Science Advances

MAAAS

advances.sciencemag.org/cgi/content/full/2/10/e1601087/DC1

Supplementary Materials for

Sulfur deficiency–induced repressor proteins optimize glucosinolate biosynthesis in plants

Fayezeh Aarabi, Miyuki Kusajima, Takayuki Tohge, Tomokazu Konishi, Tamara Gigolashvili, Makiko Takamune, Yoko Sasazaki, Mutsumi Watanabe, Hideo Nakashita, Alisdair R. Fernie, Kazuki Saito, Hideki Takahashi, Hans-Michael Hubberten, Rainer Hoefgen, Akiko Maruyama-Nakashita

> Published 7 October 2016, *Sci. Adv.* **2**, e1601087 (2016) DOI: 10.1126/sciadv.1601087

The PDF file includes:

- fig. S1. Alignment of SDI family proteins in Arabidopsis.
- fig. S2. Phylogenetic relationships of SDI family proteins in some monocot and dicot species.
- fig. S3. Histochemical staining of *Arabidopsis* plants transformed with *SDI1*_{pro}:*GUS* and *SDI2*_{pro}:*GUS*.
- fig. S4. Transcript levels of *CYP79F1* and *CYP83A1* were influenced by *SDI1* and *SDI2* similar with other mGSL synthesis genes.
- fig. S5. Perturbation of *SDI1* and *SDI2* influences on the transcript levels of genes involved in primary sulfur metabolism.
- fig. S6. Frequency plot of genes according to *P* values.
- fig. S7. Contribution of each PC.
- fig. S8. Distribution of PC1 (A) and PC2 (B) scores.
- fig. S9. PC1 shows linear correlation with –S-responsive gene expression.
- fig. S10. Keywords that frequently appeared in genes with high scores in PC2.
- fig. S11. Effects of the manipulation of MYB28, MYB29, and MYB76 on gene expression of *SDI1*, *SDI2*, and other factors.
- table S12. Oligonucleotides used for the vector construction.
- table S13. Oligonucleotides used for the isolation of the T-DNA insertion lines.
- table S14. Oligonucleotides used for qRT-PCR analysis.
- References (77, 78)

Other Supplementary Material for this manuscript includes the following:

(available at advances.sciencemag.org/cgi/content/full/2/10/e1601087/DC1)

- table S1 (Microsoft Excel format). MT, MS, indolic, and total GSL contents in shoot and root tissues of WT, *sdi1*, *sdi2*, and *sdi1sdi2*.
- table S2 (Microsoft Excel format). Fold changes of GSL contents in shoot and root tissues of *sdi1*, *sdi2*, and *sdi1sdi2* versus WT.
- table S3 (Microsoft Excel format). MT, MS, indolic, and total GSL contents in shoot and root tissues of WT and *SDI1* and *SDI2*-overexpressing lines.
- table S4 (Microsoft Excel format). Fold changes of GSL contents in shoot and root tissues of *SDI1ox* and *SDI2ox* versus WT.
- table S5 (Microsoft Excel format). Sulfate, Cys, and GSH contents in shoot and root tissues of sdi knockouts and overexpressing lines.
- table S6 (Microsoft Excel format). Transcript levels of genes highly contributed to PC1.
- table S7 (Microsoft Excel format). Transcript levels of genes highly contributed to PC2.
- table S8 (Microsoft Excel format). Transcript levels of GSL-related genes in root tissues of WT, *sdi1sdi2*, and *SDI1ox* detected by microarray analysis.
- table S9 (Microsoft Excel format). Transcript levels of sulfur assimilatory genes in root tissues of WT, *sdi1sdi2*, and *SDI1ox* detected by microarray analysis.
- table S10 (Microsoft Excel format). Transcript levels and gene PCs of genes selected for PCA.
- table S11 (Microsoft Excel format). Transcript levels of GSL-related genes in root tissues of parental, *slim1-1*, and *slim1-2* detected by microarray analysis.

At1g04770(SDI2) At3g51280 At5g48850(SDI1) At5g44330 At4g20900(MS5)	1 M M M M I Q R R G 1 M M R D V F R P T 1 M E R S L K K T K 1 M R R R E S R G A K G G 1 M C P C V E R R A P P G	G F L T P P P S W H T V Y Y T P P P A R T S	G E R K S A P C S P A K N N Y N N S I K S T T R R V Y I A M P I S E R K S D H V A A M P M T E R R	Q D S S A A 18 P L G I S R T Q S E 28 N L M K D D E 25 R S P L I E N Q E S 47 R P P Y S C S S S S E R R 48
At1g04770(SDI2) At3g51280 At5g48850(SDI1) At5g44330 At4g20900(MS5)	19 - AYNVVHKLPHO 29 - SFHAIHKVPVO 26 - LFHVIHKVPCO 48 FRVRTO 49 DPFHIVHKVPSO	D S P Y V R A K H V C D S P Y V R A K N V C D T P Y V R A K H A C D S P Y V R A K H A C D S P Y V R A K H A C	Q L V E K D A E A A I E L F W Q L V E K D P E R A I P L F W Q L I E K N P E M A I V W F W Q L V S K D P N R A I S L F W Q L T D K D P N R A I S L F W	I A I K A R D R V D S A L 67 K A I N A G D R V D S A L 77 K A I N T G D R V D S A L 74 A A I N A G D R V D S A L 91 T A I N A G D R V D S A L 98
At1g04770(SDI2) At3g51280 At5g48850(SDI1) At5g44330 At4g20900(MS5)	68 K D M A L L M K Q Q N F 78 K D M A I V M K Q Q N F 75 K D M A V V M K Q L D F 92 K D M V V V L K Q L N F 99 K D M A V V M K Q L G F	A E E A I D A I Q S F A E E A I E A I K S I S E E A I E A I K S F F D E G I E A I K S F S D E G I E A I K S F	F R D L C S R Q A Q E S L D N R V R C S D Q A Q E S L D N F R P R C S K N S Q D S L D N F R Y L C P F E S Q D S I D N F R Y L C S F E S Q D S I D N	V L I D L Y K K C G R I E 117 I L L D L Y K R C G R L D 127 V L I D L Y K K C G R M E 124 L L L E L Y M K S G R I T 141 L L L E L Y K K S G R I E 148
At1g04770(SDI2) At3g51280 At5g48850(SDI1) At5g44330 At4g20900(MS5)	18 E Q V E L L K Q K L W M 28 D Q I G L L K H K L F L 25 E Q V E L L K R K L R Q 42 E V A E L L E H K L R T 49 E E A V L L E H K L Q T	I Y Q G E A F N G K F I Q K G L A F N G K F I Y Q G E A F N G K F L E Q D K H Y G G R L E Q G M G F G G R V	P T K T A R S H G K K F Q V T R T K T A R S Q G K K F Q V S T K T A R S H G K K F Q V T I K I A K R S H E E Q N N K T V S R A K R V Q G K H V I M T	V E K E T S R I L G N L G V E Q E A T R L L G N L G V Q Q E I S R L L G N L G I 77 V Q Q E I S R L L G N L G I E Q E K A R I L G N L A I 80 I 80 I 80 I 80 I 80 I 80 I 80 I 80
At1g04770(SDI2) At3g51280 At5g48850(SDI1) At5g44330 At4g20900(MS5)	68 W A Y M Q L M D Y T A A 78 W A L M Q R D N F V E A 75 W A Y M Q Q A K Y L S A 92 W V H L Q L H N Y G I A 99 W V H L Q L H N Y G I A	E A V Y R K E D A Y R R E A V Y R K E Q Y Y R N E Q H Y R F G F V T F	A Q L A S S S S S S S S S S S S S S S S S S S	I E P D A N K A C N L C T 201 I A P D N N K M C N L G I 211 V E P D A N K S C N L 208 L E P D N K L C N L 225 L E R D K N K L C N L 248
At1g04770(SDI2) At3g51280 At5g48850(SDI1) At5g44330 At4g20900(MS5)	02 C L I K Q G K H D E A F 12 C L M K Q G R I D E A K 09 C L T K Q G R F E E G F 26 C L I R M E R T H E A K 49 C L M R M S R I P E A K	S I L F R D V L M E T L R R V K P A V L L V L D D V L E S L L E D V K Q S L C S L L D D V R D S P A	M E N K E G S G - D P R L M A V D G P R G V D S H L K A Y E E Y R V L G A D - D C R T R Q G N - Q W K N E P F C K S F E A E S E C G D E P F A K S Y D	R V Q E L S E L - - - 244 R A Q M L N D L G S E M 261 R A E L L S E L S S - 253 R A T E M L A E R E Q A T 274 R A T E M L A E I E - 295
At1g04770(SDI2) At3g51280 At5g48850(SDI1) At5g44330 At4g20900(MS5)	45	R L F D A I F G S S F S D N F S S R C S C L S E K F Y A G C S F	SIWQPQPCSEQTVKA SIWQPQPCSEQTVKA GGMKGKKALA VNRMKENIA	K P K P G L S N G D G Y G 311 G T S T E L G N I H K T N 319 P G T A N K N Y S D 332
At1g04770(SDI2) At3g51280 At5g48850(SDI1) At5g44330 At4g20900(MS5)	48 E E E A A A S V S 12 D E N V K M S V N P V V 59 D A E M E D V L G 20 S H A S S E S V E Q N S 33 V S S S P A S V R P N S	V N P L R V D A K P F P G L T T Q P R E C F A G L Y T Q P R R C F	F	- - V E C E V G I D E I A 267 R T R S S S Q G M G M L S 361 - - N I L D D D F V L 276 I G A S R K L R F W T V G 369 - G A A R K L L F G K P Q 374
At1g04770(SDI2) At3g51280 At5g48850(SDI1) At5g44330 At4g20900(MS5)	68 V V E G 62 G I G G D H E G E 77 G 70 P V R S L R F G N E 75 P F G S E Q M K I L E F	T N T S T R R R L S N Y Q K N L K S V G T A G E E E P M K R K K	D E F V K E W R R P Y R M E K K A T E C G L P D N K D E E M T S T S F K A A S T T N D E L H Q F I S S D Q N M I Q Y L H E F V K D	F E D A I M A A V L G T E 408 D A I M A A V L G T E 408 D A D C M T S K A R K L C 417 T A D G P K S E S K K S W 424
At1g04770(SDI2) At3g51280 At5g48850(SDI1) At5g44330 At4g20900(MS5)	85 T R R L P I F E 09 T K V D K K R L K V F G 88 S K R L P I F E 18 P E L I K D K E D N E K 25 A D I A E E E E A E E E	E T L P L R D Q L A (D T L C L N Q S L - Q I S S F R N T L V (E S E R I A S E S S S E E E R L Q G E L K T	C	A 200 A
At1g04770(SDI2) At3g51280 At5g48850(SDI1) At5g44330 At4g20900(MS5)	04 31 07 68 S V 51			303 430 306 469 450

fig. S1. Alignment of SDI family proteins in *Arabidopsis***.** Alignment of full protein sequences was performed by ClustalW program at DNA Data Bank of Japan (DDBJ)

(http://www.ddbj.nig.ac.jp/search/clustalw-j.html). TPR-like helical domains detected by InterPro scan (IPR011990, *38*) are underlined. Orange characters indicate TPR motifs (TPR 1, PF00515) and blue characters indicate nuclear localization signals (NLS_BP, PS50079) detected by Motif Scan (*64*). Amino acid residues conserved in more than 50% of all 5 SDI-family proteins are highlighted in black.

Solanum tuberosum

Brassica rapa

fig. S2. Phylogenetic relationships of SDI family proteins in some monocot and dicot species. The phylogenetic tree was constructed by MEGA6 using a statistical neighbor-joining method and parameters as described in the methods. Dicots: AT (Arabidopsis thaliana), AL (Arabidopsis lyrata), CRU (Capsella rubella), BR (Brassica rapa), SL (Solanum lycopersicum), ST (Solanum tuberosum). Monocots: TA (Triticum aestivum), ZM (Zea mays), OS (Oriza sativa). Black squares show Arabidopsis thaliana proteins. Abbreviations: AT-SDI1, AT5g48850; AT-SDI2, AT1G04770; BR-SDI1, BR 06G31000; BR-SDI2, BR 10G03040; TA-SDI1, wheat SDI1; OS-SDI1, OS 03G06970; ZM-SDI1, ZM 09G28880; SL-SDI1, SL 09G061700; ST-SDI1, ST 06G008080; OS-SDI2, OS 05G43040; ZM-SDI2, ZM 06G27960; SL-SDI2, SL 09G091600; ST-SDI2, ST 09G027950

fig. S3. Histochemical staining of *Arabidopsis* plants transformed with *SDI1*_{pro}:*GUS* and *SDI2*_{pro}:*GUS*. (A) Seedlings grown under +S, -S and +S (applied with 1 mM OAS) conditions. Scale bars = 1 mm. (B) Leaf (a,g), stem (b,h), floral bud (c,i), flower (d,j), silique (e,k) and seeds (f,l) of mature plants are presented. Scale bars in b,c,e,h,i,k = 0.8 mm; in d,j = 0.5 mm.

fig. S4. Transcript levels of *CYP79F1* and *CYP83A1* were influenced by *SDI1* and *SDI2* similar with other mGSL synthesis genes. (A) (B) Transcript levels of *CYP79F1* and *CYP83A1* in plant roots analyzed by qRT-PCR. In (A), WT (white bars), *sdi1* (pale gray bars), *sdi2* (dark gray bars) and *sdi1sdi2* (black bars) plants grown under +S or -S conditions were used. In (B), WT (white bars), *SDI1ox* (pale gray bars) and *SDI2ox* (dark gray bars) plants grown under +S condition were used. Bars and error bars show mean values and SE of triplicates. Double and single asterisks show the significant differences (P<0.01, P<0.05) detected by Student's *t*-test between WT and T-DNA insertion mutants (red) and those between 4 lines of *sdi1sdi2* and other plant lines (blue) in (A), and those between WT and overexpression lines in (B).

fig. S5. Perturbation of *SDI1* and *SDI2* influences on the transcript levels of genes involved in primary sulfur metabolism. (A) (B) Transcript levels of *SULTR1;2*, *SULTR2;1* and *APR3* in plant roots analyzed by qRT-PCR. In (A), WT (white bars), *sdi1* (pale gray bars), *sdi2* (dark gray bars) and *sdi1sdi2* (black bars) plants grown under +S or -S conditions were used. In (B), WT (white bars), *SDI1ox* (pale gray bars) and *SDI2ox* (dark gray bars) plants grown under +S condition were used. Bars and error bars show mean values and SE of triplicates. Double and single asterisks show the significant differences (P<0.01, P<0.05) detected by Student's *t*-test between WT and T-DNA insertion mutants (red) and those between 4 lines of *sdi1sdi2* and other plant lines (blue) in (A), and those between WT and over-expression lines in (B).

fig. S6. Frequency plot of genes according to *P* **values.** *P*-values among groups were calculated by two-way ANOVA. Six thousands genes with P values less than 0.001 were selected for further analysis.

fig. S7. Contribution of each PC.

fig. S8. Distribution of PC1 (A) and PC2 (B) scores. Sorted scores are compared with theoretical values for the normal distribution. In this plot, linear relationship shows normality of the distribution. The slanted blue line has threshold of zero and slope of the mad. Gray dot lines show the threshold of gene selection, three times of the mad. Selected outlying genes with positive and negative scores were colored with red and blue, respectively.

fig. S9. PC1 shows linear correlation with -S-responsive gene expression. Comparisons between PC1 and expressional changes (Δz) from the control groups. Δz of genes selected for PCA in WT grown under -S (blue), *sdi1sdi2* grown under -S (gray) and *SDI1* ox grown under +S (red) compared to Col grown under +S were spotted. Position of the genes that take top two PC1 scores, *BGLU28* and *LSU1*, were indicated.

	Gene Ontology Biological Process	selected	contents	p-value	p-value
	metabolic process	57	2668	7.07E-12	7.07E-12
	glucosinolate biosynthetic process	37	167	0.00E+00	0.00E+00
	oxidation-reduction process	28	1580	1.10E-04	1.10E-04
	cysteine biosynthetic process	27	225	0.00E+00	0.00E+00
	indoleacetic acid biosynthetic process	26	110	0.00E+00	0.00E+00
	cellular amino acid biosynthetic process	21	188	0.00E+00	0.00E+00
	toxin catabolic process	17	212	3.91E-12	3.91E-12
	tryptophan catabolic process	15	82	0.00E+00	0.00E+00
	transmembrane transport	15	517	3.00E-05	3.00E-05
	defense response to bacterium	14	362	2.34E-06	2.34E-06
	response to stress	13	387	2.36E-05	2.36E-05
	response to cyclopentenone	12	128	1.11E-09	1.11E-09
	response to cadmium ion	12	484	7.60E-04	7.60E-04
	response to jasmonic acid	10	260	7.01E-05	7.01E-05
	sulfate assimilation	9	14	7.44E-15	7.44E-15
Š	response to toxic substance	9	70	9.80E-09	9.80E-09
ati	biosynthetic process	8	167	8.56E-05	8.56E-05
ē	leucine biosynthetic process	6	14	2.75E-09	2.75E-09
	response to insect	6	46	2.78E-06	2.78E-06
٦	response to karrikin	6	130	8.02E-04	8.02E-04
-	iasmonic acid biosynthetic process	6	132	8.67E-04	8.67E-04
	hydrogen sulfide biosynthetic process	5	8	9.33E-09	9.33E-09
	branched-chain amino acid biosynthetic process	5	20	8.41E-07	8.41E-07
	drug transmembrane transport	5	79	5.47E-04	5.47E-04
	2.4.6-trinitrotoluene catabolic process	4	2	2.94E-09	2.94E-09
	sulfate reduction	4	4	4.64E-08	4.64E-08
	regulation of glucosinolate biosynthetic process	4	7	4.27E-07	4.27E-07
	threonine biosynthetic process	4	11	2.54E-06	2.54E-06
	sulfate transmembrane transport	4	14	6.53E-06	6.53E-06
	cell wall modification involved in abscission	4	16	1.10E-05	1.10E-05
	sulfate transport	4	17	1.39E-05	1.39E-05
	defense response by callose deposition in cell wall	4	17	1.39E-05	1.39E-05
	glucosinolate metabolic process	4	35	2.23E-04	2.23E-04
	para-aminobenzoic acid metabolic process	4	37	2.75E-04	2.75E-04
	cellular amino acid metabolic process	4	51	9.08E-04	9.08E-04
	response to chitin	17	424	0.00E+00	0.00E+00
	regulation of transcription, DNA-templated	17	2099	4.05E-06	4.05E-06
	transcription, DNA-templated	14	1466	5.69E-06	5.69E-06
e	response to wounding	13	334	9.00E-13	9.00E-13
₹	ethylene-activated signaling pathway	11	224	5.32E-12	5.32E-12
osi	response to mechanical stimulus	10	56	0.00E+00	0.00E+00
ŏ.	intracellular signal transduction	9	252	8.32E-09	8.32E-09
3	ethylene biosynthetic process	7	118	1.42E-08	1.42E-08
٩	respiratory burst involved in defense response	7	124	1.99E-08	1.99E-08
	response to cold	7	418	5.78E-05	5.78E-05
	defense response by callose deposition	4	47	5.25E-06	5.25E-06
	iasmonic acid biosynthetic process	4	132	2.82E-04	2.82E-04

В

	Pathway	selected	contents	p-value	Name of the metabolic pathway
	PWYQT-4471	20	61	0.00E+00	glucosinolate biosynthesis from dihomomethionine
	PWYQT-4472	16	34	0.00E+00	glucosinolate biosynthesis from trihomomethionine
	PWYQT-4473	16	33	0.00E+00	glucosinolate biosynthesis from tetrahomomethionine
	PWYQT-4474	15	32	0.00E+00	glucosinolate biosynthesis from pentahomomethionine
	PWYQT-4475	15	35	0.00E+00	glucosinolate biosynthesis from hexahomomethionine
	PWY-1187	12	30	0.00E+00	glucosinolate biosynthesis from homomethionine
	PWY-2821	11	21	0.00E+00	glucosinolate biosynthesis from phenylalanine
	PWYQT-4450	10	12	0.00E+00	aliphatic glucosinolate biosynthesis, side chain elongation cycle
	PWY-601	10	27	5.31E-14	glucosinolate biosynthesis from tryptophan
	PWY-6842	8	66	1.03E-07	glutathione-mediated detoxification II
ş	PWY-6932	7	10	4.27E-12	selenate reduction
Jati	PWY-5340	6	10	3.75E-10	sulfate activation for sulfonation
l e	PWY-6051	6	16	6.04E-09	2,4,6-trinitrotoluene degradation
2	PWY-5320	5	16	2.83E-07	kaempferol glycoside biosynthesis (Arabidopsis)
2	PWY-5321	5	35	1.25E-05	quercetin glycoside biosynthesis (Arabidopsis)
	PWY-1186	4	8	7.24E-07	L-homomethionine biosynthesis
	PWY-702	4	13	4.89E-06	L-methionine biosynthesis II
	LEUSYN-PWY	4	16	1.10E-05	L-leucine biosynthesis
	HOMOSERSYN-PWY	3	5	1.11E-05	L-homoserine biosynthesis
	SULFMETII-PWY	3	5	1.11E-05	sulfate reduction II (assimilatory)
	PWY-5097	3	15	2.83E-04	L-lysine biosynthesis VI
	PWY1F-FLAVSYN	3	19	5.61E-04	flavonoid biosynthesis
	PWY-5272	3	21	7.49E-04	abscisic acid glucose ester metabolism
	DISSULFRED-PWY	2	2	1.34E-04	Pathway: sulfate reduction IV (dissimilatory)
	GLUTATHIONESYN-PWY	2	2	1.34E-04	glutathione biosynthesis

fig. S10. Keywords that frequently appeared in genes with high scores in PC2. Gene ontology biological processes (A) and metabolic pathways (B) over-represented in PC2 are listed. In both (A) and (B), frequencies of genes were compared between the selected genes (selected) and the whole chip contents (contents) for each keyword and the *p*-value was estimated after selecting genes specifically expressed toward positive or negative direction of PC2 based on the Normal QQ plot (fig. S8) as described in the Materials and Methods. There was no metabolic pathway over-represented in positive PC2 (B). The keywords of which the *p*-values are less than 0.001 and the frequencies in selected genes are more than 4 (A) or 2 (B) are listed.

References			(17)		(52)				(13)	
Array element	AGI	Gene	myb28myb29/WT	MYB28ox/WT	MYB29ox/WT	MYB76ox/WT	myb28/WT	myb29/WT	MYB28ox3/WT	MYB28ox5/WT
248676_at	At5g48850	SDI1	0.39	4.53*	2.26	0.69	0.72	3.09	30.87*	12.12*
261177_at	At1g04770	SDI2	0.41	0.98	0.97	0.60	0.63	1.74	3.81*	2.21*
247549_at	At5g61420	MYB28	0.06*	1.37*	1.06	0.89	0.01*	1.02	2.36	1.13
250598_at	At5g07690	MYB29	0.43*	1.43	3.25*	1.34*	1.14	0.30	0.64	0.54
250589_at	At5g07700	MYB76	0.86	1.03	1.18	6.70 *	0.83	1.72	0.72	0.68
260064_at	At1g73730	SLIM1	1.16	1.05	0.92	1.12	1.19	1.02	0.93	0.74

fig. S11. Effects of the manipulation of MYB28, MYB29, and MYB76 on gene expression of *SDI1, SDI2,* **and other factors.** The values indicate fold changes of the *SDI1, SDI2* gene expressions versus the corresponding WTs in the *myb28* KO and *MYB28ox* lines (*13*); in the *MYB28/29/76ox* lines (*52*) and in the *myb28myb29* (*17*). Values reported significantly in each reference were marked with asterisks.

table S12. Oligonucleotides used for the vector construction.

		Figure		v	ectors	Cometruste
Purpose	Oligo Name	Ňo.	Oligonucleotide (5' to 3')	Cloning	Binary	Constructs
CDS isolation for over-expression of SDIs	SDI1-oxF		gagagaacacgggggactctagATGGAGAGAAGCTTGAAGAAGACG A	Τορο		
	SDI1-oxR	3, 4	aacgatcggggaaattcgagctCTAGCAAACTAATGTATTTCTAAAAG ACGAGATCTGT	Blunt	pSMAH621	SDI1ox
	SDI2-oxF	S4, S5	gagagaacacggggggactctagATGATGATGATGATTCAGAGAAGAG GA	Торо		6D/2ex
	SDI2-oxR		aacgatcggggaaattcgagctcTCAACAAGCCAATTGATCTCTCAGT GGT	Blunt	p5iviAH621	50120x
	SDI1-proFSal		GTCGACCAAATCAATCTTGAATAATGCTGATAAACCGTCT			
	SDI1-proRBam	1	GGATCCTCTTTTCTCAATAATTAATTATAAAGATGTCTGTTGA CAGGCT	Торо	pBI101- GFP	SDI1pro:GFP
	SDI2-proFSal		GTCGACGTAAGAAAAGAGCTTGCTCTGTCTCTGAGAACA	Blunt		
Isolation of 5'-region of SDIs	SDI2-proRBam		GGATCCGCAAACTTCGTGTCTCTGTTTCTAAATGAAGA			SDI2pro:GFP
5-region of obis	SDI1-proF		caccGCCACTGTTATGTTGAGTTGAACC			
	SDI1-proR	S3	R1:CTTCGTCTTCTTCAAGCTTCTCTC/ R2:CTTTTTTCCTCTGTTTTTCTCTTTTCTC	pENTR	pKGWFS7	SDI1pro:GUS
	SDI2-proF	1	CACCCCGTAGTAGTACTCAATCGAACAC	1		00/0
	SDI2-proR		CGCAAACTTCGTGTCTCTGTTTC			SDI2pro:GUS
CDS isolation for	SDI1-GFP-F	7A	caatttaaatcatttcttttaaagcaaagcaattttctgaaaattttcaccatttacgaacg atactcgagATGGAGAGAAGCTTGAAGAAG		pA7	SDI1-GFP
transient	SDI1-GFP-R		TAGTACGTCGACGCAAACTAATGTATTTC	pCR2.1		
transformation	GFP-SDI1-F		CAAGGGTCTAGAGAGAAGCTTGAAGA			
	GFP-SDI1-R		ttcgagctCTAGCAAACTAATGTATTTC			GFF-3DIT
	SDI1-BD-F		CATGGAGGCCGAATTCATGGAGAGAAGCTTGAAGAAGACG	4	pGBKT7 pGADT7- Rec	SDI1-BD
	SDI1-BD-R		GCAGGTCGACGGATCCCTAGCAAACTAATGTATTTCTAAA			
	MYB28-AD-F		TGGCCATTATGGCCCGGGATGTCAAGAAAGCCATGTTG			MVR28-AD
CDS isolation for	MYB28-AD-R	70	GACATGTTTTTCCCGGGTCATATGAAATGCTTTTCAAG	infusion		WII 620-AU
Y2H screening	MYB29-AD-F	78	TGGCCATTATGGCCCGGGATGTCAAGAAAGCCATGTTGT	infusion		
	MYB29-AD-R		GACATGTTTTTTCCCGGGTCATATGAAGTTCTTGTCGTC			MIT B25-AD
	MYB76-AD-F		TGGCCATTATGGCCCGGGATGTCAAAGAGACCATATTGT			MVR76-AD
	MYB76-AD-R		GACATGTTTTTTCCCGGGTCATAAGAAGTTCTTCTCGTC			MITD70-AD
	SDI1-nYFP-F		ATGGAGAGAAGCTTGAAGAAGACGA		pDESTVYN	nYFP-SDI1
	SDI1-nYFP-R		СТАĞCAAACTAATĞTATTTCTAAAA		E(R)GW	
	MYB28-cYFP-F		ATGTCAAGAAAGCCATGTTGCGTCG			MYB28-cYFP
CDS inclution for	MYB28-cYFP-R		TATGAAATGCTTTTCAAGCGAGTCT	l		
YFP-fusion for	MYB29-cYFP-F	7C	ATGTCAAGAAAGCCATGTTGTGTGG	infusion		MYB29-cYFP
BiFC Assay	MYB29-cYFP-R				pDEST-	
	MYB76-cYFP-F				GW-VYCE	MYB76-cYFP
	WIYB/6-CYFP-R					
	MYB75-CYFP-F					MYB75-cYFP

Purpose	KO Name	Resourses	Oligo Name	Oligonucleotide (5' to 3')
genomic PCR	sdi1_1	SALK 145035 20 15	sdi1-1 LB	GGGTTCTTCTCTATCAACTGCAACCAACATT
	<i>Sul 1-1</i>	SALK_143033.20.13	sdi1-1,2 RB	GGATAGAATGTTATTGCATTTCTTGCCTGAAAAGGT
	odi1 2	SALK 000766 56 00	sdi1-2 LB	GGCAACATCTAGACCATAAATTGGAACAACTT
	3011-2	SALK_099700.30.00	sdi1-1,2 RB	-
	sdi2-1	SALK_091618.45.75	sdi2-1 LB	GAGATCTTTGTTCAAGACAAGCTCAAGAGTCA
			sdi2-1 RB	gaatccTCAACAAGCCAATTGATCTCTCAGTGGTAAGA
	adi2 2	SALK 110128 48 65	sdi2-2 LB	CCATCAGTTCACTGATCAAGAGACTTGAGAA
	3012-2	SALK_110120.40.03	sdi2-2 RB	gaattcATGATGATGATGATTCAGAGAAGAGGAGGTGAGA
		all	T-DNA LB-02	CACCCCAGTACATTAAAAACGTCCGCAA
RT-PCR of SDI1			SDI1-F	ATGGAGAGAAGCTTGAAGAAGACGAAGAAC
			SDI1-R	CTAGCAAACTAATGTATTTCTAAAAGACGAGATCTGT
RT-PCR of SDI2			SDI2-F	ATGATGATGATGATTCAGAGAAGAGGAGGT
			SDI2-R	TCAACAAGCCAATTGATCTCTCAGTGGTA

table S13. Oligonucleotides used for the isolation of the T-DNA insertion lines.

table S14. Oligonucleotides used for qRT-PCR analysis.

AGI Code	Gene Name	Oligonucleotide (5' to 3')		References	
At5a48850	SDI1	F	TCAGAGCCAAACATGCTCAGTT		
Al3940030	3011	R	ACAACAGCCATGTCCTTGAGG	This paper	
At1 a0 4770	2102	F	CGAGCGAAGCATGTTCAGTTG	This paper	
Allg04770	5012	R	CGTCAATGGCTTCTTCAGCTCT		
At3a19710	BCATA	F	CAGAAGATGGTCGGATTCTGCTA		
Alog19710	DCAT	R	GGCAAAAGCTGTGAAGGTGGT		
At5a22010	M A M1	F	AATTCGGAGAACTCGTGGCCT	20	
Al3923010		R	GCTCCCGCACATATACCGGAT	29	
At1a16400	CYP79F2	F	CCCATAATAGACGAGAGGGTCGAAA		
Allg10400		R	CGATCGCTGCTATACAAAATTCG		
At1a16410	CYP79F1	F	CTTGACGTACTGTCGTTTGTTG		
Aligio410		R	GCTACTCCGAATGTTTGATCG	22	
At/a12770	CYP83A1	F	TGGCAATCGTCTCTCTATCTTTC	32	
At4913770		R	GACATCATGTGAATTTGCTTCC		
At3a19710		F	CAGAAGATGGTCGGATTCTGCTA	20	
Alsgranto	30LIN1,2	R	GGCAAAAGCTGTGAAGGTGGT	29	
At5a22010		F	AATTCGGAGAACTCGTGGCCT	79	
Al3923010	30LTK2,1	R	GCTCCCGCACATATACCGGAT	/δ	
At1 ~1 G 1 O O		F	CCCATAATAGACGAGAGGGTCGAAA	77	
711910400	AFNJ	R	CGATCGCTGCTATACAAAATTCG	//	
At2a36170	UBO2	F	CCAAGATCCAGGACAAAGAAGGA	29	
	UDQZ	R	TGGAGACGAGCATAACACTTGC		