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Text S1: 
Structural complexes retained in each data set after filtering can be found in SI Table S1. 
Data filtering resulted in an expected but minimal decrease in the size of both the protein 
receptor and its ligand, primarily in the protein-DNA/RNA and protein-protein data sets 
(SI Fig. S1). In the protein-DNA/RNA data set, filtering reduced the size of the protein 
receptor at most 1.36-fold (t-test p=0.04, u-test p=0.40), and we observed a 1.77-fold 
decrease in ligand size (t-test p=0.01, u-test p=7.6x10-5), primarily due to the exclusion 
of histone-like complexes with extremely large DNA strands. The size of the larger 
protein receptor in the protein-protein data set decreased at most 1.75-fold after filtering 
(t-test p=0.02, u-test p=0.55), while the size of the smaller protein ligand decreased 
1.60-fold (t-test p=1.0x10-12, u-test p=5.0x10-11). The distribution of protein size did not 
change significantly in the small-molecule data set after filtering (t-test p=0.94, u-test 
p=0.29).  

The filtered protein-DNA/RNA data set primarily consisted of proteins bound to double-
stranded DNA; 80% of the complexes had a protein bound to DNA, with 63% of these 
being double-stranded. Of the 15% of complexes having proteins bound to RNA, the 
majority (65%) was single-stranded. 

We observed a difference in the molecular-functional repertoire and functional diversity 
of proteins that bind DNA/RNA, compared to those involved in small-molecule and 
protein-protein interactions (SI Fig. S2A). Over 60% of the protein-DNA/RNA complexes 
in our filtered data set were classified by the enzyme commission (EC) as having either 
transferase or kinase functions, while protein-small molecule and protein-protein data 
sets each contained < 30% transferase/kinase enzymes and > 60% 
lipase/amylase/peptidase proteins. Additionally, > 10% of protein-small molecule and 
protein-protein complexes were classified into functional categories other than 
transferase/kinase and lipase/amylase/peptidase, whereas < 6% of protein-DNA/RNA 
complexes were classified as other than these main functional categories. 

Protein-small molecule, protein-DNA/RNA and protein-protein data sets also differed in a 
number of atomic interaction features extracted from structural information (SI Figs. 
S2B,S3,S4). As expected, given the acidity of DNA and RNA, DNA/RNA-binding 
proteins had ~2-fold more basic residues in their ligand-binding surfaces than proteins 
from small-molecule and protein binding data sets (t-test p<1.6x10-42, u-test p<4.8x10-44, 
SI Fig. S3). Protein-DNA/RNA complexes had more hydrogen bonds to the ligand than 
the other data sets (15.10 for protein-DNA/RNA, vs. 9.84 and 6.60 for small-molecule 
and protein-protein data sets, respectively, t-test p<1.9x10-23, u-test p<1.3x10-25). 
Protein-small molecule complexes had higher van der Waals interaction forces, when 
compared to protein-DNA/RNA and protein-protein data sets (-1073.53 vs. -1982.94 and 
-1991.58, respectively, t-test p<1.6x10-40, u-test p<6.6x10-57). Deformation effect was 
reduced in the protein-small molecule data set (9.67 for small-molecule, 25.41 for 
DNA/RNA, 17.74 for protein-protein, t-test p<2.9x10-15, u-test p<1.3x10-14), and the 
accessible to solvent area of the ligand was greatest in the protein-DNA/RNA data set 
(625.09 for small-molecule, 10,786.40 for DNA/RNA, 6071.85 for protein-protein, t-test 
p<3.4x10-3, u-test p<1.4x10-6). These differences are largely expected, given our current 
general understanding of how proteins are likely to interact with different ligand types. 

Although binding affinity (pKd) was marginally different among all three data sets (t-test 
p<0.04, u-test p<3.5x10-3), the differences were small (mean pKd=6.26 for small-



molecule, 7.20 for DNA/RNA, and 6.97 for protein-protein), suggesting that the range of 
biologically-meaningful binding affinity values is at least generally comparable for 
different types of molecular interactions. 

 
Text S2: 
We measured the correlation between each atomic interaction feature and 
experimentally-determined binding affinity (SI Fig. S11A). The protein-small molecule 
data set showed the strongest correlations between single features and ligand binding. 
For example, this data set had two single features with r2>0.65. In contrast, none of the 
other data sets had any single atomic interaction correlated more than 40% with binding 
affinity. The protein-small molecule data set also had the largest average correlation 
between single atomic interaction features and binding affinity (43%); the protein-
DNA/RNA data set had 25% average correlation between single atomic interaction 
features and ligand binding, and the protein-protein data set had 21% average 
correlation. Hydrophobic contacts and van der Waals interactions were the atomic 
interactions most strongly correlated with binding affinity in the small-molecule data set 
(r2=0.70 and 0.69, respectively), with hydrogen bonds showing the least correlation 
(r2=0.07). In contrast, hydrogen bonding was among the atomic interactions most 
correlated with binding affinity in the protein-protein data set (r2=0.35), with hydrophobic 
contacts also being relatively highly-correlated (r2=0.34). Protein-DNA/RNA binding 
affinity was most correlated with the solvent-accessible area of the protein receptor 
(r2=0.36), deformation effect (r2=0.30), and van der Waals interactions (r2=0.36). 

The statistical models we employed apply coefficients to each atomic interaction term as 
a way of weighting the contribution of each term when predicting binding affinity. We 
plotted the distribution of each atomic interaction term’s coefficients obtained from the 
100 best-fit models for each data set (SI Fig. S11B). We observed a number of atomic 
interactions for which the best-fit coefficients were large—in absolute value—but differed 
in sign between different data sets. Hydrophobic contacts were an example of this 
pattern, having relatively large positive coefficients in the small-molecule and protein-
protein data sets (5.12x10-3 and 3.03x10-3, respectively) but a relatively large negative 
coefficient in the DNA/RNA data set (-1.59x10-3). The coefficients weighting deformation 
effect also differed in sign between the small-molecule and DNA/RNA data sets. In this 
case, the small-molecule models had negative weights (-5.93x10-2, on average), 
whereas the DNA/RNA models had coefficients that were of similar absolute value but 
positive in direction (1.37x10-2).  

Finally, we observed cases in which the magnitude of the coefficients applied to a 
particular atomic interaction term differed among data sets, suggesting that the 
interaction term may play the same role in determining binding affinity across data sets, 
but may be more or less important, depending on the ligand type. As expected, 
hydrogen bonds had positive coefficients in all three data sets, but the coefficient was 
larger for the DNA/RNA data set (mean=2.17x10-1) than for the other data sets (1.18x10-

1 and 1.79x10-1 for small-molecule and protein-protein, respectively, t-test p<4.5x10-41, u-
test p<1.3x10-25). Similarly, the coefficients for repulsive interactions were significantly 
larger for the DNA/RNA data set than for the others (>1.92-fold difference, t-test 
p<2.0x10-53, u-test p<1.2x10-32). Interestingly, we found that the intercept—which defines 
the theoretical binding affinity when all other terms are zero—was significantly greater in 
the DNA/RNA data set than in the others (intercept=6.20 for DNA/RNA, 1.61 for small-
molecule, 3.46 for protein-protein, t-test p<3.5x10-165, u-test p<2.6x10-34), possibly 



suggesting that interactions involving only a small number of structurally favorable 
features may be stronger in the case of protein-DNA/RNA binding than for the other 
types of ligands. 

For each data set, we identified all statistical interaction terms combining two atom-atom 
interaction types that were present in at least 95 of the top 100 models selected by AIC 
(SI Fig. S12). We first measured the simple correlation between each statistical 
interaction term and binding affinity (SI Fig. S13A). We found that single statistical 
interaction terms combining two types of atom-atom interactions were more closely 
correlated with binding affinity in the small-molecule data set than in the other data sets. 
Not only was the average correlation between statistical interaction terms and binding 
affinity higher (mean r2=0.46 for small-molecule, 0.29 for DNA/RNA and 0.11 for protein-
protein, William’s test p<5.8x10-3), but the small-molecule data set had 5 statistical 
interaction terms that were > 60% correlated with binding affinity, whereas the other data 
sets had no statistical interaction terms with > 50% correlation.  

We found that the most-correlated statistical interaction terms in the DNA/RNA data set 
(deformation effect : hydrogen bonds, r2=-0.41; van der Waals : deformation effect, 
r2=0.44, and van der Waals : repulsive interactions, r2=0.44) were more correlated with 
DNA/RNA affinity than any of the simple atom-atom interaction features (max r2=0.36, 
p<6.3x10-3, see SI Fig. S11A). In contrast, binding affinity was highly correlated with both 
complex statistical interaction terms and simple atom-atom interaction features in the 
small-molecule data set (see SI Figs. S11A,S13). The simple hydrophobic contacts and 
van der Waals features were correlated with small-molecule affinity with r2=0.70 and -
0.69, respectively, whereas the most highly-correlated statistical interaction term had 
r2=0.66. 

 
Table S1. Number of complexes in each data set before and after filtering.  

Type of Interaction Complexes 
before filtering 

Complexes 
after filtering 

Protein-Small Molecule 2897 2342 
Protein-DNA/RNA 510 300 
Protein-Protein 1743 784 
General 4755 3426 

Data sets each contain < 1% transmembrane proteins. The filtered protein-DNA/RNA 
data set consists of 80% protein-DNA complexes, 15% protein-RNA complexes and 5% 
protein-nucleotide complexes. 



Figure S1. The distribution of receptor and ligand size decreases moderately after 
filtering. We plot the size (number of atoms) of the protein receptor (A) and the bound 
ligand (B) of each structural complex, before (dark) and after (light) data filtering. For the 
protein-protein data set, the larger protein in the complex was considered the ‘receptor,’ 
and the smaller protein the ‘ligand’ of each complex. Bars indicate standard error. 

 

 



Figure S2.  Proteins interacting with small molecules, DNA/RNA and other 
proteins have different molecular functions and quantitatively different structural 
features. A. We plot the proportion of protein-small molecule (blue), protein-DNA/RNA 
(red) and protein-protein (orange) complexes performing each category of molecular 
function, based on enzyme commission (EC) classification. The general data set 
includes all complexes (gray). B. For complexes of each interaction type, we plot the 
mean and standard error of each extracted structural feature (see Methods, Fig. 1).  

 

 
Figure S3. Proteins binding DNA/RNA have ~2-fold more basic residues on their 
binding surfaces than proteins involved in interactions with small molecules or 
other proteins. We identified the binding surface of each protein receptor as consisting 
of those amino acids with at least one atom < 3.5 Å distance from the ligand. We plot the 
mean percentage of amino acids in the binding surface that are basic, acidic or neutral, 
divided into protein-small molecule (blue), protein-DNA/RNA (red) and protein-protein 
(orange) data sets. Bars indicate standard error. 

 



 
Figure S4. The distributions of structural features differ among proteins that bind 
small molecules, those that bind DNA/RNA and those interacting with other 
proteins. From each protein-ligand complex in our filtered data set, we calculated a 
number of structural features thought to correlate with ligand affinity (see Methods). For 
each structural feature, we plot the median, 1st and 3rd quartiles, and 1.5 interquartile 
range as a “box plot.” Blue boxes indicate complexes with protein bound to a small 
molecule, red indicates protein-DNA/RNA complexes, and orange indicates protein-
protein complexes. 



Figure S5. Different cross-validation strategies have minimal effect on inferred 
accuracy. We used replicated cross-validation to evaluate the accuracy with which 
novel statistical models and existing prediction tools can predict ligand affinity (pKd) from 



structural information (see Methods, Figs. 1,2). In each labeled panel, we plot results 
using a different number of complexes set aside as testing data for each replication 
(from 10 to 100), with A showing the correlation (r2) between predicted and experimental 
binding affinity (pKd), and B showing root mean squared deviation (RMSD) between 
predicted and experimental affinity. Bars indicate standard error, and colors indicate 
different interaction data sets (blue=protein-small molecule, red=protein-DNA/RNA, 
orange=protein-protein). Results are shown for a generalized linear model (GLM), 
single-layer (SLSVR) and dual-layer (DLSVR) support vector regression, and a number 
of existing prediction tools (see Methods). 
 

Figure S6. Statistical analysis suggests that affinity-prediction models are not 
strongly biased. For the best-fit generalized linear model fit to each data set by cross-
validation (see Methods), we plot three views of the residuals. A. We plot the predicted 
pKd (X-axis) vs. the distance between predicted and experimentally-determined pKd (Y-
axis) of each complex. B. We plot the frequency distribution of residuals of each size. C. 
We plot the theoretical (X-axis) vs. observed (Y-axis) quantiles for each data set. 



 
Figure S7. Excluding outlier complexes had minimal effect on predictive accuracy. 
We removed structural complexes with experimentally-determined binding affinity (pKd) 
≤ 3 or ≥ 10 from either the training data (A) or the testing data (B). We plot the mean 
correlation between predicted and experimental pKd (r2) for each interaction data set 
before (dark series) and after (light series) removing outlier structures. Bars indicate 
standard error. 

 

Figure S8. Different model-selection procedures affected model complexity but 
not predictive accuracy. We used either Akaike or Bayesian information criteria (AIC 
(dark) and BIC (light), respectively) to identify best-fit statistical models for each 
interaction data set. A. We plot the mean complexity (number of free parameters in the 
model) of models selected by each criterion from each data set. B. We plot the 
correlation between predicted and experimentally-determined binding affinity (pKd) 
produced by models selected by each criterion for each data set. C. We plot the root 
mean squared deviation (RMSD) between predicted and experimental pKds. In all 
panels, bars indicate standard error.  



 
Figure S9. Predictive accuracy is not stongly variable across different data set 
partitionings. A. We cluster the binding complexes by KEGG metabolic pathway and 
plot the RMSD across complexes in the cluster (predicted vs. experimental pKd) against 
the number of complexes in the cluster. B and C. We plot the prediction error vs. protein 
flexibility and ligand flexibility, respectively. D. We generated a ‘nonredundant’ data set 
by clustering proteins of > 90% sequence similarity and selecting one representative 
complex for each cluster; we plot predicted vs. experimental pKds for the nontredundant 
data set and the complete data set. 



 
Figure S10:  Mixed models identify heterogeneity in atomic interaction features 
and reduce variation in protein-protein prediction accuracy. We generated mixed 
models (GLMM) for each data set by adding random effects to the best-fit generalized 
linear model (GLM) obtained from cross-validation, using the GLMM search algorithm to 
select the best-fit number of categories for each structural feature (see Methods). A. The 
best-fit number of categories identified by mixed model analysis for each structural 
feature is shown for each interaction type. B. We compared the predictive accuracy of 
the best-fit mixed generalized linear model (GLMM) to the best-fit homogeneous 
generalized linear model (GLM) and two types of homogeneous support vector 
regression models (single layer, SLSVR; and double-layer, DLSVR). We plot the mean 
Pearson correlation (r2) between predicted and experimentally-determined binding 
affinity (pKd) for each statistical model and interaction type over 100 replicates of cross-
validation (see Methods, Fig. 2). Bars indicate standard deviation.  

	
  



 
Figure S11.  Atomic interactions contribute differently to binding affinity 
prediction of protein-small molecule, protein-DNA/RNA and protein-protein 
binding. A. We plot the mean and standard error in spearman correlation between each 
atomic interaction and experimental binding affinity (see Methods, Fig. 1). B. For each 
atomic interaction, we plot the mean and standard error of the coefficients applied to that 
atomic interaction over the 100 best-fit prediction models obtained from each data set 
(see Methods). Intercept refers to the constant term. C. We generated reduced models 
by excluding each atomic interaction from the complete statistical model with all atomic 
interactions included. The plot shows the difference in Pearson correlation (r2) between 
predicted and experimental binding affinities, comparing the best-fit complete models for 
each data set to the best-fit reduced model with the indicated atomic interaction 
removed.  

 



 
Figure S12. Different combinations of atomic interactions are selected as 
statistically important for different data sets. For each data set (protein-small 
molecule, protein-DNA/RNA, protein-protein, and the ‘general’ data set containing all 
complexes) we plot the number of the top 100 best-fit generalized linear models 
(selected by AIC) having that statistical interaction term. We show only those statistical 
interaction terms that are present in at least 95 of the top 100 models in at least one data 
set. 


