Supporting Information

Supp. Figure S1. UCSC Genome Browser overview of IBD regions identified in F1

Supp. Figure S2. Massively parallel sequencing reads and splice site predictions for c.-70A>T

Supp. Figure S3. Segregation analysis of c.-70A>T and c.-69C>T on gDNA and cDNA level in F1 and F2

Supp. Figure S4. *LZIC* expression analysis in F1

Supp. Figure S5. Secondary structure prediction for the wild type and mutated *NMNAT1* 5'UTR sequences

Supp. Figure S6. Identification of a heterozygous NMNAT1 deletion in F3 and F4

Supp. Table S1. Homozygous regions >3 Mb and common between 2 affected siblings of F1 Supp. Table S2. Overview of all *NMNAT1* variants identified in the proband of F1 Supp. Table S3. *NMNAT1* coding mutations identified in this study Supp. Table S4. *In silico* evaluation of the *NMNAT1* 5'UTR variants Supp. Table S5. G-quadruplexes predictions for the *NMNAT1* 5'UTR mutations Supp. Table S6. Clinical findings of the probands of F3 and F4 Supp. Table S7. Bioinformatic analysis of the *NMNAT1* deletion breakpoints

Supp. Figure S1. UCSC Genome Browser overview of IBD regions identified in F1. Genomewide identity-by-descent (IBD) mapping identified three regions larger than 3Mb that were common between two affected siblings of F1 (blue bars) and (partially) absent in the healthy sibling (red bar). The region on chromosome 1 harbors the LCA9 locus (green bar).

	20 bases h hg19
10,003,490 10,003,5 A T G A G A G T G C G A C C G A	500, 10,003,510, 10,003,520, 10,003,530, 10,003,540, 10,003,550, 10,003,560, 10,003,570, \GATGTTCCACTCGCTGGCGTCCGGGCCGCTGTGGTATCTCCCGGTAGCACTCGGGCCGCAL}AGTGAGGCGCC
	RefSeq Genes
	F1 reads
	AG
N	
	NIM 022707 2/NIMNAT1) c .704 T [164 c .57 + 102 / Johnson 1)]
SpliceSiteFinder-like	[0.100] Alamut v.2.3 rev. 2
MaxEntScan	[0-10] 82.3
GeneSplicer 3	
Human Splicing Finder	
numan spricing i muer	
Reference Sequence	GCACTCGGGCCGGGACAGTGAGGGCGCGGTAAGCTCCCCGCAAGGAGCCCCTGAG
SpliceSiteFinder-like	[0-100]
MaxEntScan	[0-16] 0.1=
	[0-1]
GeneSplicer	[0-15]
Human Splicing Finder	[0-100] 76.1 67.6
Branch Points	
SpliceSiteFinder-like	[0-100] 78 1 82.3
MaxEntScan	[0-12] 0.5 0.
Genespiicer	[0-15] 8.0 2.2 8.6
numan splicing rinder	
Mutated Sequence	
SpliceSiteFinder-like	
MaxEntScap	[0-10]
	(0-1)
GeneSplicer 5	10-151
Human Splicing Finder	
numan splicing i liider	
Branch Points	[0-100]

Supp. Figure S2. Massively parallel sequencing reads and splice site predictions for c.-70A>T. **A**) UCSC Genome Browser view of the sequencing reads observed in the proband of F1 covering exon 1 of the *NMNAT1* gene. The homozygous c.-70A>T mutation is indicated with a green box. **B**) Splice site predictions of the Alamut interpretation software (v2.3 – default settings used), predicting the introduction of a novel donor splice site for c.-70A>T (indicated with red bars). This potential new donor splice site is still weaker than the canonical donor splice site of which the strength remains unchanged according to 4/5 prediction programs.

Supp. Figure S3. Segregation analysis of c.-70A>T and c.-69C>T on gDNA and cDNA level in F1 and F2. gDNA and cDNA sequencing in both families showed allele-specific expression at the cDNA level. The 5'UTR mutations and a flanking 5'UTR and 3'UTR SNP are represented at the left. The disease haplotype or allele is highlighted in grey. Haplotype analysis of three *NMNAT1* variants found at the gDNA level displayed allele-specific expression at the cDNA level in the parents and the healthy sib of F1. This result was obtained in cells treated with (shown here) and without puromycine (used to block nonsense-mediated decay), suggesting that the genetic defect has an effect prior to translation. For F2, only untreated lymphocyte cultures

were available. As in F1, cDNA sequencing showed allele-specific expression in both parents. In both families, superposition of low sequence traces could be seen that represent residual mutant mRNA.

Supp. Figure S4. *LZIC* expression analysis in F1. qPCR analysis of two distinct intron-spanning amplicons for the *LZIC* gene, *LZIC* amplicon 1 and *LZIC* amplicon 2, revealed no difference in mRNA expression between the affected individuals of F1 (IV:1, IV:2, IV:4) in comparison with healthy control individuals (C1-C6). The upper panels contain UCSC Genome Browser views of the location of the amplicons, the lower panels show the results of the expression analysis.

Supp. Figure S5. Secondary structure prediction for the wild type and mutated *NMNAT1* 5'UTR sequences. Secondary structure analysis of the *NMNAT1* 5'UTR sequence using UNAFold (Two-state Folding) (default settings used) (Markham and Zuker 2008) revealed a different folding for the c.-70A>T mutation in comparison with the wild type *NMNAT1* 5'UTR. The location of the mutated nucleotides has been indicated with a green box.

Supp. Figure S6. Identification of a heterozygous *NMNAT1* deletion in F3 and F4. **A**) Segregation analysis of the c.709C>T p.(Arg237Cys) mutation in F3 and F4 suggested hemizygosity for this mutation in the probands. **B**) Copy number variation (CNV) analysis using qPCR with one amplicon per exon showed a heterozygous deletion of exon 4 and 5 in the proband of F3 and a heterozygous deletion of exon 4 in the proband of F4. Based on these findings, the 3' end of the deletion in F4 should be located between the p.Arg237Cys mutation and the amplicon for the fifth exon, located in the 3'UTR. **C**) Segregation analysis of the c.709C>T p.(Arg237Cys) mutation (M1) and both partial deletions (M2 and M3), performed using qPCR analysis of one amplicon per exon. Abbreviations used: F: family; M: mutant allele, +: wild-type allele; ?: unknown allele; CNV: copy number variation; E: exon.

Chr	Centromeric boundary (hg19)	Telomeric boundary (hg19)	Length (bp)	No of SNPs	No of genes	Healthy sibling
4	42,748,945	58,760,043	16,011,098	1,155	109	Partially hom
1	4,984,667	19,332,076	14,347,409	927	272	Het
1	240,611,614	244,938,498	4,326,884	441	52	Hom
5	5,281,887	8,527,844	3,245,957	476	23	Het

Supp. Table S1. Homozygous regions >3 Mb and common between 2 affected siblings of F1

The presence of an identical homozygous haplotype in the healthy sibling for the third region (chr1) and a partially overlapping homozygous haplotype for the first region (chr4) resulted in exclusion and reduction of these regions, respectively. Abbreviations used: chr: chromosome; bp: base pairs; no: number; hom: homozygous; het: heterozygous.

Intron/exon	cDNA (protein)	Coverage	VAF	rs number (MAF)	Splicing
Upstream	c173G>C (p.=)	12	100	rs2297843 (C=0.152)	No effect
E1 (5'UTR)	c70A>T (p.?)	10x	100	/	New donor site?
I2	c.115+354A>G (p.?)	8x	100	/	No effect
I2	c.116-177T>C (p.?)	19x	100	rs6657844 (T=0.037)	No effect
13	c.299+176G>A (p.?)	25x	84	rs12082318 (A=0.133)	No effect
I4	c.440-226C>T (p.?)	18x	100	rs11121509 (T=0.133)	New donor site?
E5 (3'UTR)	c.*16A>G (p.?)	43x	98	rs12086725 (G=0.008)	No effect
E5 (3'UTR)	c.*699A>G (p.?)	бх	100	rs6664208 (G=0.132)	No effect
E5 (3'UTR)	c.*2393C>G (p.?)	62x	98	rs4073852 (C=0.221)	New acceptor site?

Supp. Table S2. Overview of all NMNAT1 variants identified in the proband of F1

The *NMNAT1* coding region showed a minimal coverage of 20x. The 5'UTR was covered at least 8x, whereas 82% of bases in the 3'UTR had a minimal coverage of at least 10x. *In silico* predictions for splicing were performed using the Alamut v2.3 interpretation software (default settings). For the c.*16A>G variant, a minor allele frequency of 6.8% was reported in the sub-Saharan African population (Hapmap-YRI). Abbreviations used: I: intron; E: exon; UTR: untranslated region; VAF: variant allele frequency; MAF: minor allele frequency (dbSNP138); ND: no data.

Family	Allele 1				Allele 2					
	Exon	cDNA	Protein	Reference	Exon/intron	cDNA	Protein	Reference		
F5	E5	c.769G>A	p.Glu257Lys	(Chiang et al.,	E4	c.364del	p.Arg122fs	(Perrault et		
				2012; Falk et				al., 2012)		
				al., 2012;						
				Koenekoop et						
				al., 2012;						
				Perrault et al.,						
				2012)						
				rs150726175						
F6	E5	c.769G>A	p.Glu257Lys	(Chiang et al.,	E5	c.542A>G	p.Tyr181Cys	(Perrault et		
				2012; Falk et				al., 2012)		
				al., 2012;						
				Koenekoop et						
				al., 2012;						
				Perrault et al.,						
				2012)						
				rs150726175						
F7	E5	c.769G>A	p.Glu257Lys	(Chiang et al.,	E5	c.679C>T	p.Arg227Trp	novel		
				2012; Falk et						

Supp. Table S3. NMNAT1 coding mutations identified in this study

Family	Allele 1				Allele 2					
	Exon	cDNA	Protein	Reference	Exon/intron	cDNA	Protein	Reference		
				al., 2012;						
				Koenekoop et						
				al., 2012;						
				Perrault et al.,						
				2012)						
				rs150726175						
F8	E5	c.562C>T	p.Arg188Trp	novel	-	-	-	-		
F9	E2	c.53A>G	p.Asn18Ser	(Siemiatkowska	-	-	-	-		
				et al., 2014),						
				UV						
F8 F9	E5 E2	c.562C>T c.53A>G	p.Arg188Trp p.Asn18Ser	et al., 2012, Perrault et al., 2012) rs150726175 novel (Siemiatkowska et al., 2014), UV	-	-	-	-		

Coding mutations in *NMNAT1* were identified in three families with LCA (F5, F6 and F7), all sharing the common c.769G>A p.(Glu257Lys) mutation (Chiang et al., 2012; Falk et al., 2012; Koenekoop et al., 2012; Perrault et al., 2012). The probands of F5 and F6 are compound heterozygous for known mutations: c.769G>A p.(Glu257Lys) as the first allele and c.364del p.(Arg122fs) (Perrault et al., 2012) and c.542A>G p.(Tyr181Cys) (Perrault et al., 2012) as the second allele, respectively. The proband of F7 is compound heterozygous for c.769G>A p.(Glu257Lys) and a novel missense mutation, c.679C>T p.(Arg227Trp), which affects a highly conserved amino acid and is predicted to affect protein function by SIFT, Align GVGD and PolyPhen-2 (Alamut v2.3 interpretation software, default settings used). The p.Glu257Lys mutation was also detected in a heterozygous state in 1/179 (0.6%) Belgian controls.

Finally, two probands were found to carry a single heterozygous missense variant: c.562C>T p.(Arg188Trp) (F8) and c.53A>G p.(Asn18Ser) (F9). The Arg188 and Asn18 residues are highly and moderately conserved considering an alignment of sequences from 11 species, respectively. The p.Arg188Trp variant is predicted to affect protein function by PolyPhen-2, SIFT and Align GVGD. The p.Asn18Ser variant is predicted to be probably damaging by PolyPhen-2 but tolerated by SIFT and Align GVGD (Alamut v2.3 interpretation software, default settings used). In addition, this variant was recently described together with p.Asp158His in an LCA

Abbreviations used: F: family; E: exon. Variants were designated as "unclassified variant (UV)" if no consensus was seen in all prediction programs used.

gDNA/cDNA level	Mechanism	Prediction tool	Results	
			c70A>T (F1)	c69C>T (F2)
cDNA	New uORF	NCBI ORF finder	/	/
gDNA	Transcription factor	JASPAR 5.0	Loss of (score):	Loss of (score):
	binding profiles	(core vertebrata)	- Mafb (5.9)	- THAP1 (5.4)
		(Mathelier et al.,	- Sox6 (5.4)	- Mafb (5.9)
		2014)	- Sox17 (7.9)	- Sox6 (5.4)
			- SOX10 (5.6)	- Sox17 (7.9)
			Gain of (score):	- SOX10 (5.6)
			- Meis1 (6.2)	- Pax2 (4.6)
			- Pax2 (4.4)	Gain of (score):
			- NFE2L1::MafG (5.1)	- ZNF354C (4.8)
cDNA	Functional RNA	RegRNA 2.0 (Chang	Gain of:	Gain of:
	motifs and sites	et al., 2013)	- LXRalpha:RXRalpha	- GATA2
				- Musashi
				binding element

Supp.	Table	S4. In	silico	evaluation	of the	NMNAT1	5'UTR	variants
-------	-------	--------	--------	------------	--------	--------	-------	----------

Differences between the mutations and the wild type sequence are indicated in bold. Default settings were used. Abbreviations used: uORF: upstream open reading frame; /: no difference with wild type.

	gDNA/cDNA	Length	QGRS (Mathelier et al., 2014)	G- Score
Wild type	gDNA/cDNA	30	<u>GG</u> GCCGCT <u>GG</u> TGATCTCC <u>GG</u> TAGCACTC <u>GG</u>	19
c69C>T	gDNA/cDNA	30	<u>GG</u> GCCGCT <u>GG</u> TGATCTCC <u>GG</u> TAGCACTC <u>GG</u>	19
c70A>T	gDNA/cDNA	30	<u>GG</u> GCCGCT <u>GG</u> TGATCTCC <u>GG</u> TAGCACTC <u>GG</u>	19
Wild type	gDNA	20	<u>GGCGGACAGTGAGG</u> GCGC <u>GG</u>	15
c69C>T	gDNA	20	<u>GGCGG</u> ATAGTGA <u>GG</u> GCGC <u>GG</u>	15
c70A>T	gDNA	20	<u>GG</u> C <u>GG</u> TCAGTGA <u>GG</u> GCGC <u>GG</u>	15
Wild type	cDNA	29	<u>GG</u> ACAGTGAG <u>GG</u> CGCGACAACAA <u>GG</u> GA <u>GG</u>	12
c69C>T	cDNA	29	<u>GG</u> ATAGTGAG <u>GG</u> CGCGACAACAA <u>GG</u> GA <u>GG</u>	12
c70A>T	cDNA	29	<u>GG</u> TCAGTGAG <u>GG</u> CGCGACAACAA <u>GG</u> GA <u>GG</u>	12

Supp. Table S5. G-quadruplexes predictions for the NMNAT1 5'UTR mutations

The location of both mutations in the G-quadruplexes is indicated in bold. Default settings were used.

Individual	F3	F4
Origin	Japan	Japan
Gender	male	male
Age of diagnosis	3 months	3 months
Nystagmus	+	+
Eyepoking	+	+
Enopthalmos	+	+
ERG (age)	NR (0)	NR (0)
BCVA (age)	0.03*(0)	LP
Refraction (age)	1.31** (0)	7.32** (0)
VF (age)	NE (4)	NE (4)
Color vision	NE (4)	NE (4)
Night blindness	+	+
Photophobia	-	-
Fundus aspect	CD	CD
Strabismus	-	-
Cataract	-	-
Keratoconus	-	-

Supp. Table S6. Clinical findings of the probands of F3 and F4

Visual acuity was measured with Teller acuity cards. Refractometry was performed using a hand held autorefractor (Retinomax2, Nikon Corporation, Tokyo, Japan) after cycloplegia. Fundoscopy was performed after dilatation. Full field ERG was recorded from both eyes respectively after 20 minutes of dark adaptation before recording, under topical anesthesia with after instilling a single drop of 0.4% oxybuprocaine for the contact lens electrodes. Abbreviations used: ERG: electroretinogram; BCVA: best corrected visual acuity; VF: visual field; ODS: both eyes; NR: non recordable; *: Teller acuity cards; LP: light perception; **: average of ODS spherical equivalent; CD: circular degeneration of the macula.

Family	amily Start End Size Micro-					Proximal breakpoint region			Distal breakpoint region			
	(hg19)	(hg19)	(bp)	homology	Repetitive	Number	Number of	Repetitive	Number	Number of	identity	
				(bp)	element	of	non-B DNA	element	of	non-B DNA	between	
						sequence	conformation		sequence	conformation	repetitive	
						motifs	prediction		motifs	prediction	elements	
							motifs			motifs		
F3	10,039,762	10,056,272	16,510	34	AluY	6	1	AluY	17	1	92%	
F4	10.038.284	10.043.035	4.751	10	AluSx	6	0	AluSc	12	0	88%	

Supp. Table S7. Bioinformatic analysis of the NMNAT1 deletion breakpoints

Non-B DNA conformations (with the exception of oligo(G)n tracts) should be located at both sides of the junction or overlapping the junction. Default settings were used. Abbreviations used: F: family; bp: base pairs.

SUPP. REFERENCES

- Chang, T. H., H. Y. Huang, J. B. Hsu, S. L. Weng, J. T. Horng and H. D. Huang. 2013. An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs. BMC Bioinformatics 14 Suppl 2:S4.
- Chiang, P. W., J. Wang, Y. Chen, Q. Fu, J. Zhong, X. Yi, R. Wu, H. Gan, Y. Shi, C. Barnett, D. Wheaton, M. Day, et al. 2012. Exome sequencing identifies NMNAT1 mutations as a cause of Leber congenital amaurosis. Nat Genet 44:972-974.
- Falk, M. J., Q. Zhang, E. Nakamaru-Ogiso, C. Kannabiran, Z. Fonseca-Kelly, C. Chakarova, I. Audo, D. S. Mackay, C. Zeitz, A. D. Borman, M. Staniszewska, R. Shukla, et al. 2012. NMNAT1 mutations cause Leber congenital amaurosis. Nat Genet 44:1040-1045.
- Koenekoop, R. K., H. Wang, J. Majewski, X. Wang, I. Lopez, H. Ren, Y. Chen, Y. Li, G. A. Fishman, M. Genead, J. Schwartzentruber, N. Solanki, et al. 2012. Mutations in NMNAT1 cause Leber congenital amaurosis and identify a new disease pathway for retinal degeneration. Nat Genet 44:1035-1039.
- Markham, N. R. and M. Zuker. 2008. UNAFold: software for nucleic acid folding and hybridization. Methods Mol Biol 453:3-31.
- Mathelier, A., X. Zhao, A. W. Zhang, F. Parcy, R. Worsley-Hunt, D. J. Arenillas, S. Buchman, C. Y. Chen, A. Chou, H. Ienasescu, J. Lim, C. Shyr, et al. 2014. JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles. Nucleic Acids Res 42:D142-147.
- Perrault, I., S. Hanein, X. Zanlonghi, V. Serre, M. Nicouleau, S. Defoort-Delhemmes, N. Delphin, L. Fares-Taie, S. Gerber, O. Xerri, C. Edelson, A. Goldenberg, et al. 2012. Mutations in NMNAT1 cause Leber congenital amaurosis with early-onset severe macular and optic atrophy. Nat Genet 44:975-977.
- Siemiatkowska, A. M., L. I. van den Born, M. M. van Genderen, M. Bertelsen, D. Zobor, K. Rohrschneider, R. A. van Huet, S. Nurohmah, B. J. Klevering, S. Kohl, S. M. Faradz, T. Rosenberg, et al. 2014. Novel compound heterozygous NMNAT1 variants associated with Leber congenital amaurosis. Mol Vis 20:753-759.