
How Humans Solve Complex Problems: The Case of the1

Knapsack Problem2

3

Carsten Murawski1 and Peter L.Bossaerts1,2,3
4

5

1Department of Finance, The University of Melbourne, Melbourne, Victoria 3010, Australia6

2Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria 3010, Australia7

3David Eccles School of Business, University of Utah, Salt Lake City, UT 84112, USA8

1

SUPPLEMENTARY INFORMATION9

1 Supplementary Methods10

1.1 The 0-1 knapsack problem11

The 0-1 knapsack problem is the problem of finding in a set of items of given values and12

weights the subset of items with the highest total value, subject to a total weight constraint [1,13

2]. Mathematically, the problem can be written as14

max
I∑

i=1

viwi subject to
I∑

i=1

wixi ≤ C and xi ∈ {0, 1}, (1)

where I is the total number of items, vi and wi, i = 1, . . . , I , denote value and weight, respec-15

tively, of an item and C is the capacity (maximum weight) of the knapsack.16

The 0-1 knapsack problem is a combinatorial optimisation problem. Finding the optimal17

knapsack is a member of the complexity class non-deterministic polynomial-time (NP) hard18

and the corresponding decision problem of ascertaining whether a target value or greater can19

be obtained by a subset of items is a member of the complexity class NP-complete [2]. A20

complexity class is a set of functions that can be computed within given resource bounds [3].21

Members of complexity classes differ in the rate at which computational resources, such as time22

and memory, grow as the size of a problem’s instance increases. An important class comprises23

problems for which computational time increases as a polynomial of the problem’s size (class24

polynomial-time, or P). If an algorithm exists that solves a problem in polynomial time, it25

is called “efficient” [4]. Thus, members of class P are those problems for which there exist26

efficient solution algorithms. The (optimisation version of the) KP is NP-hard, which means that27

there are no known efficient algorithms for it. Membership of a complexity class is determined28

based on the hardest instances of a problem and some instances of a given problem may require29

less time and memory than others.30

2

1.2 Representing instances of the knapsack problem as graphs31

An instance of the 0-1 knapsack problem can be represented as an undirected graphG = (V,E)32

comprising vertices, V , and edges, E [5]. We call a subset of items (knapsack) admissible if33

the combined weight of the items is less than or equal to the capacity of the knapsack, C. Each34

admissible subset s of items is represented by a vertex i ∈ V . We define the order of a graph35

|G| as the number of vertices of the graph. Note that |G| will usually be lower than the number36

of all possible subsets of items, which is equal to 2I + 1 (including the empty set), because37

some possible subsets are not admissible due to the weight constraint. We define value vi and38

weight wi of a vertex i as the sum of the values and weights, respectively, of the subset of39

items represented by vertex i. Two vertices i, j ∈ V are connected by an edge (i, j) if vertex40

j can be reached from vertex i by adding one item to or removing one item from the knapsack41

represented by vertex i, that is, if the difference between the sets of items represented by the42

two vertices contains exactly one item. Because the graph G is undirected, (i, j) = (j, i) for all43

i, j ∈ V . We call a vertex i incident with edge e if i ∈ e, and we call the two vertices i, j ∈ G44

connected by edge (i, j) adjacent to each other. We define the degree dG(i) of vertex i as the45

number |E(i)| of edges at i. We assign each edge (i, j) ∈ E a weight wij equal to 1. A path is46

a graph P = (V ′, E ′) of the form V = {x0, x1, . . . , xk} and E = {x0x1, x1, x2, . . . , xk−1xk},47

where the xi are all distinct. The vertices x0 and xk are linked by P . We define the length of48

P as the sum of the weights of its edges. We define the distance `G(i, j) in G of two vertices49

i, j as the length of a shortest i–j path in G. The distance `G is conceptually related to the edit50

distance often used in computer science [6]. We call the graph G representing a given instance51

of the 0-1 knapsack problem the graph induced by the instance.52

We also define the undirected graph Ḡ = (V̄ , Ē) with vertices V̄ and edges Ē defined as53

inG except that edge weights are set equal to the value of the item whose addition to or removal54

from the knapsack is represented by the edge. Paths in Ḡ are defined similarly to paths in G.55

The distance `Ḡ(i, j) of the two vertices i and j now represents the difference in values of the56

3

two vertices. The solution of the knapsack problem represented by graph Ḡ can be found by57

computing the longest path in Ḡ [7]. We call the vertex i ∈ V representing the solution of the58

instance the solution node.59

Finally, we define the directed graph ~G = (~V , ~E) with vertices V̄ as defined in G. Two60

vertices i, j ∈ V are connected by an edge (i, j) if vertex j can be reached from vertex i by61

adding one item to the knapsack represented by vertex i, and vice versa for removals of items.62

Note that in graph ~G, (i, j) 6= (j, i) for all i, j ∈ ~V . We assign each edge (i, j) ∈ ~E a weight63

wij = vj − vi. Paths in ~G are defined as in G. The distance `Ḡ(i, j) of the two vertices i64

and j represents the difference in values of the two vertices. We define the out-degree dout~G
(i)65

of vertex i as the number of edges leaving vertex i, and the in-degree din~G (i) of vertex i as the66

number of edges terminating at vertex i. We call the vertex in ~G representing the empty set67

(knapsack) the initial vertex. The initial vertex has an in-degree equal to zero. We call a vertex68

with out-degree equal to zero a terminal vertex. Each terminal vertex represents a maximally69

admissible knapsack, that is, a subset of items with the property that no additional remaining70

item could be added to the knapsack without violating the weight constraint. Note that the71

set of terminal vertices contains the vertex representing the solution of the knapsack problem.72

We consider all three graphs, G, Ḡ and ~G, in the analysis of participants’ attempts at solving73

knapsack problems.74

Let us consider the graph G = (V,E) of some instance of the 0-1 knapsack problem.75

The economic value of each node is given by vi for all i ∈ V . Let vertex i represent the76

initial node (empty knapsack) and vertex s represent the solution vertex. The distance between77

the two vertices `G(i, s) is equal to number of items in the solution of the instance. We can78

compute `G(i, s) for all other vertices i ∈ G, i 6= s. Intuitively, for any i ∈ G, i 6= s, `G(i, s)79

equals the number of additions of items to and removals of items from the knapsack to get from80

the knapsack represented by vertex i to the solution of the instance, represented by vertex s.81

The mean correlation between vertex values v and their distances to the solution vertex `G in82

the instances investigated in this study was −0.22 (min = −0.41, max = 0.04, SD = 0.13;83

4

Tab. S2). Note that in convex problems this correlation would be positive. The low correlation84

between values and distances of vertices is one aspect of the knapsack problem that makes it85

hard. It means that optimisation algorithms based on local increase in marginal value such as86

hill-climbing do not work for the knapsack problem in general.87

To illustrate this property, we plot the graphs of the instances investigated in this study in88

value-item (distance) space (Fig. S1). The position of each node in the graph of an instance89

is determined by its value (normalised by the value of the solution; abscissa) and distance90

(ordinate). The initial node is indicated in yellow and the solution node is indicated in red (top-91

right corner). As the plots illustrate, in each of the instances, there are many vertices of equal92

value but different distances, and vice versa.93

1.3 Computational approaches to solving the 0-1 knapsack problem94

Various algorithms have been proposed for the 0-1 knapsack problem. An algorithm is a tool95

for solving a well-specified computational problem [8]. It describes a specified computational96

procedure for achieving a desired relation between one set of values (input) and another set of97

values (output) that provides the solution to the computational problem. While every algorithm98

solves a particular computational problem, a given computational problem can often be solved99

by many different algorithms. This has led to the proposition that computational problems can100

be investigated separately from the algorithms that are used for solving these problems, that is,101

that the computational layer and the algorithmic layer are independent [9]. More recently, it102

has been suggested that computational and algorithmic layers are often interdependent and that103

therefore the study of the algorithmic layer can often provide important insights into the nature104

of the computational problem. This is also relevant for economics because the discipline has105

traditionally focused on the characterisation of the computational problems agents solve and106

ignored the way in which agents solve these problems. We propose that studying the search107

algorithms that humans may have used may give us important clues about the optimisation108

problem they were trying to solve.109

5

Two classes of algorithms for the 0-1 knapsack problem can be distinguished: uninformed110

and informed search algorithms. Uninformed algorithms, such as breadth-first or depth-first111

search [10], typically search the entire graph of an instance to find the solution. Alternatively,112

the solution of an instance represented by graph Ḡ can also be found be computing the longest113

path in Ḡ [7]. Both running time and memory requirements of those algorithms increase non-114

polynomially in the size of the problem.115

Informed search algorithms use some rule, sometimes referred to as heuristic [11], to guide116

the search. Instances of the 0-1 knapsack problem can be solved by dynamic programming117

[2]. Here, the time to compute the solution of a given instance is proportional to the input118

size of the problem given by I log2C, where I is the number of items in the instance and C119

is the capacity (weight limit) of the knapsack. Running time and memory requirements of120

the dynamic programming algorithm still increases fast in the size of the problem and hence121

computation quickly becomes intractable.122

Given the computational intractability of these approaches, various approximation algo-123

rithms have been developed for the knapsack problem. One important approximation algorithm124

is the greedy algorithm [8]. It solves the knapsack problem by selecting items according to125

decreasing density of the items, where density is defined as the ratio of value to weight of an126

item. The greedy algorithm has much lower computational demands than dynamic program-127

ming. It only requires sorting of the items. However, it is not guaranteed to find the solution of128

an instance and its proposed solution may be arbitrarily far away from the solution. Note that129

the greedy algorithm always finds the optimum in a variation of the instance in which fractions130

of items are allowed, that is, wi ∈ [0, 1], i = 1, . . . , I (LP-relaxation of the instance). The value131

of the solution in this modified problem (LP-bound) is often used as an approximation of the132

value of the solution in the 0-1 knapsack problem.133

Another important type of algorithm is the branch-and-bound algorithm [12]. This algo-134

rithm starts with the greedy algorithm to construct an initial attempt and subsequently optimises135

the knapsack by selectively removing and adding items until a termination criterion has been136

6

reached. Like the greedy algorithm, the branch-and-bound algorithm is not guaranteed to find137

the solutions of all instances of the 0-1 knapsack problem.138

We also consider the Sahni-k algorithm [13]. The Sahni algorithm of order k considers a139

subset of k items and fills the knapsack using the greedy algorithm. It does so for all possible140

combinations of k items. The proposed solution is the knapsack with the highest total value.141

Note that the Sahni algorithm of order zero is equal to the greedy algorithm. If k is equal to the142

number of items in the solution of the instance, then the algorithm is equivalent to a brute force143

search and the solution proposed by the algorithm will be the solution of the instance. However,144

if k is less than the number of items in the solution, then the Sahni algorithm is not guaranteed145

to find the solution of the instance.146

1.4 Example instance of the 0-1 knapsack problem147

We briefly discuss a small example instance of the 0-1 knapsack problem to illustrate the con-148

cepts discussed above. The properties of the instance are displayed in Fig. 1. There are five149

items available and the capacity of the knapsack is 7. Thus, the number of possible combina-150

tions of items is 25 = 32 but only 18 combinations are feasible, that is, they meet the weight151

constraint. The solution is the set (1, 3) with total value 21 and weight 7.152

At the bottom of the Fig. 1, the graph of the instance is displayed. The positions of vertices153

in the x-y plane are determined by their value (x-axis) and distance to the solution node (y-154

axis). The graph has 18 vertices, 31 edges connecting the vertices, and 7 terminal vertices (that155

is, maximally admissible sets). The empty set (initial vertex) is displayed in yellow and the156

solution vertex is displayed in red. The graph illustrates the low correlation between values157

and distance of the solution of the vertices. Some of the vertices have similar values but are at158

different distances to the solution, whereas other vertices have the same distance to the solution159

but different values.160

As is typical of the 0-1 knapsack problem, some of the approximation algorithms would161

not find the solution of the instance. For example, the greedy algorithm would select items in162

7

decreasing order of their value-to-weight ratio and end up with set (1, 2, 4) with total value 20163

and weight 7.164

1.5 Measuring difficulty of an instance165

In computer science, problems are classified according to computational complexity. It is based166

on the resources required to solve the problem, irrespective of the algorithm used. The prob-167

lem of finding the solution of the 0-1 knapsack problem is a member of the complexity class168

NP-hard [2]. We refer to this problem as the search problem. Membership of the class NP-hard169

means there is no known algorithm for finding solutions of instances (i.e., algorithms that solve170

the search problem) with the properties that the solution is correct and the running time of the171

algorithm is a polynomial of the instance’s size (function of the instance’s capacity and num-172

ber of items). The members of class NP-hard are among the hardest computational problems173

currently known. The associated decision problem of determining whether a candidate solu-174

tion is the optimal solution of an instance, is a member of the complexity class NP-complete175

[2]. Membership of a complexity class is based on the hardest instances of a problem, that is,176

instances of a given problem may vary in difficulty.177

Difficulty can also be expressed in terms of various measures of the topology of the graph178

induced by an instance. They include the number of vertices in the graph representing the179

problem (number of admissible sets) and the number of terminal vertices in the graph (number180

of maximally admissible sets). These measures can be regarded as properties of the search181

space through which brute-force search algorithms have to search in order to find the solution,182

and computational time and memory requirements of most algorithms increase with the size of183

the search space.184

The 0-1 knapsack problem is a special case of the class NP-hard because its instances can185

be solved by dynamic programming. The computational time of the dynamic programming186

algorithm for the 0-1 knapsack problem is proportional to I log2C, where I is the number of187

items available in the instance and C is the capacity of the knapsack. Hence, the problem188

8

is said to be pseudo-polynomial. We will refer to I log2C as the input size of the dynamic189

programming algorithm. It will be one of the measures of difficulty of instances.190

Another measure of difficulty we consider here is based on the Sahni-k algorithm de-191

scribed above [13, 14]. We define the k of a given instance as the smallest order of the Sahni-k192

algorithm that finds the exact solution of the instance. For example, an instance with k = 0 is193

an instance that can be solved with the Sahni algorithm of order 0, that is, the problem can be194

solved by applying the greedy algorithm. The higher the k of an instance, the larger the distance195

of the instance’s exact solution from the solution computed by the greedy solution. The higher196

the value of k, the higher are the number of computations and the memory requirement of the197

algorithm. The value of k of the instances considered in the present study ranges from 0 to 4198

(Tab. S2).199

Another measure of difficulty of instances of the 0-1 knapsack problem is the Pearson cor-200

relation coefficient between values and weighs of the available items [15]. Stronger correlation201

is associated with greater difficulty. In many real-life situations, value and weight are strongly202

correlated. For example, in many investment problems, the return is proportional to the in-203

vestment outlay plus a fixed charge for each project. If value and weight of items are strongly204

correlated, the instance is hard to solve for two reasons. Firstly, there is a large gap between205

the continuous (LP relaxation) and integer solution of the problem, and thus the problem is206

ill-conditioned. Secondly, sorting the items in decreasing order of their value-to-weight ratio207

means sorting according to their weights. This means, though, that for any small interval of the208

ordered items, there is only limited variation in weights, making it more difficult to satisfy the209

capacity constraint with equality [15].210

Importantly, the measures of computational complexity described above are all defined211

relative to a Turing machine, a mathematical model of an idealised computing device. A Tur-212

ing machine can perform a large number of computations, can have access to large amounts213

of memory and can perform mathematical operations with perfect accuracy. Thus, even real-214

world computers are not Turing machines, as their memory is limited and so is the precision215

9

of mathematical operations. An important question is to which extent the measures of com-216

putational complexity transfer to humans. We expect that many of the properties of instances217

that make them hard for a Turing machine (or a real-world computer) also make them hard218

for humans. For example, the input size is proportional to the amount of memory required by219

the dynamic programming algorithm. Since human working memory is constrained, we would220

expect instances to become more difficult for humans as memory requirements increase, albeit221

at a different rate. Similarly, the Sahni-k measure is a measure of the size of a combinatorial222

problem that needs to be solved in order to find the solution of an instance. For humans to223

solve combinatorial problems, they require working memory and they need to perform arith-224

metic. Thus, we expect that humans will perform worse on instances that require more memory,225

that is, instances with higher input size and higher Sahni-k measures, ceteris paribus. On the226

other hand, in instances with low Sahni-k, most items are selected based on the greedy algo-227

rithm, which requires sorting according to the value-to-weight ratio. Since humans are prone to228

mathematical mistakes, we expect them to perform worse on instances with a high correlation229

between values and weights of items, ceteris paribus.230

1.6 Participants and experimental task231

Twenty human volunteers (age range = 18–30, mean age = 21.9, 10 female, 10 male), recruited232

from the general population, took part in the study. Inclusion criteria were based on age (min-233

imum = 18 years, maximum = 35 years), right-handedness and normal or corrected-to-normal234

vision. The experimental protocol was approved by The University of Melbourne Human Re-235

search Ethics Committee (Ethics ID 1443290), and written informed consent was obtained from236

all participants prior to commencement of the experimental sessions.237

Participants were asked to solve eight instances of the 0-1 knapsack problem [2]. For238

each instance, participants had to select from a set of items of given values and weights, the239

subset of items with the highest total value, subject to a total weight constraint (Table S1). The240

instances used in this study were used in a prior study [14] and differed significantly in their241

10

computational complexity (Table S2).242

The instances were displayed on a computer display (1000 x 720 pixels; Fig. 1b). Each243

item was represented by a square. Value and weight of an item were displayed at the centre of244

the square. The size of an item was proportional to its weight and the colour (share of blue)245

was proportional to its value. At the top of the screen, total value, total weight and weight246

constraint of the knapsack were displayed. When the mouse was moved over an item, a black247

frame around the square appeared and the counters at the top of the screen added this items’248

value and weight to the totals. When the mouse was moved over an item that could not be added249

to the knapsack at that time, because its addition would have violated the weight constraint, the250

counters turned red. An item was selected into the knapsack by clicking on it. Once an item251

was selected into the knapsack, it turned green. The item stayed green until it was removed252

from the knapsack (by clicking on it again). A solution was submitted by pressing the space253

bar. An attempt was automatically terminated after 240 s and time remaining was displayed by254

a progress bar in the top-right corner of the screen.255

Each participant had two attempts per instance. The order of instances was randomised256

across an experimental session. We recorded the time course of selection of items to and re-257

movals from the knapsack. To make the task incentive compatible, participants received a pay-258

ment proportional to the values of their attempts (between $0 and $4 per attempt). In addition,259

participants received a show-up fee of $5.260

1.7 Data analysis261

For each attempt, we recorded the sequence of additions of items to and removals of items from262

the knapsack. Each element in this sequence represents a state of the knapsack, and each state263

of the knapsack corresponds to a vertex in the graph G of the instance (the first element of the264

sequence always corresponds to the initial vertex of G, and the last element always corresponds265

to the participant’s proposed solution of the instance). A sequence of additions and removals266

can be represented as a path in the graph (Supplementary Methods 1.2).267

11

For each attempt, we recorded the time when the attempt was submitted as well as the268

sequence of additions and removals of items. For each step in this sequence, we computed269

the total value of items selected as well as the distance `G(i, s) to the solution vertex s from270

the vertex i in the graph representing this subset of items (Supplementary Methods 1.2). The271

subset of items selected at the time of submission was the participant’s proposed solution of the272

instance. The attempt was marked correct if the subset of items in the participant’s proposed273

solution was the solution of the instance (that is, `G(i, s) was equal to zero), and incorrect274

otherwise.275

To evaluate an attempt in value space, we computed the value of the proposed solution276

normalised by the value of the solution, which corresponds to the reward schedule. We also277

computed the difference between the proposed solution and the mean of the values of all termi-278

nal vertices in the graph representing the problem. The latter is the mean of the values of all279

maximally admissible knapsacks, which is equal to the expected value of randomly selecting280

items into the knapsack until the knapsack is full.281

All analyses were performed in Python (version 2.7.6) and R (version 3.2.0).282

2 Supplementary Results283

2.1 Duration of attempts284

In the following, we will only consider attempts that were submitted within the time limit of285

240 s. Of all 320 attempts in the experiment, 12 were not submitted within the limit, leaving286

308 attempts for analysis. The mean time spent on an attempt was 172.0 s (SD = 57.1). Means287

of instances (min = 146.5 s, M = 172.3 s, max = 193.7 s, SD = 15.7 s) were not significantly288

different (one-way ANOVA, F (1, 6) = 5.2, P = 0.06). We also fitted survival functions289

separately for each instance. We found that survival times differed significantly across instances290

(log-rank test, χ2(7) = 14.9, P < 0.05). Participant means (min = 73.4 s, M = 172.5 s, max291

= 226.7 s, SD = 39.8 s) were not significantly different from each other (one-way ANOVA,292

12

F (1, 18) = 0.13, P > 0.05) but survival times differed significantly across participants (log-293

rank test, χ2(19) = 303, P < 0.001).294

2.2 Quality of attempts295

Success rates: The mean success rate, that is the proportion of attempts in which participants296

found the solution of an instance, was 37.4% (SD = 48.3%). In comparison, the expected297

success rate of an algorithm that fills knapsacks by picking items at random, which is equivalent298

to picking a maximally feasible knapsack at random, was 0.7%. The total number of successes299

was significantly above chance (one-sided binomial test, P < 0.001). The success rate varied300

substantially by both problem instance (min = 2.7%, M = 36.7%, max = 74.4%, SD = 19.3%;301

Fig. 2a) and participant (min = 6.2%, M = 37.4%, max = 56.2%, SD = 15.7%; Fig. 2b). One of302

the instances was only solved once and the participant who solved it had an overall success rate303

of 50.0% (there were 5 participants with higher average success rates). Note that performance304

varied more between problems (range = 71.7%) than between participants (range = 50.0%).305

Distance: A refined measure of the quality of an attempt is the distance `G of an attempt from306

the solution in the graph G induced by the instance (Supplementary Methods 1.2). The mean307

distance was 2.639 (SD = 2.325). It was significantly lower than the mean distance of attempts308

of an algorithm filling the knapsack by picking items at random, which was 5.068 (one-sample309

t-test, t(307) = −18.374, P < 0.001). Distance, too, varied significantly by both instance (min310

= 0.784, M = 2.622, max = 4.865, SD = 1.170) and participant (min = 1.429, M = 2.595, max =311

4.062, SD = 0.765).312

Economic value: To assess economic performance, we computed the value of a participant’s313

attempt and normalised it by the value of the solution. Mean economic performance was 97.4%314

(SD = 5.8%). It was significantly higher than the expected economic performance of an al-315

gorithm that fills knapsacks by randomly picking items until the knapsack is full, which was316

85.3% (one-sample t-test, t(307) = 36.382, P < 0.001). Similar to the previous performance317

measures, economic performance varied more by instance (min = 95.8%, M = 97.4%, max =318

13

99.0%, SD = 1.1%) than by participant (min = 88.9%, M = 97.4%, max = 99.3%, SD = 2.4%).319

A stricter benchmark to assess economic performance is the difference between the value320

of the solution of an instance and the expected value of a knapsack filled by randomly selecting321

items, normalised by the latter. It is a measure of economic performance relative to a random322

(skill-less) algorithm. The mean value of this shortfall measure was 79.7% (SD = 35.0%). This323

measure, too, varied significantly by both instance (min = 69.7%, M = 79.6%, max = 89.4%, SD324

= 6.2%) and participant (min = 36.4%, M = 79.8%, max = 94.3%, SD = 13.5%). The fact that325

this measure is significantly above 0 (one-sample t-test, t(307) = 39.893, P < 0.001) is another326

indication that human participants performed better than a skill-less (random) algorithm.327

2.3 Effort and performance328

Next, we examined the relation between effort and performance in more detail. One measure of329

effort spent on an instance is the number of additions of items to and removals from the knap-330

sack, which we refer to as the length of the search path in the graph induced by the instance331

(Supplementary Methods 1.2). This number can be considered as a proxy of the number of com-332

putations performed by the participant during an attempt, that is, a measure of computational333

time (analogous to CPU time in computing). There was no relation between computational per-334

formance and path length (P > 0.05, main effect of path length, generalised linear mixed model335

(GLMM) with participant random effects on intercept and main effect of path length; Tab. S3336

Model 1). We found a positive relation between path length and economic performance, mea-337

sured as the value of an attempt normalised by the value of the optimal solution (P < 0.05, main338

effect of path length, linear mixed model (LMM) with participant random effects on intercept339

and main effect of path length; Tab. S3 Model 3). .340

Another measure of effort spent on an instance is clock time. There was no relation be-341

tween clock time spent on an instance and computational performance (P > 0.05, main effect342

of clock time, GLMM with instance and participant random effects on intercept and main effect343

of clock time, P > 0.05; Tab. S3 Model 2) but a positive relation between time spent on an344

14

attempt and economic performance (P < 0.05, LMM with participant random effects on inter-345

cept and main effect of clock time; Tab. S3 Model 4). Participants who spent more time on an346

instance achieved higher values.347

These results suggest that participants may have allocated resources (clock time and com-348

putational time on task) according to value. We investigated this notion in more detail. Homo349

economicus would be expected to keep spending effort on an attempt while marginal gain from350

effort is larger than marginal cost of effort. Thus, we would expect participants to keep work-351

ing on an attempt as long as the marginal gain per unit of time is larger than the cost of effort352

(which we assumed to be positive and constant). To investigate whether this was the case, we353

computed marginal gain from effort per unit of clock time for each attempt and averaged across354

all attempts. We found that that mean marginal gain per unit of clock time dropped to zero at355

about 60 s and remained at zero for the remainder of time on task (Fig. S2a). Given that the356

mean time on task was 172.0 s, as a group participants spent more than two thirds of their time357

on attempts at zero marginal gain. Indeed, if we assume that marginal cost of effort was strictly358

positive, as a group participants spent most of the time on task at a marginal net loss. The same359

pattern emerges when considering computational time instead of clock time (Figs. 3c and S2c).360

We also examined how the quality of an attempt improved in item space. To this end,361

we computed the differences in distances `G to the solution between subsequent vertices in the362

path, which is equal to the gain in distance `G between two vertices, and examined the time363

course of gains. The mean gain reached zero after about seven steps (Fig. S2d) or about 70 s364

(Fig. S2b). This means that on average, the gains in quality of attempts were achieved in the365

first few steps of an attempt, after which the average gain was zero. We conclude that the gains366

in quality in attempts in both item and value space appeared in the first third to quarter of an367

attempt, after which gains in quality remained around zero on average.368

In summary, more time spent on an attempt was associated with a higher economic perfor-369

mance in the attempt, but it was not associated with a higher computational performance. We370

now turn to the question of what determined computational performance.371

15

2.4 Computational performance vs. economic performance372

In the next step, we examined the relation between computational performance and economic373

performance. To this end, we compared success rates and economic values of attempts across374

instances. Homo economicus exerts effort until the marginal gain from effort is equal to the375

marginal cost of effort. The mean success rate can be interpreted as an index of difficulty of376

an instance. Assuming that marginal cost of effort is strictly positive and constant, we would377

expect a positive relation between computational performance and economic performance on378

average. That is, we would expect participants to make more money in instances with higher379

success rates (easy instances). However, we found the opposite to be the case: The mean value380

of attempts of an instance was negatively correlated with the mean success rate for the instance,381

that is, participants generated less value in easy instances compared to difficult instances (Pear-382

son correlation r = −0.838, P < 0.01; Fig. 3d). This means that participants on average made383

more money on difficult instances. Note that for a given instance, correct attempts will always384

be worth more than incorrect attempts. The same applies for a given participant.385

2.5 Variation in computational performance386

We found significant variation in success rates (computational performance) across instances387

and also that success did not vary with time spent on those instances (Supplementary Re-388

sults 2.3). We then investigated whether success in instances was related to instance properties,389

in particular various measures of their computational complexity and graph topology.390

We first examined the relation between success and various measures of the size of the391

instances. Computational complexity is typically defined in terms of the size of an instance,392

which in case of the knapsack problem, is given by the number of items. We found that com-393

putational performance decreased in the number of items in an instance, that is, instances with394

more items were more difficult (P < 0.001, main effect of number of items, GLMM with395

with random effects on intercept for individual participants and main effect of number of items;396

16

Tab. S4 Model 1). Computational performance was also negatively related to the number of397

vertices in the instance graph (P < 0.001, main GLMM with participant random effects on in-398

tercept and main effect of number of vertices; Tab. S4 Model 2, Fig. 4a). It was also negatively399

correlated with the number of terminal vertices at the level of individual attempts (P < 0.01,400

main effect of number of terminal vertices, GLMM with participant random effects on intercept401

with main effect of number of terminal vertices, Tab. S4 Model 3).402

Next, we examined the relation between computational performance and computational403

complexity of the instance. Computational performance was not related to input size (P > 0.05,404

GLMM with participant random effects on intercept and main effect of input size; Tab. S4405

Model 4). However, we found that computational performance was negatively related to Sahni-406

k (P < 0.001, main effect of Sahni-k, GLMM with participant random effects on intercept407

and main effect of Sahni-k; Tab. S4 Model 5, Fig. 4b). The success rate of the instance with408

k = 0, that is, the instance that could be solved with the greedy algorithm, was 74.4% whereas409

the success rate for the instance with the highest k (k = 4) was 2.7%. This suggests that410

there was a negative relation between computational complexity of the instances and success411

rate. We also found a negative relation between between computational performance and the412

Pearson correlation of item values and weights (P < 0.05, main effect of correlation between413

values and weights, GLMM with participant random effects on intercept and main effect of414

Pearson correlation between values and weights; Tab. S4 Model 6, Fig. 4c) but the value-415

weight correlation could not explain variation in performance that was not captured by Sahni-k416

(P > 0.05, interaction Sahni-k × Pearson correlation, GLMM with participant random effects417

on intercept, main effects for Sahni-k and Pearson correlation between values and weights, and418

interaction Sahni-k × Pearson correlation; Tab. S4 Model 7).419

These results suggest that computational performance in the instances was strongly related420

to certain measures of the size of the search problem induced by the instance (size of the search421

space) as well as computational complexity of the instance. They provide indications of what422

search strategies or algorithms participants may have used and where their searches for solutions423

17

broke down.424

2.6 How did participants search?425

To examine participants’ search strategies in more detail, we considered the search paths dur-426

ing individual attempts, that is, the sequence of additions of items to and removal from the427

knapsack. From this sequence we can reconstruct the state of the knapsack at any point in428

time, which can be mapped on the instance graph as a search path. The average number of429

steps (item additions/removals) in participants’ search paths was 33.3 (SD = 22.1). During their430

search, participants visited 4.0 terminal vertices (maximally admissible knapsacks) on average.431

First, we computed the proportion of vertices and terminal vertices in the graph induced by432

an instance that participants visited during their search. The mean proportion of unique vertices433

visited by participants was 3.6%, with significant variation across instances (min = 0.6%, max =434

7.6%, SD = 2.6%; Fig. 4a). As a group, they visited 42.1% of vertices of the instance graph on435

average (min = 10.2%, max = 74.8%, SD = 24.5%; Fig. 4b). This means that while individual436

participants only visited a very small proportion of the graph, as a group they visited a large part437

of it. This suggests that there was significant heterogeneity in search strategies. In addition, in438

all but one instance, at least one participant found the solution, which means that as a group,439

participants searched successfully whereas individually they did not. The mean proportion of440

vertices visited by participants was negatively correlated with the total number of vertices in441

the graph (r = −0.888, P < 0.01) and so was the proportion of vertices visited by the group442

(r = −0.870, P < 0.01).443

We found a similar pattern for the proportion of unique terminal vertices visited by partic-444

ipants. The mean proportion of terminal vertices visited by participants was 4.6%, with signif-445

icant variation across instances (min = 0.8%, max = 10.6%, SD = 3.1%; Fig. 4c). As a group,446

they visited 52.1% of terminal vertices on average (min = 12.5%, max = 74.0%, SD = 20.7%;447

Fig. 4d). There was also a large degree of heterogeneity in the number of terminal vertices448

submitted at the end of an attempt. The mean number of unique terminal vertices submitted by449

18

participants was 13.9 (min = 7, max = 30, SD = 7.4). The mean proportion of terminal vertices450

visited by participants was negatively correlated with the total number of terminal vertices in451

the graph (r = −0.861, P < 0.01) and so was the proportion of vertices visited by the group452

(r = −0.948, P < 0.001).453

We conclude that while individual participants only explored a relatively small part of the454

search space, as a group they explored a large part of it. Computational performance was not455

related to the proportion of vertices visited by participants (P > 0.05, main effect of propor-456

tion of vertices visited, GLMM with participant random effects on intercept and main effect of457

proportion of vertices visited; Tab. S5 Model 1) but it was positively related to the proportion458

of terminal vertices visited (P < 0.05, main effect of proportion of terminal vertices visited,459

GLMM with participant random effects on intercept and main effect of proportion of terminal460

vertices visited; Tab. S5 Model 2). That is, the extent of search had a small effect of computa-461

tional performance but only with regards to terminal vertices.462

We also investigated the relation between the extent of search and economic performance.463

There was no relation between economic performance and either the proportion of vertices or464

the proportion of terminal vertices visited (P > 0.05, main effects of proportion of (terminal)465

vertices visited, LMM with participant random effects on intercept and main effect of proportion466

of (terminal) vertices visited; Tab. S5 Models 3 and 4).467

Next, we examined the quality of search. To do so, we compared the quality of the vertices468

visited to the average quality of the vertices in the graph. If participants picked vertices at469

random, then the quality of the vertices visited would be equal to the average quality of all470

vertices in the graph. First, we looked at the distance to the solution `G of vertices visited471

(Supplementary Methods 1.2). For each attempt, we computed `G of each of the vertices visited472

and computed the mean of those values. This gives us the mean of `G of all vertices visited.473

From it we subtracted the mean of `G of all vertices in the graph induced by the instance. The474

mean value of this difference was −1.230, which was significantly below zero (one-sample t-475

19

test, t(307) = −17.461, P < 0.001). It implies that the quality of vertices visited by participants476

was significantly better than the average quality of vertices in the instances.477

We found that the gains in quality of an attempt occurred mainly in the first stage of an478

attempt (Supplementary Results 2.3). To examine in more detail the notion that only the earlier479

but not the later stages of the search were beneficial, we considered the terminal vertices visited480

by participants during their attempts. More specifically, we compared the quality in item space481

of the first terminal vertex visited to the quality of the last terminal vertex visited. The first482

terminal vertex is the first full knapsack (set of items) a participant assembled and the last483

terminal vertex is the knapsack submitted. We measured quality of a vertex i by its distance484

to the solution vertex s, `G(i, s) (Supplementary Methods 1.2). The mean distance of the first485

terminal vertex visited to the solution vertex across instances was 3.699 (min = 2.526, max =486

5.350, SD = 0.876). In comparison, the mean number of items in the solution was 5.500 (min =487

3, max = 9, SD = 1.871). The mean distance of the last terminal vertex was 2.628 (min = 0.763,488

max = 4.800, SD = 1.163). This means that there was a greater improvement in quality between489

initial vertex and first terminal vertex than between first and last terminal vertex visited. In490

addition, the mean difference between the terminal vertices visited, that is `G(i, j) where i and491

j are two subsequent terminal vertices on the search path, was 1.809 (min = 1.593, max = 2.052,492

SD = 0.131). Note that participants visited about 4 terminal vertices on average. This means493

that the mean distance between the terminal vertices visited was higher than the reduction in494

distances to the solution between first terminal vertex to last terminal vertex. It suggests that495

many of the changes in the sets of items between first and last terminal vertex did not result in496

a reduction of the distance to the solution.497

We also computed the proportion of participants that had visited the solution vertex for498

each step in the search path. This gives us, for each step in the search, the proportion of partic-499

ipants who visited the solution vertex by that step. The mean proportion of participants across500

instances who visited the solution vertex was 39.6% (min = 2.7%, max = 79.5%, SD = 20.6%),501

which is slightly higher than the mean success rate. The mean number of steps across instances502

20

until the first participant visited the solution vertex was 7.2 (min = 4, max = 12, SD = 2.9;503

Fig. S5), compared to a mean number of steps in the search path of 33.3. Across instances,504

among all participants who visited the solution vertex, the mean number of steps to the first505

visit was 18.0 (min = 8.6, max = 35.9, SD = 8.1). This means that among those participants506

who visited the solution vertex, the first participant to visit tended to be substantially faster than507

the average, another sign of heterogeneity in search strategies. However, most participants who508

visited the solution vertex kept searching before they submitted their solution. The mean num-509

ber of steps between the first visit of the solution vertex and submission of the attempt was 21.1510

(min = 6.1, max = 26.2, SD = 17.0). In this period, many participants visited the solution vertex511

multiple times before they submitted an attempt. The mean number of visits across instances,512

among those participants who visited the solution vertex at least once, was 2.8 (min = 2.0, max513

= 5.1, SD = 0.9). In addition, in some of the instances the proportion of participants who visited514

the solution vertex was higher than the success rate in the instances (Fig. S5). This suggests515

that some of the participants visited the solution vertex but submitted another set of items in the516

attempt, a point probably related to the NP completeness property of knapsack problems, which517

we examine in more detail below (Supplementary Results 2.9).518

2.7 Which search algorithms did participants use?519

Performance data in combination with information about the search path allows certain in-520

ferences about the type of search algorithm participants may have used. The relatively low521

computational performance together with the short average length of the search path and small522

fraction of the instance graphs participants explored, suggests that participants did not use any523

of the uninformed, exhaustive search algorithms.524

On the other hand, participants’ computational performance was substantially higher than525

that of a random algorithm, suggesting that participants used an informed (rule- or heuristic-526

based) algorithm. The fact that performance was well below 100%, rules out dynamic pro-527

gramming. This conclusion is further supported by the absence of a relation between success528

21

rate and input size of the problem (Supplementary Results 2.5). It is more likely that participants529

used some sort of approximation algorithm. The finding that success rates decreased with the530

Sahni-k of instances suggests that participants were using an algorithm of low computational531

complexity (Supplementary Results 2.5). The relatively high success rate in instances with a532

Sahni-k of 0 suggests that the algorithm used was similar to the greedy algorithm. To investigate533

this possibility in more detail, we examined the sequence of additions of items to and removals534

of items from the knapsack. For each instance, we ordered the items in the various instances in535

decreasing order of value-to-weight ratio and computed the frequencies with which the items at536

each rank were chosen in the various steps of participants’ sequences. If all participants used the537

greedy algorithm, then the items with the highest value-to-weight ratio of each instance would538

have been chosen in the first step, the item with the second highest value-to-weight ratio would539

have been chosen in the second step, and so on.540

We found that across all participants and all instances, the items with the highest value-541

to-weight ratios were chosen most often in the first few steps. For example, the three items542

with the highest value-to-weight ratio were chosen in 15.6% of cases in the first three steps on543

average, while the mean frequency for the next seven items was 6.8% (Fig. 4d). In addition, the544

frequencies with which the items were chosen decreased with the number of steps. The three545

items with the highest value-to-weight ratios were chosen in 9.4% of cases in steps four to 10546

on average, compared to 15.6% in the first three steps (Fig. 4d). These patterns were similar547

across all instances (Fig. S3). They suggest that participants selected the items with the highest548

value-to-weight ratios first when filling the knapsack, similar to the greedy algorithm. However,549

there was considerable variation in the order with which items were chosen, which suggests550

that participants either did not follow the greedy algorithm exactly or that not all participants551

followed the greedy algorithm.552

Several other findings provide further support for the claim that participants did not use553

the greedy algorithm. Firstly, participants’ performance was substantially higher than that of554

the greedy algorithm (it would only have found the solution in one of the instances whereas555

22

participants solved 37.4% of instances on average). Secondly, the greedy algorithm fills the556

knapsack by selecting items into the knapsack in decreasing order of their value-to-weight ratio,557

until the knapsack is full. This means that the greedy algorithm would have terminated attempts558

after 6.6 steps on average. The average number of steps in participants’ sequences (searches)559

was 33.3, however (SD = 22.1).560

These results suggest that participants were more likely to have used an algorithm similar561

to branch-and-bound that starts the search by filling the knapsack with the greedy algorithm562

and then searches for improvements by systematically removing and adding items in search563

for higher value knapsacks. Since Sahni-k is a measure of deviation of a solution from the564

greedy algorithm, we would expect that participants who tried to replace multiple items in the565

first full knapsack to be more successful, at least for instances were this was needed, that is,566

for high Sahni-k instances. Therefore, we tested whether computational performance could be567

explained, not only by Sahni-k, but also by the interaction between Sahni-k and the number of568

items participants replaced on average after reaching the first full knapsack. We measured the569

latter as the length of the shortest path between two full knapsack attempts, that is, between two570

subsequent terminal vertices (Supplementary Methods 1.2). The interaction term was indeed571

significant (P < 0.01, GLMM with random effect for participants on intercept, main effect of572

Sahni-k and mean distance, and interaction of Sahni-k × mean distance; Table S6). However,573

the fact that the values of the knapsacks did not increase over time for the last two thirds of574

participants’ searches (Fig. S2a, S2c) suggests that participants did not use the branch-and-575

bound algorithm, at least not in its exact form. The high average length of sequences and the576

low average number of terminal vertices visited also suggests that participants did not use the577

Sahni algorithm.578

2.8 Path dependence in search579

Next, we investigated whether there was path dependence in the search paths. To this end,580

we examined the sequence of terminal vertices (maximally admissible knapsacks) visited by581

23

participants during an attempt. First, we tested whether the distance `G(i, s) of the first terminal582

vertex i to the solution s was predictive of the distance of the last terminal vertex. We estimated583

a LMM with distance of the last terminal vertex as dependent variable and distance of the first584

terminal vertex as independent variable, with random effects on intercept for participants. We585

found that the distance of the first terminal vertex was predictive of the distance of the last586

terminal vertex, and hence of success (P < 0.001, main effect of distance of first terminal587

vertex, LMM with participant random effects on intercept and main effect of distance of first588

terminal vertex; Tabel S7 Model 1). This suggests that quality of an attempt (distance of the589

last terminal vertex to the solution) was path-dependent. We also found that the change in590

distances between first and last terminal vertex was predictive of the distance of the last terminal591

node (P < 0.001, main effect of change in distance, LMM with participant random effects on592

intercept and main effect of change in distance; Table S7 Model 2), which means that the quality593

of the search increased the likelihood of success.594

We examined the notion of path dependence further by investigating to what extent there595

was a tendency not to eliminate incorrect items that were added early on, and whether this596

determined computational performance. To this end, we considered the distribution of the age597

of incorrect items that were eventually deleted (Fig. 5). We defined age as a fraction of number598

of steps taken since the beginning of an attempt (age equals 1 if the item was the first added599

to the knapsack). Most deleted incorrect items were added very recently (M = 0.2920, SE =600

0.0001); only rarely did participants eliminate incorrect items that were added to the knapsack601

early on. A similar pattern emerged for correct items that were deleted (M = 0.2352, SE =602

0.0001; Fig. 5). Mean age of correct items was significantly higher than age of incorrect items603

(two-sample t-test, t = 6.98, P < 0.001) and their distributions were significantly different604

(Kolmogorov-Smirnov test for independence of samples, D = 0.10, P < 0.001).605

24

2.9 Did participants solve the decision problem?606

In the theory of computation, a distinction is made between search problems and decision prob-607

lems. The search problem is the problem of finding the optimal solution of an instance (also608

referred to as optimisation problem), whereas the decision problem is the problem of verify-609

ing that a candidate solution is the actual solution of an instance. In the case of the knapsack610

problem, the decision problem is ’Can a value of at least V be achieved without exceeding the611

weight C?’ The decision problem form of the knapsack problem is NP-complete, which im-612

plies that there is no known polynomial algorithm which can verify that the decision is true [2].613

Given that the decision problem is NP-complete, the search problem of the knapsack problem614

is NP-hard, that is, there is no polynomial algorithm for solving the optimisation problem [16].615

So far, we have analysed the search problem of the KP. We now examine whether those616

participants who submitted the correct solution, had actually solved the decision problem, that617

is, whether they knew that the candidate solution they submitted was the solution of the problem.618

As reported in the previous section, those participants who visited the solution vertex at least619

once tended to visit it several times. This suggests that those participants did not know that they620

had found the solution, that is, they could had not solve the decision problem. A participant who621

was able to solve the decision problem would have known that the solution vertex is indeed622

the highest value vertex, and hence would have submitted this set of items in their attempt.623

Moreover, considering only those attempts in which the participant visited the solution vertex624

at least once, in 6.5% of cases the participant subsequently submitted another set of items (of625

inferior value). These participants definitely did not solve the decision problem.626

We also examined how participants performed on subsequent attempts of the same in-627

stance. Every participant attempted the same instance twice, with one attempt immediately628

following the other. A participant who solved the decision problem would be expected to re-629

member the solution and therefore also solve the second attempt. Thus, we computed the num-630

ber of times participants solved the first attempt of the same instance or the second or both. The631

25

percentage of participant × instance pairs in which participants found the solution in at least632

one attempt was 51.0%. In 22.9% of cases, participants solved both the first and the second633

attempt. In 17.6% of cases, they only solved the second attempt, and in 10.4% of cases they634

only solved the first attempt. Success in first and second attempt was not independent (χ2 test,635

χ2(2, 153) = 23.3, P < 0.001). We would expect the number of successful second attempts to636

be higher than the number of successful first attempts, as participants had already explored part637

of the search space. However, we would not expect there to be any cases in which a participant638

solved an instance in the first attempt but not in the second attempt. The fact that of all partic-639

ipants who solved instances at least once, 20.5% only solved the instance in the first attempt640

but not in the second attempt, which indicates that those participants did not solve the decision641

problem, that is, they did not know that they had found the solution.642

26

Supplementary References643

1. Mathews, G. B. On the partition of numbers. Proceedings of the London Mathematical Society 28, 486–490644

(1897).645

2. Kellerer, H., Pferschy, U. & Pisinger, D. Knapsack Problems (Springer Science & Business Media, 2004).646

3. Arora, S. & Barak, B. Computational Complexity: A Modern Approach (Cambridge University Press,647

Cambridge, 2010).648

4. Fortnow, L. The status of the P versus NP problem. Communications of the ACM 52, 78–86 (Sept. 2009).649

5. Diestel, R. Graph Theory (Springer, 2006).650

6. Navarro, G. A guided tour to approximate string matching. ACM Computing Surveys 33, 31–88 (2001).651

7. Dasgupta, S., Papadimitriou, C. & Vazirani, U. Algorithms (McGraw-Hill, New York, NY, 2006).652

8. Cormen, T. H., Leiserson, C., Rivest, R. L. & Stein, C. Introduction to Algorithms (MIT Press, Cambridge,653

MA, 2001).654

9. Marr, D. Vision (W.H. Freeman, San Francisco, 1982).655

10. Russell, S. & Norvig, P. Artificial Intelligence (Pearson, Harlow, 2014).656

11. Newell, A. & Simon, H. Human Problem Solving (Prentice-Hall, Englewood Cliffs, 1972).657

12. Land, A. H. & Doig, A. An Automatic Method for Solving Discrete Optimization Problems. Econometrica658

28, 497–520 (1960).659

13. Sahni, S. Approximate algorithms for the 0-1 knapsack problem. Journal of the ACM 22, 115–124 (1975).660

14. Meloso, D., Copic, J. & Bossaerts, P. Promoting intellectual discovery: patents versus markets. Science 323,661

1335–1339 (2009).662

15. Pisinger, D. Where are the hard knapsack problems? Computers & Operations Research 32, 2271–2284663

(2004).664

16. Moore, C. & Mertens, S. The Nature of Computation (Oxford University Press, Oxford, 2011).665

27

3 Supplementary Figures666

28

Figure S1. Instance graphs for each instance in the task. a–h, Graph induced by the instance
(Supplementary Methods 1.2). Each vertex represents an admissable set of items. The initial
vertex (empty set) is coloured in yellow and the solution vertex is coloured in red. Two vertices
are connected by an edge if one vertex can be reached from the other by adding or removing one
item. The position of a vertex on the abscissa is determined by the total value of the set of items
represented by the vertex. The position of a vertex on the ordinate is determined by the distance
`G (shortest path length) of the vertex to the solution vertex. The red dashed line indicates the
lowest value of any terminal vertex and the yellow dashed line indicates the mean value of all
terminal vertices. The vertices by participants during their attempts are coloured in green. The
set of available items in each instance is provided in Table S1 and some key properties of the
instance graphs are provided in Table S2.

29

a, b,

c, d,

Step in sequence

Ec
on

om
ic

 g
ai

n
(%

 o
f s

ol
ut

io
n

va
lu

e)
-0

.1
0

0.
1

0.
2

0.
4

-0
.2

0.
3

0 10 30 40 6020 50 70 80

Proportion of attempts
still active

Mean economic gain
(+/- 2 SE)

Ec
on

om
ic

 g
ai

n
(%

 o
f s

ol
ut

io
n

va
lu

e)
0

0.
04

0.
08

-0
.0

4 0.
2

0.
4

0.
6

0.
8

1.
0

0
A

tte
m

pt
s

st
ill

 a
ct

iv
e

Clock time (s)
0 30 90 120 18060 150 210 240

G
ai

n
in

 d
is

ta
nc

e
-0

.1
0

0.
1

0.
2

-0
.2

G
ai

n
in

 d
is

ta
nc

e
-1

.0
0

1.
0

2.
0

-2
.0

Mean distace gain
(+/- 2 SE)

Clock time (s)
0 30 90 120 18060 150 210 240

Step in sequence
0 10 30 40 6020 50 70 80

Figure S2. Time courses of value gain and distance gain. a, Time course of mean value gain
per unit of clock time. The mean was computed over all attempts. b, Time course of distance
gain per unit of clock time. The plot shows that mean change in distances `G per unit of clock
time (Supplementary Methods 1.2). c, Time course of mean value gain per sequence step. d,
Time course of distance gain per sequence step.

30

a, b, Instance 2Instance 1

1

2
3

4

5
6
7

8
9

10

Ite
m

 (o
rd

er
ed

 b
y

de
cr

ea
si

ng
 d

en
si

ty
)

1 2 3 4 5 6 7 8 9 10
Steps

0

0.08

0.16

0.24

0.32

0

0.08

0.16

0.24

0.32

0.40

c, d, Instance 4Instance 3

0

0.06

0.12

0.16

0.20

0.24

0

0.06

0.12

0.16

0.20

e, f, Instance 6Instance 5

0

0.08

0.16

0.24

0.32

0.40

0

0.05

0.10

0.15

0.20

g, h, Instance 8Instance 7

0

0.12

0.24

0.36

0.48

0

0.08

0.16

0.24

0.32

Figure S3. Time courses of choice frequencies for individual items. a–h, The items available
in an instance were sorted in reverse order of their density (value-to-weight ratio). The heat map
shows choice frequencies for the items for the first 11 steps in the search path (Supplementary
Methods 1.2). If the greedy algorithm was used, off-diagonal entries would be zero.

31

a, b, Time course of exploration
(group)

Time course of exploration
(participant means)

%
 o

f v
er

tic
es

 v
is

ite
d

0

0.2

0.4

0.6

0.8

1.0

d, Time course of exploration
(group)

Steps
0 10 20 30 40 50 60 70

%
 o

f v
er

tic
es

 v
is

ite
d

0

0.02

0.04

0.06

0.08

0.10

80

d, Time course of exploration
(participant means)

%
 o

f v
er

tic
es

 v
is

ite
d

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

%
 o

f v
er

tic
es

 v
is

ite
d

0

0.2

0.4

0.6

0.8

1.0

Figure S4. Time courses of exploration. a, Proportion of vertices visited by individual partic-
ipants in each of the instances. The lines represent the mean of participant values in each of the
instance. b, Proportion of vertices visited by all participants. The lines represent the proportion
of vertices represented by the set of vertices visited by all participants at a particular step. c,
Proportion of terminal vertices visited by individual participants in each of the instances. d,
Proportion of terminal vertices visited by all participants.

32

a, b, Instance 2Instance 1
1.0

0.8

0.6

0.4

0.2

0

Pr
op

or
tio

n
of

 p
ar

tic
ip

an
ts

 th
at

 v
is

ite
d

so
lu

tio
n

ve
rt

ex

0 20 40 60 100
Steps

80

Proportion of attempts
still active

Success rate
for instance

Time of first visit

Proportion of
participants that
have visited
solution vertex

c, d, Instance 4Instance 3

e, f, Instance 6Instance 5 g, h, Instance 8Instance 7

Figure S5. Time courses of solution vertex visits. a–h, The solid blue line shows the propor-
tion of participants who have visited the solution vertex at a particular step during the attempt.
The red dashed line indicates the step number at which the first participant visited the solu-
tion vertex. The green dashed line indicates the proportion of participants whose attempt was
correct, that is, whose final set of items selected was identical to the set of items in the solution.

33

4 Supplementary Tables667

Table S1. Available items and capacity (maximum weight) for each of the instances used in the

experiment. Density is defined as the ratio of value to weight.

Instance 1 Items

Capacity: 1,900 1 2 3 4 5 6 7 8 9 10

Value 500 350 505 505 640 435 465 50 220 170

Weight 750 406 564 595 803 489 641 177 330 252

Density 0.67 0.86 0.90 0.85 0.80 0.89 0.73 0.28 0.67 0.67

Instance 2 Items

Capacity: 1,044 1 2 3 4 5 6 7 8 9 10

Value 300 350 400 450 47 20 8 70 5 5

Weight 205 252 352 447 114 50 28 251 19 20

Density 1.46 1.39 1.14 1.01 0.41 0.40 0.29 0.28 0.26 0.25

Instance 3 Items

Capacity: 850 1 2 3 4 5 6 7 8 9 10 11 12

Value 15 14 3 3 10 9 28 28 31 25 24 1

Weight 129 144 77 77 66 60 184 184 229 184 219 72

Density 0.12 0.10 0.04 0.04 0.15 0.15 0.15 0.15 0.14 0.14 0.11 0.01

Instance 4 Items

Capacity: 1,500 1 2 3 4 5 6 7 8 9 10

Value 37 72 106 32 45 71 23 44 85 62

Weight 50 820 700 46 220 530 107 180 435 360

Density 0.74 0.09 0.15 0.70 0.20 0.13 0.21 0.24 0.20 0.17

34

Instance 5 Items

Capacity: 14 1 2 3 4 5 6 7 8 9 10 11 12

Value 2 3 4 5 6 9 8 7 6 5 8 9

Weight 3 4 6 3 5 13 6 9 2 4 7 7

Density 0.67 0.75 0.67 1.67 1.20 0.69 1.33 0.78 3.00 1.25 1.14 1.29

Instance 6 Items

Capacity: 3,800 1 2 3 4 5 6 7 8 9 10 11 12

Value 107 35 120 206 88 34 28 110 88 101 74 53

Weight 599 196 670 1204 502 202 145 600 453 601 404 299

Density 0.18 0.18 0.18 0.17 0.18 0.17 0.19 0.18 0.19 0.17 0.18 0.18

Instance 7 Items

Capacity: 1,300 1 2 3 4 5 6 7 8 9 10 11 12

Value 201 84 113 303 227 251 129 147 86 127 144 167

Weight 192 80 106 288 212 240 121 140 82 120 137 160

Density 1.05 1.05 1.07 1.05 1.07 1.05 1.07 1.05 1.05 1.06 1.05 1.04

Instance 8 Items

Capacity: 265 1 2 3 4 5 6 7 8 9 10

Value 31 141 46 30 74 105 119 160 59 71

Weight 21 97 32 21 52 75 86 116 43 54

Density 1.48 1.45 1.44 1.43 1.42 1.40 1.38 1.38 1.37 1.31

35

Ta
bl

e
S2

.P
ro

pe
rt

ie
s

of
th

e
in

st
an

ce
s

of
th

e
0-

1
kn

ap
sa

ck
pr

ob
le

m
us

ed
in

th
e

ex
pe

ri
m

en
t.

In
st

an
ce

1
2

3
4

5
6

7
8

N
um

be
ro

fa
va

ila
bl

e
ite

m
s

10
10

12
10

12
12

12
10

Pe
ar

so
n

co
rr

el
at

io
n

va
lu

e/
w

ei
gh

t
0.

95
5

0.
90

3
0.

92
9

0.
85

6
0.

85
6

0.
99

7
1.

00
0

0.
99

8

N
um

be
ro

fv
er

tic
es

in
G

25
5

69
1

2,
27

8
38

6
14

5
3,

27
3

3,
64

0
38

5

N
um

be
ro

ft
er

m
in

al
ve

rt
ic

es
in
G

80
22

39
9

36
65

24
0

30
1

82

N
um

be
ro

fe
dg

es
in
G

79
6

3,
01

8
11

,1
00

1,
43

9
36

9
17

,8
92

20
,5

87
1,

37
7

Pe
ar

so
n

co
rr

el
at

io
n

va
lu

e/
`

of
ve

rt
ic

es
-0

.1
0

-0
.2

3
-0

.3
2

-0
.4

1
-0

.3
2

-0
.1

8
-0

.3
0

0.
04

N
um

be
ro

fi
te

m
s

in
so

lu
tio

n
4

5
5

7
4

9
7

3

In
pu

ts
iz

e
(I

lo
g

2
C

)
10

9
10

0
11

7
10

5
46

14
3

12
4

80

Sa
hn

i-
k

1
3

2
0

1
1

4
3

Su
cc

es
s

ra
te

0.
44

0.
36

0.
48

0.
74

0.
33

0.
22

0.
03

0.
34

M
ea

n
`

of
at

te
m

pt
2.

0
2.

7
1.

6
0.

8
2.

3
3.

3
4.

9
3.

4

M
ea

n
at

te
m

pt
va

lu
e

(%
of

so
lu

tio
n

va
lu

e)
0.

97
0.

98
0.

96
0.

96
0.

96
0.

99
0.

99
0.

98

M
ea

n
le

ng
th

of
se

ar
ch

pa
th

31
.6

37
.7

25
.1

33
.6

21
.8

38
.6

40
.3

38
.2

M
ea

n
%

of
ve

rt
ic

es
vi

si
te

d
0.

07
0.

03
0.

01
0.

05
0.

08
0.

01
0.

01
0.

06

%
of

ve
rt

ic
es

vi
si

te
d

(g
ro

up
)

0.
80

0.
39

0.
11

0.
54

0.
71

0.
19

0.
18

0.
17

M
ea

n
%

of
te

rm
in

al
ve

rt
ic

es
vi

si
te

d
0.

05
0.

12
0.

01
0.

09
0.

05
0.

02
0.

02
0.

06

%
of

te
rm

in
al

ve
rt

ic
es

vi
si

te
d

(g
ro

up
)

0.
78

0.
82

0.
14

0.
67

0.
62

0.
37

0.
42

0.
74

36

Ta
bl

e
S3

.R
el

at
io

n
be

tw
ee

n
pe

rf
or

m
an

ce
an

d
ef

fo
rt

at
th

e
le

ve
lo

f
in

di
vi

du
al

at
te

m
pt

s.
M

od
el

s
(1

)
an

d
(2

)
re

la
te

d
th

e
va

lu
e

ac
hi

ev
ed

in

an
at

te
m

pt
,n

or
m

al
is

ed
by

th
e

va
lu

e
of

th
e

so
lu

tio
n,

to
th

e
le

ng
th

of
th

e
se

ar
ch

pa
th

(1
)

an
d

cl
oc

k
tim

e
(2

).
M

od
el

s
(3

)
an

d
(4

)
re

la
te

d

su
cc

es
s

in
a

si
ng

le
at

te
m

pt
to

th
e

th
e

le
ng

th
of

th
e

se
ar

ch
pa

th
(3

)a
nd

cl
oc

k
tim

e
sp

en
to

n
th

e
at

te
m

pt
(4

).
A

ll
m

od
el

s
ha

d
ra

nd
om

ef
fe

ct
s

fo
rp

ar
tic

ip
an

ts
on

th
e

in
te

rc
ep

t.

D
ep

en
de

nt
va

ri
ab

le
:

A
tte

m
pt

co
rr

ec
t

V
al

ue

G
en

er
al

iz
ed

lin
ea

r
lin

ea
r

m
ix

ed
-e

ffe
ct

s
m

ix
ed

-e
ffe

ct
s

(1
)

(2
)

(3
)

(4
)

L
en

gt
h

of
se

ar
ch

pa
th

−
0.

00
5

(0
.0

06
)

0.
00

03
∗

(0
.0

00
2)

C
lo

ck
tim

e
on

at
te

m
pt

−
0.

00
1

(0
.0

03
)

0.
00

02
∗∗

(0
.0

00
1)

C
on

st
an

t
−

0.
32

3
(0

.5
02

)
−

0.
38

9
(0

.2
60

)
0.

94
5∗
∗∗

(0
.0

12
)

0.
96

3∗
∗∗

(0
.0

08
)

O
bs

er
va

tio
ns

30
8

30
8

30
8

30
8

L
og

L
ik

el
ih

oo
d

−
20

1.
09

3
−

20
0.

86
5

43
6.

06
2

43
5.

94
6

A
ka

ik
e

In
f.

C
ri

t.
40

8.
18

5
40

7.
73

0
−

86
4.

12
4

−
86

3.
89

1

N
ot

e:
∗ p
<

0.
05

;∗
∗ p
<

0.
01

;∗
∗∗

p<
0.

00
1

37

Ta
bl

e
S4

.R
el

at
io

n
be

tw
ee

n
pe

rf
or

m
an

ce
an

d
si

ze
an

d
co

m
pl

ex
ity

of
in

st
an

ce
s.

R
es

ul
ts

of
es

tim
at

io
n

of
ge

ne
ra

liz
ed

lin
ea

rm
ix

ed
m

od
el

s

re
la

tin
g

su
cc

es
s

in
an

at
te

m
pt

to
nu

m
be

r
of

ite
m

s
in

th
e

in
st

an
ce

(1
),

nu
m

be
r

of
ve

rt
ic

es
in

th
e

in
st

an
ce

gr
ap

h
(2

),
nu

m
be

r
of

te
rm

in
al

ve
rt

ic
es

(3
),

in
pu

ts
iz

e
(4

),
Sa

hn
i-
k

(5
),

Pe
ar

so
n

co
rr

el
at

io
n

be
tw

ee
n

va
lu

es
an

d
w

ei
gh

ts
of

ite
m

s
av

ai
la

bl
e

in
th

e
in

st
an

ce
(6

)a
nd

fa
ct

or
ia

l

m
od

el
w

ith
Sa

hn
i-
k

an
d

Pe
ar

so
n

co
rr

el
at

io
n

be
tw

ee
n

va
lu

es
an

d
w

ei
gh

ts
(7

).
A

ll
m

od
el

s
ha

d
ra

nd
om

ef
fe

ct
s

fo
r

pa
rt

ic
ip

an
ts

on
th

e

in
te

rc
ep

t.

D
ep

en
de

nt
va

ri
ab

le
:

Su
cc

es
s

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

N
um

be
ro

fi
te

m
s

−
0.

47
1∗

∗∗
(0

.1
26

)

N
um

be
ro

fv
er

tic
es

−
0.

00
04

∗∗
∗

(0
.0

00
1)

N
um

be
ro

ft
er

m
in

al
ve

rt
ic

es
−

0.
00

3∗
∗

(0
.0

01
)

In
pu

ts
iz

e
−

0.
00

5
(0

.0
04

)

Sa
hn

i-
k

−
0.

51
4∗

∗∗
(0

.1
08

)
0.

56
7

(1
.8

17
)

Pe
ar

so
n

co
rr

el
at

io
n

va
lu

e/
w

ei
gh

t
−

2.
67

2∗
(1

.1
69

)
1.

18
3

(2
.5

35
)

sa
hn

i
k:

ite
m

co
rr

pe
ar

so
n

−
1.

13
8

(1
.9

18
)

C
on

st
an

t
4.

59
3∗

∗∗
(1

.3
80

)
−

0.
00

4
(0

.2
07

)
−

0.
17

6
(0

.2
13

)
−

0.
01

7
(0

.4
75

)
0.

34
3

(0
.2

49
)

1.
87

5
(1

.0
73

)
−

0.
75

5
(2

.2
97

)

O
bs

er
va

tio
ns

30
8

30
8

30
8

30
8

30
8

30
8

30
8

L
og

L
ik

el
ih

oo
d

−
19

3.
95

1
−

19
0.

61
2

−
19

7.
42

6
−

20
0.

49
7

−
18

8.
55

5
−

19
8.

59
1

−
18

8.
37

6

A
ka

ik
e

In
f.

C
ri

t.
39

3.
90

2
38

7.
22

4
40

0.
85

3
40

6.
99

3
38

3.
11

0
40

3.
18

1
38

6.
75

2

N
ot

e:
∗

p<
0.

05
;∗

∗
p<

0.
01

;∗
∗∗

p<
0.

00
1

38

Ta
bl

e
S5

.R
el

at
io

n
be

tw
ee

n
pe

rf
or

m
an

ce
an

d
ex

te
nt

of
se

ar
ch

.R
es

ul
ts

of
es

tim
at

io
n

of
ge

ne
ra

liz
ed

lin
ea

rm
ix

ed
m

od
el

s
re

la
tin

g
su

cc
es

s

in
an

at
te

m
pt

to
pr

op
or

tio
n

of
ve

rt
ic

es
in

in
st

an
ce

gr
ap

h
vi

si
te

d
(1

)
an

d
pr

op
or

tio
n

of
te

rm
in

al
ve

rt
ic

es
vi

si
te

d
(2

),
an

d
re

su
lts

of
lin

ea
r

m
ix

ed
m

od
el

re
la

tin
g

th
e

va
lu

e
of

an
at

te
m

pt
,n

or
m

al
is

ed
by

th
e

va
lu

e
of

th
e

so
lu

tio
n,

to
pr

op
or

tio
n

of
ve

rt
ic

es
in

in
st

an
ce

gr
ap

h
vi

si
te

d

(3
)a

nd
pr

op
or

tio
n

of
te

rm
in

al
ve

rt
ic

es
vi

si
te

d
(4

).
A

ll
m

od
el

s
ha

d
ra

nd
om

ef
fe

ct
s

fo
rp

ar
tic

ip
an

ts
on

th
e

in
te

rc
ep

t.

D
ep

en
de

nt
va

ri
ab

le
:

A
tte

m
pt

co
rr

ec
t

V
al

ue
of

at
te

m
pt

G
en

er
al

iz
ed

lin
ea

r
Li

ne
ar

m
ix

ed
-e

ffe
ct

s
m

ix
ed

-e
ffe

ct
s

(1
)

(2
)

(3
)

(4
)

%
of

ve
rt

ic
es

vi
si

te
d

4.
85

3
(3

.2
17

)
−

0.
05

2
(0

.0
86

)

%
of

te
rm

in
al

ve
rt

ic
es

vi
si

te
d

5.
10

2∗
(2

.3
02

)
0.

06
2

(0
.0

60
)

C
on

st
an

t
−

0.
74

7∗
∗∗

(0
.2

08
)
−

0.
82

7∗
∗∗

(0
.2

05
)

0.
97

6∗
∗∗

(0
.0

06
)

0.
97

1∗
∗∗

(0
.0

06
)

O
bs

er
va

tio
ns

30
8

30
8

30
8

30
8

L
og

L
ik

el
ih

oo
d

−
20

0.
08

0
−

19
8.

66
2

44
0.

41
1

44
0.

40
8

A
ka

ik
e

In
f.

C
ri

t.
40

6.
16

0
40

3.
32

4
−

87
2.

82
3

−
87

2.
81

6

N
ot

e:
∗ p
<

0.
05

;∗
∗ p
<

0.
01

;∗
∗∗

p<
0.

00
1

39

Table S6. Relation between computational performance and variation in search. Results of

estimation of generalised linear mixed models relating success in an attempt to Sahni-k, the

mean distance `G between subsequent terminal vertices visited during an attempt (Supplemen-

tary Methods 1.2) and the interaction between Sahni-k and mean distance between subsequent

terminal vertices. The model had random effects for participants on the intercept.

Dependent variable:

Attempt correct

Sahni-k −1.207∗∗∗ (0.294)

Mean distance between terminal vertices −0.414 (0.264)

Interaction Sahni-k and mean distance 0.354∗∗ (0.134)

Constant 1.115∗ (0.531)

Observations 279

Log Likelihood −167.373

Akaike Inf. Crit. 344.745

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

40

Table S7. Path dependence in search. Results of estimation of linear mixed models relating

distance `G between the last vertex in an attempt and the solution vertex (Supplementary Meth-

ods 1.2), to the distance of the first terminal vertex in an attempt from the solution vertex (1)

and the mean change in distances between subsequent terminal vertices (2). The models had

random effects for participants on the intercept.

Dependent variable:

Distance

(1) (2)

Distance first to last terminal vertex 0.560∗∗∗ (0.050)

Change in distances 1.036∗∗∗ (0.055)

Constant 0.566∗ (0.221) 4.226∗∗∗ (0.134)

Observations 304 304

Log Likelihood −638.128 −571.910

Akaike Inf. Crit. 1,284.257 1,151.819

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

41

	Supplementary Methods
	The 0-1 knapsack problem
	Representing instances of the knapsack problem as graphs
	Computational approaches to solving the 0-1 knapsack problem
	Example instance of the 0-1 knapsack problem
	Measuring difficulty of an instance
	Participants and experimental task
	Data analysis

	Supplementary Results
	Duration of attempts
	Quality of attempts
	Effort and performance
	Computational performance vs. economic performance
	Variation in computational performance
	How did participants search?
	Which search algorithms did participants use?
	Path dependence in search
	Did participants solve the decision problem?

	Supplementary Figures
	Supplementary Tables

