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Figure S2 
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Figure 6 

FF versus FS in H1, H9, and HSF1 
ES = 0.38, NES = 5.06,  
Nominal p-value < 0.001, FDR q value < 0.001 

FF versus FS in H1, H9, and HSF1 
ES = 0.41, NES = 5.41,  
Nominal p-value < 0.001, FDR q value < 0.001 

D

FF versus CM in H9 
ES = 0.259, NES = 3.51,  
Nominal p-value < 0.001, FDR q value < 0.001 

FF versus CM in H9 
ES = 0.197, NES = 2.57,  
Nominal p-value < 0.001, FDR q value = 0.001 

FF versus CM in HSF1 
ES = 0.387, NES = 5.09,  
Nominal p-value < 0.001, FDR q value < 0.001 
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SUPPLEMENTAL FIGURE AND TABLE LEGENDS 

Figure S1. Related to Figure 1. Naive hESCs exhibit increased glycolysis. (A) 

Oxygen consumption rates in FS HSF1 hESCs, treated for 7 days with DMSO (RA (-)) or 

10 µM retinoic acid (RA (+)), as measured by an anaerobic chamber fitted with a fiber 

optic oxygen sensor.  (B) Glucose consumption and lactate production rates of primed 

UCLA9 hESCs, naive UCLA9 hESCs generated by the 5i/LAF method, and primed 

UCLA9 hESCs placed in naive cell medium for 24 hours.  (C) Glucose consumption 

rates (left) and lactate production rates (right) of primed H9 hESCs and naive/reset H9 

hESCs generated by the Takashima et al. method (Takashima et al., 2014).  (D) Oxygen 

consumption rates of primed UCLA1 hESCs and naive UCLA1 hESC clone 9 and clone 

12 generated by the 5i/LAF method.  For (E) – (H), primed UCLA1 hESCs, naive 

UCLA1 hESC clone 9 and clone 12, and primed UCLA9 hESCs, naive UCLA9 hESC, 

and primed UCLA9 hESCs placed in naive cell medium, were cultured in medium 

containing 1,2-13C-glucose for 24 hours prior to metabolite extraction and analysis by 

LC-MS.  (E) Relative amounts of indicated glycolytic intermediates extracted from the 

indicated cells.  (F) Percentages of the indicated 13C-labeled nucleotides extracted from 

the indicated cells.  (G) Percentages of the indicated 13C-labeled M+1 form of nucleotides 

extracted from the indicated cells.  (H) Mass isotopomer distribution of the indicated 13C-

labeled UMP extracted from the indicated cells.  For (A) - (H), error bars indicate ± 1 

SEM of biological replicates (n = 3). ns: not significant; * p < 0.05; ** p < 0.01; *** p < 

0.001; **** p < 0.0001. 

  



Figure S2. Related to Figure 2. Glycolysis pathway gene expression changes upon 

the acquisition of naive pluripotency.  (A) Members of the MYC target gene set by 

Menssen et al.  Cytoscape network map showing the fold change of KEGG glycolysis 

genes in naive UCLA1 hESC clone 9 versus primed UCLA1 hESCs (B), naive UCLA1 

hESC clone 12 versus primed UCLA1 hESCs (C), and Takashima reset versus primed H9 

hESCs (D).  Genes in red indicate increased mRNA expression levels in naive or reset 

cells.  Genes in green indicate increased mRNA expression levels in primed cells.  (E) 

Heatmap depicting log2 fold changes of KEGG glycolysis genes across UCLA1 primed, 

UCLA1 naive clone 9 and clone 12, and Takashima reset and primed H9 hESCs.  Bottom 

colored bars indicate sample origins.  (F) Heatmap showing the enrichment of MYC-

regulated genes across various early human embryo development stages from Vassena et 

al. dataset.  Each cell contains the normalized enrichment score (NES), based on GSEA, 

from pairwise comparison of two different cell types, as indicated.  N.E.: not enriched.  

(G) GSEA mountain plot displaying enrichment of MYC-regulated genes in H9 reset 

versus primed hESCs.  

 

Figure S3. Related to Figure 3. Manipulation of hESC metabolism via MCT1 

inhibition. Cell viabilities of feeder-supported (A) and feeder-free (B) primed H9 hESCs 

treated with DMSO or AZD3965 at indicated concentrations for 24 hours, as determined 

by Trypan Blue staining.  Oxygen consumption rates (C) and extracellular acidification 

rates (D) in FF H9 hESCs, treated with DMSO or 250 nM AZD3965 for the indicated 

times, as measured by XF24 Extracellular Flux Analyzer.  Glucose consumption rates (E) 

and lactate production rates (F) of FF primed H9 hESCs treated with PBS or 5 mM 



dichloroacetic acid (DCA) for 24 hours.  (G) Proliferation rates of feeder-supported (FS) 

versus feeder-free (FF) H9 hESCs treated with PBS or 5 mM dichloroacetic acid (DCA) 

for 5 days.  For (A) – (G), error bars indicate ± 1 SEM of biological replicates (n = 3).  

ns: not significant; ** p < 0.01, *** p < 0.001. 

 

Figure S4. Related to Figure 4. Feeder-free Cultured hESCs Exhibit Increased 

Anabolic Glucose Metabolism Relative to Feeder Supported hESCs.  (A) The 

formulas applied to calculate the effect of MEFs on the 13C glucose labeling pattern of 

feeder supported hESCs.  (B) Incorporation of 13C labeled glucose into TCA cycle 

metabolites, and (C) serine and glycine, and (D) nucleotides in feeder supported UCLA1 

hESCs before and after the mathematical correction.  Feeder supported UCLA1 hESCs 

and MEFs alone were cultured in medium with 1,2-13C-glucose for 24 hours.  Extracted 

metabolites were analyzed by LC-MS, and the percentage of 13C-labeled metabolites was 

compared.  (E) Cytoscape network map showing differential use of glucose in many 

metabolic pathways in FS versus FF H1 hESCs.  Metabolites in red indicate increased 

incorporation of 1,2-13C-glucose carbons in FF hESCs compared to FS hESCs. 

Metabolites in blue indicate increased incorporation of 1,2-13C-glucose carbons in FS 

hESCs compared to FF hESCs.  Green borders indicate where the changes in 

incorporation of 1,2-13C-glucose in FS hESCs compared to FF hESCs are statistically 

significant (p < 0.05).  Metabolites in white indicate similar incorporation of 1,2-13C-

glucose carbons in FS hESCs compared to FF hESCs. Metabolites in grey are undetected.  

(F) Percentages of the indicated 13C-labeled TCA cycle metabolites in FS versus FF H1 

hESCs.  (G) Percentages of 13C-labeled serine and glycine in FS versus FF H1 hESCs.  



(H) Percentages of 13C-labeled nucleotides in FS versus FF H1 hESCs.  For (B) – (D) and 

(F) – (H), error bars indicate ± 1 SEM of biological replicates (n = 3).  ns: not significant; 

* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. 

 

Figure S5. Related to Figure 5. MEF-conditioned medium treatment does not 

change pluripotency-associated transcripts in primed feeder-free hESCs.  mRNA 

levels of TRIM22, NANOG, SOX2, DNMT3B, POU5F1, LCK, and HESX1 in feeder-

free (FF) versus MEF-conditioned medium treated FF (CM) H9 (A) and HSF1 (B) 

primed hESCs.  Error bars indicate ± 1 SD of biological replicates (n=3). 

 

Figure S6. Related to Figure 7. MCT1 inhibition of feeder free-cultured primed 

hESCs promotes neural lineage specification.  (A) Heatmap representation of the 

relative fold changes (base 2) of the genes from the gene ontology term “neurological 

system process” after five days AZD3965 versus DMSO treatment of primed feeder-free 

H9, H1, and HSF1 hESCs.  (B) Neural rosette formation efficiency of primed feeder-free 

hESCs treated with rosette formation media supplemented with PBS or 5 mM 

dichloroacetic acid (DCA) for 10 days.  The number of rosette structures was quantified.  

Error bars indicate ± 1 SEM of biological replicates (n = 3).  

 

Figure S7. Mouse embryonic stem cells exhibit lower glycolytic rates compared to 

mouse epiblast stem cells.  (A) Glucose consumption rates (left) and lactate production 

rates (right) of mEpiSCs derived from in vivo epiblast and mESCs cultured in 2i/LIF 

condition.  Error bars indicate ± 1 SEM of biological replicates (n = 3).  *** p < 0.001.  



(B) Immunoblot showing nuclear and cytoplasmic N-MYC and C-MYC levels in 

mEpiSCs derived from in vivo epiblast and mESCs cultured in 2i/LIF condition.  

Cytoplasmic MCT1 levels are also shown.  TBP is used a loading control for the nuclear 

lysates.  GAPDH is used as a loading control for the cytoplasmic lysates.  Lysates were 

prepared in biological duplicates.  

 

Table S1. Related to Figure 7. Input list of ranked genes for GO analysis by GOrilla.   

   



SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

Cell Culture 

Conventional feeder-supported human ESC lines H1, H9 (WiCell Research Institute, Inc., 

Madison, WI), HSF1 (University of California San Francisco, San Francisco, CA), 

UCLA1, and UCLA9 (University of California Los Angeles, Los Angeles, CA) were 

maintained on radiation inactivated MEF feeder layers (GlobalStem) and passed 

enzymatically by treatment for 2 min with 1 mg/ml Collagenase type IV (STEMCELL 

Technologies), and then mechanically lifted by using a cell scraper (Falcon), followed by 

passing through a 100-µm cell strainer. Conventional feeder-supported human ESCs were 

cultured in human ESC medium (hESM) – DMEM/F12 (Invitrogen) supplemented with 

20% KSR (Invitrogen), 1% nonessential amino acids (NEAA, Invitrogen), 0.1 mM β-

mercaptoethanol (Invitrogen), and 10 ng/ml FGF2 (Peprotech). Primed feeder-free 

human ESC lines H1, H9, and HSF1 were cultured on plates pre-coated with 1:25 diluted 

Matrigel (BD Biosciences) in mTeSR1 medium (STEMCELL Technologies). Tissue 

culture media were filtered using a low protein-binding 0.22 µm filter (Millipore). All 

experiments were performed under 5% CO2 and atmospheric oxygen levels.  

Naive human pluripotent stem cells were generated and maintained using the 5i/LAF 

condition exactly as described (Theunissen et al., 2014). Briefly, feeder-supported 

UCLA1 and UCLA9 hESCs were grown to ~ 60% density and fed hESM supplemented 

with 10 µM ROCK inhibitor Y-27632 (Stemgent). The following day, hESCs were 

trypsinized to single cell (0.05% Trypsin, ThermoFisher Scientific) and plated on feeders 

at 2 x 105 cells/well of a 6-well dish in hESM with ROCKi. Two days later culture 

medium was switched to 5i/LAF (1 µM PD0325901, 10 µM Y-27632 (Stemgent), 1 µM 



IM-12 (Enzo), 0.5 µM SB590885 (R&D), 1 µM WH-4-023 (A Chemtek), 20 ng/ml 

recombinant hLIF (Millipore), 20 ng/ml Activin A (Peprotech), and 8 ng/ml FGF2 

(R&D) in a 1:1 mixture of DMEM/F12 and Neurobasal medium (Invitrogen) 

supplemented with 1x N2, B27, NEAA, Pen/Strep, Glutamine (Invitrogen), 0.1 mM beta-

mercaptoethanol, 0.5% KSR and 50 µg/ml BSA). Medium was changed daily, and in 8-

10 days, after massive cell death, several dome-shaped colonies appeared. These colonies 

were passaged using Accutase (ThermoFisher Scientific). After 3-4 passages naive 

hESCs had expanded enough to be split at 1:4 or 1:5 ratio every 5 days. Before plating 

cells were passed through 40-µm mesh since naive hESCs grow best when plated as 

single cells. Feeder-supported naive line UCLA19 was derived directly from the inner 

cell mass of a human blastocyst and since cultured in 5i/LAF medium. 

Another naive human pluripotent stem cell line, H9 reset, was maintained using the 

Takashima et al. method exactly as described (Takashima et al., 2014), and cultured in an 

incubator with 5% O2 and 5% CO2 at 37 °C.  For comparing the glycolytic rates in reset 

versus primed H9 hESCs, both reset and primed cells were received from the Austin 

Smith Lab and cultured under 5% O2 condition.  

Neural rosette differentiation was induced by treatment with DMEM/F12 supplemented 

with B27 and N2 (Gibco), 1 µM retinoic acid (Sigma), 20 ng/ml FGF2, and 1 µM 

purmorphamine (Cayman chemical) for 10 days. 

Cells were treated with AZD3965 (AstraZeneca, 250 nM) or CD532 (Millipore, 25 – 250 

nM) for indicated times to assess the effects of MCT1 inhibition or N-MYC inhibition.  

Immunostaining of Human Preimplantation Embryos 



All experiments were performed using human embryos that were excess to infertility 

treatment and donated for research following informed consent in accordance with the 

guidelines established by UCLA Embryonic Stem Cell Research Oversight (ESCRO) 

Committee and the Committee on the Use of Human Subjects Institutional Review Board 

(IRB).  

Human blastocysts were thawed using Vit Kit-Thaw (Irvine Scientific) according to 

manufacturer protocol.  The embryos were cultured in drops of Continuous Single 

Culture medium (Irvine Scientific) supplemented with 20% Quinn’s Advantage SPS 

Serum Protein Substitute (Sage Media) under mineral oil (Irvine Scientific) overnight at 

37 °C, 6% CO2 and 5% O2. Embryos were fixed at room temperature in 4% 

paraformaldehyde for 30 minutes, and then washed several times in 0.1% Tween-20 in 

PBS.  Embryos were permeabilized in 1% Tween-20 in PBS at 4 °C for 4 days on a 

rotating shaker and then blocked in 10% FBS and 0.2% Tween-20 in PBS at room 

temperature for 1 hour.  Embryos were incubated in a 1:100 dilution of primary antibody 

in blocking buffer at 4°C overnight on a rotating shaker and washed several times in 

0.1% Tween-20 in PBS at room temperature.  Embryos were incubated in a 1:500 

dilution of secondary antibody anti-rabbit Alexa Fluor 555 (Invitrogen) in blocking 

buffer at room temperature for 1 hour while protected from light.  They were then washed 

several times in 0.1% Tween-20 in PBS and mounted in ProLong Diamond with DAPI 

(Invitrogen) on a glass slide, covered with a glass coverslip and left at room temperature 

to cure overnight. Images were taken using a LSM780 confocal microscope (Zeiss). 

Glucose Consumption and Lactate Production Rates 



Cellular glucose consumption and lactate export rates were measured using a Nova 

Biomedical BioProfile Basic Analyzer. Briefly, cells were seeded in triplicates in 6-well 

plates at usual passing density. Ninety-six hours post-seeding, when the colonies were 

subconfluent, cells were washed with PBS, and 1ml fresh medium was added to each 

well, including an empty well without any cells as a blank control. After 24-hour 

incubation, culture medium was collected and then analyzed by the Nova BioProfile 

analyzer. Cell numbers were determined both before and after the 24-hour incubation 

period using a Coulter particle analyzer and used to normalize the calculated rates.  

Among different figures, the same cell line might show different values in glucose and 

lactate readings, which was due to the difference in cell numbers between different 

experiments.  Since plating density of cells can impact metabolism, we always ensured 

that different treatment groups or cell lines within a given experiment had similar cell 

counts when glucose and lactate measurements were taken.  We accomplished this by 

plating hESCs at different densities and measuring the media glucose and lactate amounts 

in the ones with similar cell counts. 

Oxygen Consumption Rates  

For comparing oxygen consumption rates in feeder-supported hESCs, cells were treated 

with Accutase (Invitrogen) for 5 minutes after PBS wash, passed through a 40-µm cell 

strainer (BD), and cell count was obtained.  Four million cells were spun down at 300g 

for 5 minutes, resuspended in 250 µl culture medium, and transferred to an anaerobic 

chamber of 250 µl volume. The anaerobic chamber was maintained at 37 °C by a water 

circulating system (DC10, Thermo), and fitted with a fiber optic oxygen sensor (Model 

110, INSTECH). Oxygen concentration was sensed by the quenching of fluorescence of 



an indicator dye trapped in a matrix at the tip of the probe, and was calibrated with 15 

mM sodium hydrosulfite (Sigma) and cell culture media, corresponding to 0% and 20.9% 

oxygen respectively.  

Extracellular Acidification and Oxygen Consumption Rates 

For comparing extracellular acidification and oxygen consumption rates in feeder-free 

primed hESCs, with AZD3965 or DMSO treatment, cells were seeded onto an XF24 Cell 

Culture Microplate (Seahorse Bioscience) at 2 - 7.5 × 104 cells/well with the 10 µM 

ROCK inhibitor Y-27632 (Calbiochem) and incubated at 37°C overnight. Extracellular 

acidification and oxygen consumption rates were measured by using an XF24 

Extracellular Flux Analyzer (Seahorse Bioscience) in unbuffered DMEM assay medium 

supplemented with 1mM pyruvate and 25mM glucose after 45 to 60-minute equilibration, 

and were normalized to protein concentration using the Protein Assay reagent (Bio-Rad).   

Mass Spectrometry-based Metabolomics Analysis 

Cells were incubated in medium containing 3.151 g/l 1,2-13C-glucose for 24 hours. The 

following day, cells were rinsed with cold 150 mM ammonium acetate (NH4AcO). Cells 

were carefully scraped off in 800 µl of 50% ice cold methanol. An internal standard of 

12.5 µM norvaline was added to the cell suspension, followed by 400 µl of cold 

chloroform. After vortexing for 15 min, the aqueous layer was transferred to a glass vial 

and the metabolites were dried under vacuum. Metabolites were resuspended in 100 µl 

70% acetonitrile (ACN) and 5 µl of this solution was used for the mass spectrometer- 

based analysis. The analysis was performed on a Q Exactive (Thermo Scientific) in 

polarity-switching mode with positive voltage 3.0 kV and negative voltage 2.25 kV. The 

mass spectrometer was coupled to an UltiMate 3000RSLC (Thermo Scientific) UHPLC 



system. Mobile phase A was 5 mM NH4AcO, pH 9.9, B was ACN, and the separation 

achieved on a Luna 3mm NH2 100A (150 x 2.0 mm) (Phenomenex) column. The flow 

was 300 µl/min, and the gradient ran from 15% A to 95% A in 18 min, followed by an 

isocratic step for 9 minutes and re-equilibration for 7 minutes. Metabolites were detected 

and quantified as area under the curve (AUC) based on retention time and accurate mass 

(≤ 3 ppm) using the TraceFinder 3.1 (Thermo Scientific) software. Relative amounts of 

metabolites between various conditions, as well as percentage of labeling were calculated 

and corrected for naturally occurring 13C abundance (Yuan et al., 2008; Moseley, 2010). 

For the heatmap depiction of the relative amounts of glycolytic intermediates, Z scores 

were calculated by subtracting the mean value across all samples, then dividing over 

standard deviation (SD).  When feeder-supported and feeder-free primed hESCs were 

compared, a plate of irradiated MEFs without hESCs was also labeled with 1,2-13C-

glucose, and traced the incorporation of 13C into downstream glucose metabolites using 

LC-MS, to control for the presence of feeder cells in the FS conditions (Figure S4A-D, 

and Fan et al., 2014; Yuan et al., 2008). 

Immunoblot Assays 

For preparing whole cell lysates, cells were lysed in M-PER Mammalian Protein 

Extraction Reagent (Thermo) with 20 mM NaF, 1 mM Na3VO4, 4 µg/ml aprotinin, 4 

µg/ml leupeptin, 4 µg/ml pepstatin, and 1 mM DTT. Nuclear and cytoplasmic fractions 

were prepared using the following protocol: Buffer A, containing 10 mM HEPES (pH 

7.9), 10 mM KCl, 0.1 mM EDTA, 0.4% NP40, 20 mM NaF, 1 mM Na3VO4, 4 µg/ml 

aprotinin, 4 µg/ml leupeptin, 4 µg/ml pepstatin, and 1 mM DTT, was used to extract 

cytoplasmic proteins; Nuclear pellet was resuspended in Buffer B, which contains 20 mM 



HEPES (pH 7.9), 400 mM NaCl, 1mM EDTA, 10% glycerol, 20 mM NaF, 1 mM 

Na3VO4, 4 µg/ml aprotinin, 4 µg/ml leupeptin, 4 µg/ml pepstatin, and 1 mM DTT, and 

placed on vortex at 4 °C for 2 hours to extract nuclear proteins.  Western blot analysis 

was carried out according to standard methods.  Protein concentrations of cell extracts 

were determined by using the Protein Assay reagent (Bio-Rad).  The following 

commercial antibodies were used as probes: C-MYC, N-MYC, OCT4A, TBP (Cell 

Signaling), β-Tubulin (Sigma), MCT1, and GAPDH (Abcam). 

RNA-Seq  

Feeder-supported UCLA1 primed and naive hESCs were cultured in a 6-well dish.  

Primed hESCs were harvested with 1mg/ml Collagenase IV (Life Technologies) for 8min 

at 37 °C, or until the edges of colonies lifted off slightly.  Colonies were collected in 

hESM followed by sequential sedimentation steps to deplete feeder cells.  Colonies were 

then washed once in PBS and collected in 1ml Trizol (Invitrogen).  Naive hESCs were 

feeder depleted by treating the cells with Accutase and passing the cells through a 40-µm 

mesh. Under these conditions feeder cells do not separate into single cells and therefore 

do not pass through the filter.  Cells were collected in 1 ml Trizol after a PBS wash. Total 

RNA was isolated by phenol chloroform extraction and purified by RNeasy Mini Kit 

(Qiagen). The TruSeq Stranded mRNA Library Prep Kit (Illumina) was used to prepare 

mRNA libraries following manufacturer’s instructions. The libraries were run on 2% 

SeaPlaque Agarose gel (Lonza) to remove primer contaminants, and purified using 

MinElute Gel Extraction Kit (Qiagen). Final library amounts were quantified by Qubit 

dsDNA HS Assay (Invitrogen) and sequenced on Illumina HiSeq 2500 instrument at the 

UCLA High-Throughput Sequencing Facility. Reads were mapped to hg19 assembly of 



the human genome using the TopHat read-mapping algorithm (Trapnell et al., 2009), and 

gene expression levels were calculated as RPKM values (Mortazavi et al., 2008).  

Microarray and Enrichment Analysis 

Total RNA was isolated by using the Absolutely RNA kit (Stratagene) and reverse-

transcribed with the SuperScript III First-Strand Synthesis System (Invitrogen) with oligo 

dT primers.  Whole-genome expression analysis was performed with the HG-U133 plus 2 

array (Affymetrix) at the UCLA Clinical Microarray Core.  

Gene Set Enrichment Analysis (Subramanian et al., 2005) was performed using the 

Molecular Signatures Database (MSigDB) C2 collection (version 5.0) of canonical 

signaling pathways, cellular processes, chemical and genetic perturbations, and human 

disease states. For GSEA on primed hESCs with AZD3965 or DMSO treatment, readings 

of probe sets were first RMA normalized, and then collapsed according to the probes 

with maximum expression values into gene symbols, which were then ranked according 

to the log10 p value from paired t-test between AZD3965 and DMSO groups in three 

hESC lines: H1, H9, and HSF1. Pre-ranked GSEA was also conducted on naive and 

primed UCLA1 hESCs.  

For human preimplantation datasets, each data was analyzed separately.  The mRNA 

microarray dataset by Vassena et al., 2011(GEO accession: GSE29397), was processed 

using Bioconductor package in R, normalized using the RMA method, and then imported 

to GSEA.  The single-cell RNA-Seq dataset by Yan et al., 2013 (GEO accession: 

GSE36552) contained the gene expression levels presented as RPKM values, based on 

which the log fold changes (base 2) were calculated and ranked to generate an ordered 

gene list for Pre-ranked GSEA.  



For the enriched MYC-regulated gene sets identified by GSEA, 

MENSSEN_MYC_TARGETS was first reported by Menssen et al. (Menssen and 

Hermeking, 2002), SCHLOSSER_MYC_TARGETS_REPRESSED_BY_SERUM was 

based on published data by Schlosser et al. (Schlosser et al., 2005), and 

DANG_MYC_TARGETS_UP was reported by Zeller et al. (Zeller et al., 2003).  Details 

about each gene set can also be found at http://software.broadinstitute.org/gsea/msigdb/. 

A web-based application GOrilla (Eden et al., 2009) was used to identify enriched Gene 

Ontology (Ashburner et al., 2000) terms in a ranked list of all genes according to the 

differential expression in AZD3965 versus DMSO-treated  H1, H9, and HSF1 hESCs.  

Cell Proliferation  

Cells were seeded in triplicates in 6-well plates, and cell counts were obtained using a 

Coulter particle analyzer 5 days after seeding.  
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