1829	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP1, UbaA C188A -StrepII	This study

pJAM1722	Ap ^r ; Nv ^r ; pJAM202c carries P2 _m -Flag-SAMP1, UbaA C171S -StrepII	This study
pJAM1166	Ap ^r ; Nv ^r ; pJAM202c carries P2 _m -Flag-SAMP1, UbaA C174S -StrepII	This study
pJAM1716	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP1, UbaA C245S -StrepII	This study
pJAM1726	Ap ^r ; Nv ^r ; pJAM202c carries P2 _m -Flag-SAMP1, UbaA C248S -StrepII	This study
pJAM1163	Ap ^r ; Nv ^r ; pJAM202c carries P2 _m -Flag-SAMP1, UbaA C203S -StrepII	This study
pJAM1728	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP1, UbaA C265S -StrepII	This study
pJAM995	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP2, UbaA-StrepII	[4]
pJAM1178	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP2, UbaA N71A -StrepII	This study
pJAM1743	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP2, UbaA R74Q -StrepII	This study
pJAM1183	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP2, UbaA K87R -StrepII	This study
pJAM1717	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP2, UbaA D131N -StrepII	This study
pJAM1180	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP2, UbaA R136A -StrepII	This study
pJAM1722	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP2, UbaA C171S -StrepII	This study
pJAM1166	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP2, UbaA C174S -StrepII	This study
pJAM996	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP2, UbaA C188S -StrepII	[4]
pJAM2758	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP2, UbaA C188A -StrepII	This study
pJAM1163	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP2, UbaA C203S -StrepII	This study
pJAM1716	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP2, UbaA C245S -StrepII	This study
pJAM1726	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP2, UbaA C248S -StrepII	This study
pJAM1728	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP2, UbaA C265S -StrepII	This study
pJAM2759	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP2, UbaA C143S,C188S -StrepII	This study
pJAM1865	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP2, UbaA C174S,C188A -StrepII	This study
pJAM1864	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP2, UbaA C203S,C188A -StrepII	This study
pJAM2762	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP2, UbaA C188S,C248S -StrepII	This study
pJAM2763	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP2, UbaA C188S,C265S -StrepII	This study
pJAM1306	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP3, UbaA-StrepII	[8]
pJAM1753	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP3, UbaA N71A -StrepII	This study
pJAM1754	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP3, UbaA K87R -StrepII	This study
pJAM1736	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP3, UbaA D131N -StrepII	This study
pJAM1756	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP3, UbaA C188S -StrepII	This study
pJAM1757	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP3, UbaA C188A -StrepII	This study
pJAM1737	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP3, UbaA C171S -StrepII	This study
pJAM1759	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP3, UbaA C174S -StrepII	This study

Ap ^r ; Nv ^r ; pJAM202c carries P2 _m -Flag-SAMP3, UbaA C245S -StrepII	This study
Ap ^r ; Nv ^r ; pJAM202c carries P2 _m -Flag-SAMP3, UbaA C248S -StrepII	This study
Ap ^r ; Nv ^r ; pJAM202c carries P2 _m -Flag-SAMP1ΔGG, UbaA-StrepII	This study
Ap ^r ; Nv ^r ; pJAM202c carries P2 _m -Flag-SAMP2ΔGG, UbaA-StrepII	This study
Ap ^r ; Nv ^r ; pJAM202c carries P2 _m -Flag-SAMP3∆GG, UbaA-StrepII	This study
	Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP3, UbaA C245S -StrepII Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP3, UbaA C248S -StrepII Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP1ΔGG, UbaA-StrepII Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP2ΔGG, UbaA-StrepII Ap ^r ; Nv ^r ; pJAM202c carries P2 _{rm} -Flag-SAMP3ΔGG, UbaA-StrepII

^a Ap^r, ampicillin resistance; Nv^r, novobiocin resistance; Km^r, kanamycin resistance; Tet^r, tetracycline resistance; Cm^r, chloramphenicol resistance. Hfx. volcanii strain NH02 was generated by deletion of ubaA from HM1096 by uracil selection and 5-fluoroorotic acid (FOA) counter selection as previously described [3]. E. coli TOP10 was used for routine recombinant DNA experiments, and E. coli GM2163 was used to prepare plasmid DNA for transformation into Hfx. volcanii as previously described [8, 9]. E. coli strains were grown at 37 °C in Luria-Bertani medium. PCR-generated DNA fragments encoding the full-length ubaA (HVO 0558) were amplified using Phusion DNA polymerase and cloned into the Ndel-to-Blpl sites of pJAM503 (with an N-terminal His₆-tag and thrombincleavage site, His₆-) and pJAM809 (with a C-terminal StrepII-tag, -StrepII) to generate pJAM1209 and pJAM957, respectively. These plasmids were used to produce epitope-tagged UbaA in Hfx. volcanii. UbaA variants with single-point and combinatorial amino acid exchanges were generated by site-directed mutations using plasmid pJAM957 purified from E. coli TOP10 as a template and Pfu Turbo DNA polymerase as described in QuikChange Lightning mutagenesis protocol (Stratagene, La Jolla, CA). PCR products were treated with DpnI (37 °C for 2-3 h), purified using MinElute purification kit (Qiagen) and transformed into E. coli XL10-Gold. Other UbaA variants were generated by inverse PCR-based mutagenesis using Phusion DNA polymerase. DpnI-treated PCR amplicons were phosphorylated by T4 polynucleotide kinase and circularized by T4 DNA ligase prior to transformation into E. coli TOP10. All pJAM957-derived plasmid constructs were verified by DNA sequencing. For co-expression of UbaA-StrepII proteins with SAMPs that had N-terminal Flag tags (Flag-), the BamHI to BlpI fragment of pJAM957 and pJAM957-derived plasmids (encoding UbaA-StrepII and its variants) was blunt-end ligated into the Blpl site of plasmid pJAM947 (SAMP1), pJAM949 (SAMP2), and pJAM977 (SAMP3). Genes encoding N-terminal Flag-His₆-SAMPs were cloned in pET24b vector (Km^r) to generate pJAM1131 (SAMP1), pJAM1132 (SAMP2), pJAM1160 (SAMP3), pJAM1174 (SAMP1ΔGG), and pJAM1175 (SAMP2ΔGG). Expression plasmid pJAM2704 (Flag-His₆-SAMP3AGG) was derived from pJAM1160 truncation using a 3' PCR primer with the appropriate bases deleted. For other details see Materials and Methods.

 Table S3. List of primers used in this study.

Primer Pair	Primer Sequence (5'-3')	PCR product/ description	Source or Reference
HVO_0558 Ndel FW HVO_0558 Kpnl Strep RV	5'-TTCCTTA <u>CATATG</u> ACGCTCTCACTCGACGCCACCC-3' 5'-CC <u>GGTACC</u> GTCGAGGCTGATTGCGCAG-3'	N-terminal His ₆ - tagged UbaA	[4]
Hvo_0558 BamHI 500 bp up FW Hvo_0558 HindIII 500 bp dwn RV	5'-TTAT <u>GGATCC</u> CAGAAGTGACTCAGAACGGCGACG-3' 5'-CT <u>AAGCTT</u> ACGTGGTTCAGGACGGGTGCGGTG-3'	used to confirm <i>∆ubaA</i> in generating NH02	[4]
Hvo_0558 G39,41A fwd Hvo_0558 G39,41A rev	5'-CGTCGTCGCCGCGGCCGGGTTGG-3' 5'-CCAACCCGGCCGCGGCGACGACGACG-3'	G39,G41A	This study
Hvo_0558 G42A fwd Hvo_0558 G42A rev	5'-GCGTTGGGCGCGCCGGCCATC-3' 5'-GCCCGCGCCGACGACGACGAC-3'	G42A	This study
Hvo_0558 D63N fwd Hvo_0558 D63N rev	5'-AACGACGACGTGGTCGAGCGG-3' 5'-GACCACGACGAGTTCGCCGACG-3'	D63N	This study
Hvo_0558 D65N fwd Hvo_0558 D65N rev	5'-AACGTGGTCGAGCGGAGCAACC-3' 5'-GTCATCGACCACGACGAGTTCGCC-3'	D65N	This study
Hvo_0558 S70A fwd Hvo_0558 S70A rev	5'-GCCAACCTCCAGCGGCAGGTC-3' 5'-CCGCTCGACCACGTCGTCGTC-3'	S70A	This study
Hvo_0558 N71A fwd Hvo_0558 N71A rev	5'-GAGCGGAGCGCCCTCCAGCGGCAG-3' 5'-CTGCCGCTGGAGGGCGCTCCGCTC-3'	N71A	This study
Hvo_0558 L72P fwd Hvo_0558 L72P rev	5'-CGGAGCAACCCCCAGCGGCAGGTC-3' 5'-GACCTGCCGCTGGGGGTTGCTCCG-3'	L72P	This study
Hvo_0558 R74Q fwd Hvo_0558 R74Q rev	5'-CAACCTCCAGCAGCAGGTCGTCC-3' 5'-GGACGACCTGCTGCTGGAGGTTG-3'	R74Q	This study
Hvo_0558 C174S fwd Hvo_0558 C174S rev	5'-CCCTGCTATCGAAGTCTGTTCCCC-3' 5'-GGGGAACAGACTTCGATAGCAGGG-3'	C174S	This study
Hvo_0558 R136A fwd Hvo_0558 R136A rev	5'-TTCCCGACGGCCTATCTCCTCAAC-3' 5'-GTTGAGGAGATAGGCCGTCGGGAA-3'	R136A	This study
Hvo_0558 K87R fwd Hvo_0558 K87R rev	5'-TGGGGACGCCGAGAGCCGAGAG-3' 5'-CTCTCGGCTCTCGGCGTCCCCA-3'	K87R	This study
Hvo_0558 D131N fwd Hvo_0558 D131N rev	5'-CGACGCCTCGAACAACTTCCCG-3' 5'-CGGGAAGTTGTTCGAGGCGTCG-3'	D131N	This study

Hvo_0558 C143S fwd Hvo_0558 C143S rev	5'-CTCGCTTCGAGGGAATCCCGC-3' 5'-AGACGTCGTTGAGGAGATAGCGC-3'	C143S	This study
Hvo_0558 C171S fwd Hvo_0558 C171S rev	5'-CGACGGACCCAGCTATCGATGTC-3' 5'-GACATCGATAGCTGGGTCCGTCG-3'	C171S	This study
Hvo_0558 C174S fwd Hvo_0558 C174S rev	5'-CCCTGCTATCGAAGTCTGTTCCCC-3' 5'-GGGGAACAGACTTCGATAGCAGGG-3'	C174S	This study
Hvo_0558 C188S fwd Hvo_0558 C188S rev	5'-GTCCCCGACAGCGCGACGACCGGC-3' 5'-GCCGGTCGTCGCGCTGTCGGGGAC-3'	C188S	[4]
Hvo_0558 C188A fwd Hvo_0558 C188A rev	5'-GTCCCCGACGCCGCGACGACCGG-3' 5'-CCGGTCGTCGCGGCGTCGGGGAC-3'	C188A	This study
Hvo_0558 C203S fwd Hvo_0558 C203S rev	5'-CACGGTCGGCAGTATTCAGGC-5' 5'-GCCTGAATACTGCCGACCGTG-3'	C203S	This study
Hvo_0558 C245S fwd Hvo_0558 C245S rev	5'-CCCGGACAGCCCCGTCTGCG-3' 5'-CGCAGACGGGGCTGTCCGGG-3'	C245S	This study
Hvo_0558 C248S fwd Hvo_0558 C248S rev	5'-GGACTGCCCCGTCAGCGGCGAGGG-3' 5'-CCCTCGCCGCTGACGGGGCAGTCC-3'	C248S	This study
Hvo_0558 C265S fwd Hvo_0558 C265S rev	5'-GAGAGCTCCGCAATCAGCCTCGAC-3' 5'-GACGTAGTCGATGTCCTCGATGGAG-3'	C265S	This study
Ndel up Hvo_2177 fwd Hvo_2177 ∆GG Blpl rev	5'-AT <u>CATATG</u> GAGCTCGAATTACGCTTCTTCG-3' 5'-TT <u>GCTCAGC</u> ATCACGCGACCGGCGGGAAGACGC-3'	SAMP3 ∆GG	This study

^aSDM, site-directed mutagenesis. Amino acid exchanges were PCR-based using plasmid pJAM957 as template with either Pfu DNA polymerase as described in QuikChange Lightning mutagenesis protocol (Stratagene, La Jolla, CA) or by inverse PCR with Phusion DNA polymerase (New England Biolabs, Ipswich, MA). See methods for details.

Figure S1. Raw isothermal titration calorimetrv (ITC) data and corresponding enthalpy plots of UbaA:SAMP1/2 binding at 25 °C. The SAMPs (in syringe) were titrated to UbaA (in cell), with and without ATP. AMP+PPi or AMP-PNP as indicated. (A) From left to right: SAMP1 to UbaA (black) overlaid with SAMP1∆GG to UbaA (red): SAMP1+ATP to UbaA+ATP (black) overlaid with SAMP1∆GG+ATP to UbaA+ATP (red); SAMP1+AMP+PPi to UbaA+AMP+PPi (black) overlaid with SAMP1ΔGG to UbaA (red); and SAMP1+AMP-PNP to UbaA+AMP-PNP (black) overlaid with SAMP1∆GG+ATP to UbaA+ATP (red). (B) Background-subtracted enthalpy plots for SAMP1 titrated to UbaA without and with nucleotide ligands, ATP, AMP+PPi and AMP-PNP as indicated from left to right. Here, heat contributions determined from control titrations, namely SAMP1 to buffer. UbaA to buffer and buffer to buffer, were subtracted from the total enthalpy. Data were subsequently fitted to a law of mass action equation, assuming a one-site binding model, and (C) From left to right: raw isothermal titration calorimetry (ITC) data for: i) SAMP2 (black) titrated to UbaA overlaid with SAMP2∆GG (red) titrated to UbaA and ii) SAMP2 to UbaA in the presence of ATP and the corresponding background-subtracted enthalpy plots for iii) SAMP2 to UbaA without ATP and iv) SAMP2 to UbaA with ATP.

Supplemental References

1. Mullakhanbhai, M. F. & Larsen, H. (1975) *Halobacterium volcanii* spec. nov., a Dead Sea halobacterium with a moderate salt requirement, *Arch Microbiol.* **104**, 207-14.

2. Wendoloski, D., Ferrer, C. & Dyall-Smith, M. L. (2001) A new simvastatin (mevinolin)resistance marker from *Haloarcula hispanica* and a new *Haloferax volcanii* strain cured of plasmid pHV2, *Microbiology*. **147**, 959-64.

3. Allers, T., Ngo, H. P., Mevarech, M. & Lloyd, R. G. (2004) Development of additional selectable markers for the halophilic archaeon *Haloferax volcanii* based on the *leuB* and *trpA* genes, *Appl Environ Microbiol.* **70**, 943-53.

4. Miranda, H., Nembhard, N., Su, D., Hepowit, N., Krause, D., Pritz, J., Phillips, C., Söll, D. & Maupin-Furlow, J. (2011) E1- and ubiquitin-like proteins provide a direct link between protein conjugation and sulfur transfer in archaea., *Proc Natl Acad Sci U S A.* **108**, 4417-22.

5. Humbard, M. A., Zhou, G. & Maupin-Furlow, J. A. (2009) The N-terminal penultimate residue of 20S proteasome α 1 influences its N^{α} acetylation and protein levels as well as growth rate and stress responses of *Haloferax volcanii*, *J Bacteriol*. **191**, 3794-803.

6. Zhou, G., Kowalczyk, D., Humbard, M., Rohatgi, S. & Maupin-Furlow, J. (2008) Proteasomal components required for cell growth and stress responses in the haloarchaeon *Haloferax volcanii*, *J Bacteriol.* **190**, 8096-8105.

7. Prunetti, L., Reuter, C. J., Hepowit, N. L., Wu, Y., Barrueto, L., Miranda, H. V., Kelly, K. & Maupin-Furlow, J. A. (2014) Structural and biochemical properties of an extreme 'salt-loving' proteasome activating nucleotidase from the archaeon *Haloferax volcanii*, *Extremophiles.* **18**, 283-93.

8. Miranda, H. V., Antelmann, H., Hepowit, N., Chavarria, N. E., Krause, D. J., Pritz, J. R., Bäsell, K., Becher, D., Humbard, M. A., Brocchieri, L. & Maupin-Furlow, J. A. (2014) Archaeal ubiquitin-like SAMP3 is isopeptide-linked to proteins via a UbaA-dependent mechanism, *Mol Cell Proteomics.* **13**, 220-39.

9. Dyall-Smith, M. (2009) *The Halohandbook: Protocols for Halobacterial Genetics*, <u>http://www.haloarchaea.com/resources/halohandbook/Halohandbook 2009 v7.2mds.pdf</u>.