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Web Appendix A: Theoretical Results

Assumptions

Throughout the paper, we need the following assumptions to facilitate the technical details,

including traditional conditions for asymptotic theory, although they may not be the weakest condi-

tions.

Assumption (C1). supsm E[|εi(sm)|κ] <∞ for some κ > 4 and all grid points sm.

Assumption (C2). The data {Xi, Yi(sm) : i = 1, · · · , n, sm ∈ SM} are independently and iden-

tically distributed.

Assumption (C3). For all s ∈ S, β0(s) ∈ Θ is a unique point satisfying E{Seff(β(s);Xi, Yi(s))} =

0, where the expectation is taken with respect to the true distribution of Y (s) given X . Moreover,

E{∂Seff(β(s);Xi, Yi(s))/∂β(s)} is nonsingular.

Assumption (C4). Θ is a compact set. For all s ∈ S and β(s) ∈ B, Seff(β(s);Xi, Yi(s)) is twice
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continuously differentiable on Θ. For all j, k = 1, · · · , p, E[|∂jSeff(Y (s), XTβ(s), f2)|] 6 ∞,

|Seff(β(s);Xi, Yi(s))|, |∂jSeff(β(s);Xi, Yi(s))| and |∂j∂kSeff(β(s);Xi, Yi(s))| are dominated by

an integral function G(Y (s), X) such that E[sups∈S |G(Y (s), X)|r] < ∞ for a r > 1, where

∂j = ∂/∂βj(s), in which βj(s) is the j-th component of β(s).

Assumption (C5). Each component of {η(s), s ∈ S}, {η(s)2, s ∈ S}, and {Seff(β(s);Xi, Yi(s)), s ∈

S} are P-Donsker classes.

Assumption (C6). The grid points sm are randomly generated from a density function π(s). More-

over, π(s) > 0 for all s ∈ S, and π(s) has continuous twice derivative with bounded support [0,1].

Assumption (C7). The kernel function K is a continuous symmetrical bounded density function

with support [−1, 1] and satisfies that

∫ 1

−1
K(µ)dµ = 1,

∫ 1

−1
µK(µ)dµ = 0, µ2(K) =

∫ 1

−1
µ2K(µ)dµ <∞, v0(K) =

∫
K2(µ)dµ <∞.

Assumption (C8). For all s ∈ S , β(s) and η(s) have finite continuous twice derivatives. Moreover,

E[sups∈S |η(s)|r1 ] <∞ and E{sups∈S [|η̇(s)|+ |η̈(s)|]r2} <∞ for some r1, r2 ∈ (2,∞).

Assumption (C9). Both M and n tend to infinity, Mh → ∞, h−1| log h|1−2/q1 6 M1−2/q1 for

q1 ∈ (2, 4), nMh4
1 → ∞, nMh5

1/ log(nM) < ∞, h−4
2 (log n/n)1−2q2 = o(1) for q2 ∈ (2,∞),

h2 = o(1), and Mh2 →∞.

Assumption (C10). The bandwidths hx and hy satisfy nh4
xh

4
y → 0, nh4

xh
2
y → 0 and nhxhy →∞.
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Assumption (C11). The density functions of XT
i β(·) is bound away from 0 and∞ on their support,

E{X|XT
i β(·)} and g(XT

i β(·)) have locally Lipschitz continuous derivatives.

Remark. Assumption (C1) requires the uniform bound on the high-order moment of εij(sm) for all

grid points sm. Assumption (C2) is a relatively weak condition on the covariate vectors and their

identical distribution are not essential. For each s ∈ S , Assumptions (C3)-(C4) are generalizations

of the standard conditions for ensuring asymptotic properties (e.g., consistency and asymptotic

normality) of Z-estimators (Van der Vaart, 1998), where Assumption (C3) is an identifiable and

nonsingular condition, and Assumption (C4) is a uniform smoothness and integration condition.

Particularly, Assumption (C4) ensures that Seff(Y (s), XTβ(s), f) is uniformly integrable for all

s ∈ S . Assumption (C5) follows Zhu et al. (2012) to avoid smoothness conditions on the sam-

ple path, which are commonly assumed for simultaneous inference. Assumption (C6) is a weak

condition on the random grid points (Zhu et al., 2012). In many neuroimaging applications, M is

often much larger than n and for such large M , a regular grid of voxels is fairly well approxi-

mated by voxels generated by a uniform distribution in a compact subset of Euclidean space. For

notational simplicity, we only state the theoretical results for the random grid points throughout

the paper. Assumption (C7) is commonly assumed for kernel smooth methods. Assumption (C8)

is the smoothness condition of β(s) and η(s). Assumptions (C9) on bandwidths are similar to the

conditions used in Zhu et al. (2012). Assumptions (C10)-(C11) are assumed by Ma and Zhu (2014)

in order to establish the asymptotic properties of β̂(·) at each grid point.

Asymptotic Properties

THEOREM 1: We have the following results.

(i) Suppose that β(s) = β0 does not vary across s ∈ S. The optimal w∗ is given by

w∗ = Σ−1
ε∗,M1M/||Σ−1

ε∗,M1M ||2, (1)

where || · ||2 is the Euclidean norm of a vector, Σε∗,M = Ση∗,M + Λε∗,M is an M ×M matrix, and
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1M is an M × 1 vector of ones. Thus, the optimal D(w) is given by D(w∗) = (1TMΣ−1
ε∗,M1M )−1

and is independent of s. The Σ−1
ε∗,M1M can be written as

{IM − Λ
−1/2
ε∗,M

M∑
m=1

λm∗,M
1 + λm∗,M

ψm∗,Mψ
T
m∗,MΛ

1/2
ε∗,M}Λ

−1
ε∗,M1M . (2)

(ii) Suppose that β(s) may vary across s ∈ S. Under Assumptions (C6) and (C7), if w(sm, s) =

Kh(sm − s), h→ 0, and Mh→∞, then D(w(s)) can be approximated by Ση(s, s).

THEOREM 2: Under Assumptions (C1)-(C11), as n,M →∞, we have the following results.

(i)

√
n

(
β̂(s)− β0(s)− 0.5h2An(s)−1{ 1

n

n∑
i=1

Bi(s)[g̈(XT
i β(s)) + 2ġ(XT

i β(s))π̇(s)/π(s)]µ2(K)}

)
converges weakly to a Gaussian process with mean zero and covariance function, which is the

limiting function ofAn(s)−1
[
n−1

∑n
i=1Bi(s)Ση(s, t)Bi(t)

T
]
An(t)−1, whereAn(·) andBi(·) are

defined in Web Appendix C.

(ii)
√
n[ĝ(XT β̂(s)) − g(XTβ(s)) − 0.5h2

1µ2(K)g̈(XTβ(s))] converges weakly to a Gaussian

process with mean zero and covariance function Ση(s, t).

We next study the asymptotic bias and covariance of η̂i(s) as follows. We distinguish between

two cases. The first one is to condition on the design points in S, X and η. The other is to condition

on the design points in S and X . The two cases may both be of interest for practitioners. We define

K#((s− t)/h) =
∫
K(u)K(u+ (s− t)/h)du.

THEOREM 3: Under Assumptions (C1)-(C11), the following results hold for all s ∈ S.

(i) Conditioning on (S, X, η), we have

Bias[η̂i(s)|S, X, η]

=0.5µ2(K)[η̈i(s)h
2
2 + g̈(XT

i β(sm))h2
1][1 + op(1)] +Op(n

−1/2),

Cov[η̂i(s), η̂i(t)|S, X, η]

=K#((s− t)/h2)σε(s)π(t)−1(Mh2)−1Op(1)− (nMh1)−1Op(1).
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(ii) The asymptotic bias and covariance of η̂i(s) conditional on S and X are given by

Bias[η̂i(s)|S, X] = 0.5h2
1µ2(K)g̈(XT

i β(sm))[1 + op(1)],

Cov(η̂i(s)− ηi(s), η̂i(t)− ηi(t)|S, X)

=[1 + op(1)][0.25µ2(K)2h4
2Σ(2,2)

η (s, t) +K#((s− t)/h2)π(t)−1(Mh2)−1Op(1) + n−1Ση(s, t)].

(iii) The mean integrated squared error (MISE) of all η̂i(s) is given by

n−1
n∑
i=1

∫ 1

0
E{[η̂i(s)− ηi(s)]2|S}π(s)ds

=[1 + op(1)]× {O((Mh2)−1) +Op(h
4
1) + n−1

∫ 1

0
Ση(s, s)π(s)ds

+ 0.25µ2(K)2

∫ 1

0
Σ(2,2)
η (s, s)h4

2π(s)ds}. (3)

(iv) The optimal bandwidth for minimizing MISE (3) is given by

ĥ2 = O(M−1/5). (4)

(v) The first order local polynomial kernel reconstructions η̂i(s) using ĥ2 in (4) satisfy

sup
s∈S
|η̂i(s)− ηi(s)| = Op(| log(M)/5|1/2M−2/5 + h2

1 + n−1/2)

for i = 1, · · · , n.

Remark. Theorem 3 may be used to study the statistical property of the entity-specific effects in

the functional regression analysis. Because the estimation of ηi(s) succeeds the estimation of the

regression coefficients, the MISE of η̂i(s) appears to be a function of the two bandwidths h1 and

h2. If the optimal bandwidth in Theorem 3 (iv) is used, the resulting MISE can achieve the order of

M−4/5 + h4
1 + n−1.

The next theorem provides the asymptotic properties of the estimated covariance matrix and its

spectrum decomposition.

THEOREM 4: (i) Under Assumptions (C1)-(C11), it follows that

sup
(s,t)∈S2

|Σ̂η(s, t)− Ση(s, t)| = Op((Mh2)−1 + h2
1 + h2

2 + (log n/n)1/2).
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(ii) Under Assumptions (C1)-(C11), if the optimal bandwidths are used to construct ĝ(xT β̂(s))

and η̂i(s), then for 1 6 k 6 k0, we have the following results:

(a)
∫ 1

0 [ψ̂k(s)− ψk(s)]2ds = Op((Mh2)−1 + h2
1 + h2

2 + (log n/n)1/2);

(b) |λ̂k − λk| = Op((Mh2)−1 + h2
1 + h2

2 + (log n/n)1/2).

Remark. A number of results concerning convergence rates of functional principal components

analysis are available in the literature. Theorem 4 incorporates the recent development in Hall

et al. (2006) and Zhu et al. (2012). The almost sure convergence result in Li and Hsing (2010);

Li et al. (2010) seems to be slightly stronger since the authors consider a different approach to

the estimation of Σ(s, t) and their approach may not ensure Σ̂(s, t) to be positive semi-definite. Our

results may be more appealing to practitioners, especially to imaging data analysts where acquiring

a proper covariance estimation is key to the further inference.

Some lemmas and their proofs

Introduce some notations first. Denote

M̂nM (β(s)) = −‖ŜnM (β̂(s);w)‖,

M(β(s)) = −‖E(Seff(β(s);Xi, Yi(s)))‖.

Denote K0(s, h) =
∫
Kh(t− s)π(t)dt,

∆(s, h) =

M∑
m=1

K̃h(sm − s)η(sm)− 1

K0(s, h)

∫
Kh(t− s)η(t)π(t)d(t).

LEMMA 1: (Lemma 2 in Zhu et al. (2012)) Under Assumptions (C1), (C6), (C7) and (C9), for

any r > 0

sup
s∈S

∣∣∣∣∫ Kh(t− s)(t− s)r

hr
d[ΠM (t)−Π(t)]

∣∣∣∣ = Op((Mh)−1/2),

sup
s∈S

∣∣∣∣∫ Kh(t− s)(t− s)r

hr
εij(t)dΠM (t)

∣∣∣∣ = Op((Mh)−1/2
√
| log h|),

where ΠM (·) is the sampling distribution function based on SM = {s1, · · · , sM}, Π(·) is the

distribution function of sm.
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LEMMA 2: Under Assumptions (C1)-(C4) and (C6)-(C11),

sup
s∈S

d(β̂(s), β0(s))
P−→ 0.

Proof of Lemma 2: The proof consists of four steps.

Step 1: To prove β̂(s) ∈ Θ with a probability going to one. Obviously β̂(s) ∈ [−1, 1]p, next

we show its continuity. Following the argument of Ma and Zhu (2014) we can obtain the pointwise

consistency that for any s ∈ S, β̂(s) → β0(s). Given two estimators β̂(s1) and β̂(s2) satisfying

|s1− s2| < δ for some δ → 0, so that ‖β0(s1)− β0(s2)‖ → 0 under assumption (C8). On the other

hand, since β̂(s1)→ β0(s1) and β̂(s2)→ β0(s2) in probability, we have ‖β̂(s1)− β̂(s2)‖ → 0 by

the triangle inequality in probability.

Step 2: To show the uniform convergence of M̂nM (·) in probability, that is

sup
β(s)∈Θ

|M̂nM (β(s))−M(β(s))| P−→ 0. (5)

Define ψ(x) = x2p, by the mean value theorem we know that under Assumption (C4), M̂nM (·)

satisfies

‖M̂nM (β1(s))− M̂nM (β2(s))‖ψ

= ‖M̂nM (β1(s))− M̂nM (β2(s))‖2p

6 E|M̂nM (β1(s))− M̂nM (β2(s))|

6 E

∥∥∥∥∥ 1

n

n∑
i=1

M∑
m=1

K̃h(sm − s)[Ŝeff(β1(s);Xi, Yi(s))− Ŝeff(β2(s);Xi, Yi(s))]

∥∥∥∥∥
= E

∥∥∥∥∥(β1(s)− β2(s))
1

n

n∑
i=1

M∑
m=1

K̃h(sm − s)
∫ 1

0
∂Ŝeff(β1(s) + t(β2(s)− β1(s)))dt

∥∥∥∥∥
6 C1‖β1(s)− β2(s)‖,

where ‖ · ‖ψ is Orlicz norm, ∂ is the first derivative, and C1 is a positive constant. Then applying
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Theorem 2.2.4 in Van der Vaart and Wellner (1996) we can obtain that for any δ and ξ

E

(
sup

d(β1(s),β2(s))<δ
|M̂nM (β1(s))− M̂nM (β2(s))|

)

6

∥∥∥∥∥ sup
d(β1(s),β2(s))<δ

|M̂nM (β1(s))− M̂nM (β2(s))|

∥∥∥∥∥
ψ

6 C2

[∫ ξ

0
ψ−1(D(ω,Θ, ‖ · ‖))dω + δψ−1(D2(ξ,Θ, ‖ · ‖))

]
6 C2

[∫ ξ

0
N

1
2p (ω/2,Θ, ‖ · ‖)dω + δN

1
p (ξ/2,Θ, ‖ · ‖)

)
,

where C2 is a constant, D(·, ·, ·) and N(·, ·, ·) are the packing and bracketing number, respectively.

Since β(s) ∈ [−1, 1]p by definition, we have

N(ω/2,Θ, ‖ · ‖) 6 C3ω
−p,

where C3 is a constant. Consequently

E

(
sup

d(β1(s),β2(s))<δ
|M̂nM (β1(s))− M̂nM (β2(s))|

)
6 C4

[∫ ξ

0
ω−1/2dω + δξ−1

]
,

where C4 is a constant. For any ε > 0, Markov’s inequality gives

p

(
sup

d(β1(s),β2(s))<δ
|M̂nM (β1(s))− M̂nM (β2(s))| > ε

)
6
C4

ε

[
2ξ1/2 + δξ−1

]
.

By choosing first ξ and next δ, one can make the right hand side sufficient small, this verifies the

asymototic equicontinuty of M̂nM (·).

Secondly, following Wu and Zhang (2002), and employing Lemma 1 we can obtain

1

n

n∑
i=1

M∑
m=1

K̃h(sm − s)Ŝeff(β(s);Xi, Yi(sm))− 1

n

n∑
i=1

Ŝeff(β(s);Xi, Yi(s))

p−→
∑M

m=1Kh(sm − s)[E(Seff(β(s);Xi, Yi(sm))− E(Seff(β(s);Xi, Yi(s))]∑M
m=1Kh(sm − s)

=
Mh

∫
K(µ)[E(Seff(β(s);Xi, Yi(s+ hµ))− E(Seff(β(s);Xi, Yi(s))]π(s+ hµ)dµ

Mh
∫
K(µ)π(s+ hµ)dµ[1 +Op(Mh−1/2)]

× [1 +Op((Mh)−1/2
√
| log h|)]

=

∫
K(µ)[∂E(Seff(s))hµ+ 0.5∂2E(Seff(s))h2µ2 + o(h2)][π(s) + π̇(s)hµ+ o(h)]dµ∫

K(µ)[π(s) + π̇(s)hµ+ o(h)]dµ
[1 + op(1)]

=
[0.5∂2E(Seff(s))π(s) + ∂E(Seff(s))π̇(s) + o(h)]h2µ2(K)

π(s) + o(h)
[1 + op(1)]

= 0.5h2[∂2E(Seff(s)) + 2∂E(Seff(s))π̇(s)/π(s)]µ2(K)[1 + op(1)], (6)
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where ∂, ∂2 are the first and second derivative, and the term [1 + op(1)] appears here because of the

randomness of SM . Consequently, for any β(s) ∈ Θ

|M̂nM (β(s))−M(β(s))|

6

∣∣∣∣∣ 1n
n∑
i=1

M∑
m=1

K̃h(sm − s)Ŝeff(β(s);Xi, Yi(sm))− E(Seff(β(s);Xi, Yi(s)))

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑
i=1

Ŝeff(β(s);Xi, Yi(s))− E(Seff(β(s);Xi, Yi(s)))

∣∣∣∣∣+Op(h
2)

6

∣∣∣∣∣ 1n
n∑
i=1

Ŝeff(β(s);Xi, Yi(s))−
1

n

n∑
i=1

Seff(β(s);Xi, Yi(s))

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

Seff(β(s);Xi, Yi(s))− E(Seff(β(s);Xi, Yi(s)))

∣∣∣∣∣+Op(h
2). (7)

In (7), the first term tends to 0 in probability due to the consistency of Ê{X|XTβ(·)} and ̂̇g(XTβ0(sm))

(Ma and Zhu, 2014) and the continuous mapping theorem under Assumption (C4), the convergence

of the second term follows from the law of large numbers, and Op(h2) = op(1) under Assumption

(C9). These complete the marginal convergence of M̂nM (·).

Finally, applying Lemma 2.8 in Newey and McFadden (1994), under Assumption (C4) the uni-

form convergence of M̂nM (·) follows from its asymototic equicontinuty and marginal convergence.

Step 3: To prove that

sup
β(sm):d(β̂(sm),β0(sm))>ε

sup
sm∈SM

M(β̂(sm)) < sup
sm∈SM

M(β0(s)). (8)

This can be done by further using Assumptions (C3) and (C4).

Step 4: To prove that

P

(
sup

sm∈SM
d(β̂(sm), β0(sm)) > ε

)
→ 0.

The proof follows the same arguments used in Theorem 5.7 of Van der Vaart (1998). Since (5)

implies supsm∈SM |M̂nM (β0(sm)) −M(β0(sm))| p−→ 0, so that under Assumption (C3), we have
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M̂nM (β0(sm)) >M(β̂(sm)) for each sm ∈ SM . It yields that

sup
sm∈SM

[M(β0(sm))−M(β̂(sm))]

6 sup
sm∈SM

[M(β0(sm))− M̂nM (β0(sm))] + sup
sm∈SM

[M̂nM (β0(sm))−M(β̂(sm))]

6 op(1) + sup
sm∈SM

[M̂nM (β̂(sm))−M(β̂(sm))]

6 op(1) + sup
β(s)∈Θ

|M̂nM (β(s))−M(β(s))|

p−→ 0. (9)

From (8) we know that for any ε > 0, there exists a positive constant δ that is only dependent on ε

such that

sup
sm∈SM

M(β̂(sm)) 6 sup
sm∈SM

M(β0(s))− δ(ε)

for every β̂(sm) when supsm∈SM d(β̂(sm), β0(sm)) > ε. Consequently, by (9) we have

P

(
sup

sm∈SM
d(β̂(sm), β0(sm)) > ε

)
6 P

(
sup

sm∈SM
M(β̂(sm)) < sup

sm∈SM
M(β0(sm))− δ(ε)

)
6 P

(
sup

sm∈SM
[M(β0(sm))−M(β̂(sm))] > δ(ε)

)
→ 0.

2

LEMMA 3: Under assumption (C2) and (C5)-(C7),

sup
s∈S
|∆(s, h)| = op(1).

Proof of Lemma 3: By Lemma 1 with r = 0, we have

sup
s∈S0

∣∣∣∣∣ 1

M

M∑
m=1

Kh(sm − s)−K0(s, h)

∣∣∣∣∣ = sup
s∈S0

∣∣∣∣∫ Kh(t− s)d[ΠM (t)−Π(t)]

∣∣∣∣
= Op((Mh)−1/2),
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so that ∆(s, h) can be approximated by

∆(s, h1) =
1

K0(s, h) +Op((Mh)−1/2)

[
1

M

M∑
m=1

Kh(sm − s)η(sm)

−
∫
Kh(t− s)η(t)dΠ(t)

]

=
1 +Op((Mh)−1/2)

K0(s, h)

{
1

M

M∑
m=1

Kh(sm − s)[η(sm)− η(s)]

+

[
1

M

M∑
m=1

Kh(sm − s)−
∫
Kh(t− s)dΠ(t)

]
η(s)

+

∫
Kh(t− s)[η(s)− η(t)]dΠ(t)

}

=
1 + op(1)

K0(s, h)
[(I) + (II) + (III)].

Due to assumption (C5), η(s) converges weakly to a Gaussian process, it follows from Donsker

Theorem (Van der Vaart and Wellner, 1996) that

sup
s∈S
‖η(s)‖2 = Op(1).

Thus we can examine the three terms as follows:

(I)

K0(s, h)
6

1

K0(s, h)

1

M

M∑
m=1

Kh(sm − s)|η(sm)− η(s)|

6 sup
|s′−s|6h

|η(s′)− η(s)| sup
s∈S

1

MK0(s, h)

M∑
m=1

Kh(sm − s)

= op(1)× K0(s, h1) +Op((Mh1)−1/2)

K0(s, h)

= op(1),

(II)

K0(s, h)
6

1

K0(s, h)
sup
s∈S
|η(s)| sup

s∈S

∣∣∣∣∫ Kh(t− s)d[ΠM (t)−Π(t)]

∣∣∣∣
= Op(h)×Op(1)×Op((Mh)−1/2)

= op(1),
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(III)

K0(s, h)
6

1

K0(s, h)

∫
Kh(t− s)|η(s)− η(t)|dΠ(t)

6 sup
|s′−s|6h

|η(s′)− η(s)| sup
s∈S

1

K0(s, h)

∫
Kh(t− s)dΠ(t)

= op(1)× 1

= op(1).

This finishes the proof of Lemma 3. 2

Define εi(s) =
∑M

m=1 K̃M (sm − s, h2)εi(sm).

LEMMA 4: Under Assumptions (C1)-(C11),

sup
(s,t)

n−1|
n∑
i=1

εi(s)ηi(t)| = Op(n
−1/2(log n)1/2),

and

sup
(s,t)

n−1|
n∑
i=1

εi(s)εi(t)| = O((Mh2)−1 + (log n/n)1/2) = op(1).

Proof of Lemma 4: The proof follows from a similar argument to Lemmas 6 and 7 of Zhu et al.

(2012), so we just omit it here. 2

Proof of Theorem 1

Theorem 1 (i) directly follows from (18) in the parent paper by noting that D(w(s)) can be

written as

D(w(s)) =
w(s)T (Ση∗,M + Λε∗,M )w(s)

w(s)T1M1TMw(s)
.

We define Ψ∗,M = [ψ1∗,M · · ·ψM∗,M ] and Λ∗,M = diag(λ1∗,M , · · · , λM∗,M ). We have

Σ−1
ε∗,M = Λ

−1/2
ε∗,M (Λ

−1/2
ε∗,MΣη∗,MΛ

−1/2
ε∗,M + IM )−1Λ

−1/2
ε∗,M

= Λ
−1/2
ε∗,M (Ψ∗,MΛ∗,MΨT

∗,M + IM )−1Λ
−1/2
ε∗,M

= Λ
−1/2
ε∗,MΨ∗,M (Λ∗,M + IM )−1ΨT

∗,MΛ
−1/2
ε∗,M

= Λ
−1/2
ε∗,MΨ∗,M{(Λ∗,M + IM )−1 − IM}ΨT

∗,MΛ
−1/2
ε∗,M + Λ−1

ε∗,M .
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By noting that 1/(λm∗,M + 1)− 1 = −λm∗,M/(λm∗,M + 1), we can prove (2). 2

Proof of Theorem 2

Proof of Theorem 2 (i): By the uniform consistency in Lemma 2, we can follow the arguments

used in Theorem 3 of Ma and Zhu (2014) to obtain

0 = n−1/2
n∑
i=1

M∑
m=1

K̃h(sm − s)ε∗(sm)[Xi − E{Xi|XT
i β(s)}]ġ(XT

i β(s))

+ n−1/2
n∑
i=1

M∑
m=1

K̃h(sm − s)ε∗(sm)[Xi − E{Xi|XT
i β(s)}]XT

i [β̂(s)− β0(s)]g̈(XT
i β(s))

+ op(1), (10)

then by (10) we have

√
n[β̂(s)− β0(s)]

=

(
− 1

n

n∑
i=1

M∑
m=1

K̃h(sm − s)ε∗(sm)[Xi − E{Xi|XT
i β(s)}]XT

i g̈(XT
i β(s))

)−1

×

(
1√
n

n∑
i=1

M∑
m=1

K̃h(sm − s)ε∗(sm)[Xi − E{Xi|XT
i β(s)}]ġ(XT

i β(s)) + op(1)

)
. (11)

For notational simplicity, we denote

An(s) =
1

n

n∑
i=1

M∑
m=1

K̃h(sm − s)ε∗(sm)[Xi − E{Xi|XT
i β(s)}]XT

i g̈(XT
i β(s))

Bi(s) = [Xi − E{Xi|XT
i β(s)}]ġ(XT

i β(s)),

then (11) can be rewritten as

√
n[β̂(s)− β0(s)]

= [An(s)]−1 1√
n

n∑
i=1

Bi(s)
M∑
m=1

K̃h(sm − s)ε∗(sm) + op(1)

= [An(s) +Op(h
2)]−1 1√

n

n∑
i=1

Bi(s)

{
M∑
m=1

K̃h(sm − s)[g(XT
i β(sm))− g(XT

i β(s))]

M∑
m=1

K̃h(sm − s)ηi(sm) +
M∑
m=1

K̃h(sm − s)εi(sm)

}
+ op(1). (12)
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Again similarly as (6), the bias term is

M∑
m=1

K̃h(sm − s)[g(XT
i β(sm))− g(XT

i β(s))]

= 0.5h2[g̈(XT
i β(s)) + 2ġ(XT

i β(s))π̇(s)/π(s)]µ2(K)[1 + op(1)]. (13)

Next we show that

1√
n

n∑
i=1

Bi(s)
M∑
m=1

K̃h(sm − s)ηi(sm)⇒ G(s), (14)

where ⇒ denotes weak convergence of a sequence of stochastic process and G(s) is a central

Gaussian process indexed by s ∈ S . It consists of two steps. In Step 1, it follows from the standard

central limit theorem that for each s ∈ S,

1√
n

n∑
i=1

Bi(s)

M∑
m=1

K̃h(sm − s)ηi(sm)
d−→ N

(
0,

1

n

n∑
i=1

Bi(s)Ση(s, s)Bi(s)
T

)
,

where d−→ denotes convergence in distribution.

Step 2 is to show the asymptotic tightness of n−1/2
∑n

i=1Bi(s)
∑M

m=1 K̃h(sm−s)ηi(sm). Noting

that
∑M

m=1 K̃h(sm − s)η(sm) can be approximated by three terms as follows:

M∑
m=1

K̃h(sm − s)η(sm)

= ∆(s, h) +
1

K0(s, h)

∫
Kh(t− s)η(t)π(t)d(t)

= ∆(s, h) +
1

K0(s, h)
V (s)

∫
Kh(t− s)π(t)d(t)

+
1

K0(s, h)

∫
Kh(t− s)[η(t)− η(s)]π(t)d(t)

= ∆(s, h) + (I) + (II).

Lemma 3 implies ∆(s, h) converges to zero uniformly. (I) is asymptotic tight since

(I) =
1

K0(s, h)
η(s)K0(s, h)

= η(s),
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where η(s) is a Gaussian process. And it follows that when h→ 0,

(II) 6 sup
|t−s|6h1

|η(t)− η(s)| 1

K0(s, h)

∫
Kh(t− s)π(t)d(t)

= op(1)× 1

= op(1).

Combining them together we can obtain the tightness.

Moreover, it follows from Lemma 1 that

1√
n

n∑
i=1

Bi(s)

M∑
m=1

K̃h(sm − s)εi(sm) = Op(| log(h)|1/2(Mh)−1/2) = op(1) (15)

holds uniformly for all s ∈ S. For weak convergence, when we focus on the asymptotic distribution

of β̂(s), the remainder op(1) can be removed. Consequently, taking (13), (14) and (15) into (12) we

can obtain that with a probability tending to one,

E[β̂(s)]− β0(s) = 0.5h2An(s)−1

{
1

n

n∑
i=1

Bi(s)[g̈(XT
i β(s)) + 2ġ(XT

i β(s))π̇(s)/π(s)]µ2(K)

}
,

and

Cov{
√
n[β̂(s)− β0(s)],

√
n[β̂(t)− β0(t)]}

= An(s)−1

[
1

n

n∑
i=1

Bi(s)Ση(s, t)Bi(t)
T

]
An(t)−1.

This finishes the proof of Theorem 2 (i).

Proof of Theorem 2 (ii): First, by following the proof of Lemma 4 in Zhu et al. (2012), we can

easily have

E[ĝ(XT β̂(s))]− g(XTβ(s)) = 0.5h2
1µ2(K)g̈(XTβ(s))[1 + op(1)]

Var[ĝ(XT β̂(s))] = n−1Ση(s, s)[1 + op(1)]. (16)
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Moreover, by (12) in the parent paper and Theorem 1, it is easy to see that

√
n{ĝ(XT β̂(s))− E[ĝ(XT β̂(s))]}

=
√
n[1 0]Σ̂(XT β̂(s), h1)−1

n∑
i=1

M∑
m=1

Kh1(XT
i β̂(sm)−XT β̂(s))Ẑi,m,s[η(sm) + ε(sm)]

=
√
n[1 0]Σ(XTβ(s), h1)−1

n∑
i=1

M∑
m=1

Kh1(XT
i β(sm)−XTβ(s))Zi,m,s[η(sm) + ε(sm)}

× [1 +Op(n
−1/2 + h2)].

Then following the proof of Theorem 1 in Zhu et al. (2012), we can have that
√
n[ĝ(XT β̂(s)) −

g(XTβ(s)) − 0.5h2
1µ2(K)g̈(XTβ(s))] converges to a central Gaussian process with covariance

function Ση(s, t). 2

Proof of Theorem 3

Let K̃M (s, h) = K̃M (s/h)/h, where K̃M (s) is the empirical equivalent kernels for the first-order

local polynomial kernel (Fan and Gijbels, 1996). Thus, we have

η̂i(s)− ηi(s)

=

M∑
m=1

K̃M (sm − s, h2)[g(XT
i β(sm))− ĝ(XT

i β̂(sm)]

+
M∑
m=1

K̃M (sm − s, h2)[ηi(sm) + εi(sm)− ηi(s)]. (17)

It follows from a Taylor’s expansion that

M∑
m=1

K̃M (sm − s, h2)[ηi(sm)− ηi(s)] = 0.5µ2(K)η̈i(s)h
2
2[1 + op(1)],
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and

M∑
m=1

K̃M (sm − s, h2){g(XT
i β(sm))− E[ĝ(XT

i β̂(sm))|S, η,X}

=

M∑
m=1

K̃M (sm − s, h2)[0.5h2
1µ2(K)g̈(XT

i β(sm)) + n−1
n∑

i′=1

ηi′(sm)]

× [1 +Op(h1 + n−1/2 + (Mh1)−1/2)],

=[0.5h2
1µ2(K)g̈(XT

i β(sm)) +Op(n
−1/2)]

× [1 +Op(h1 + h2 + n−1/2) +Op((Mh2)−1/2 + (Mh1)−1/2)],

which leads to Bias[η̂i(s)|S, η,X].

Furthermore, it can be shown that

η̂i(s)− E[η̂i(s)|S, X, η]

=
M∑
m=1

K̃M (sm − s, h2){εi(sm)

− [1 0]Σ̂(XTβ(s), h1)−1
∑
i′,m′

Kh1(XT
i′ β̂(sm′)−XT

i β̂(sm))Ẑi,m,sεi′(sm′)}

=
M∑
m=1

K̃M (sm − s, h2){εi(sm)

− [1 0]Σ(XTβ(s), h1)−1
∑
i′,m′

Kh1(XT
i′ β(sm′)−XT

i β(sm))Zi,m,sεi′(sm′)}[1 + op(1)].

After some tedious calculations, we have

Cov(η̂i(s)− ηi(s), η̂i(t)− ηi(t)|S, η,X)

=K#((s− t)/h2)σε(s)π(t)−1(Mh2)−1[1 + op(1)]− (nMh1)−1π(s)−1π(t)−1Op(1)

Furthermore, for i = 1, · · · , n, after dropping some higher order terms, we have

E{[η̂i(s)− ηi(s)]2|S, η,X}

={E[η̂i(s)− ηi(s)|S, η,X]}2 + Var[η̂i(s)− ηi(s)|S, η,X]

=[0.5µ2(K)η̈i(s)h
2
2 + 0.5µ2(K)g̈(XT

i β(sm))h2
1 + n−1

n∑
i′=1

ηi′(sm)]2[1 + op(1)]

+ v0(K)π(s)−1σε(s)(Mh2)−1[1 + op(1)]− (nMh1)−1π(s)−2Op(1)
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Combining the above results we obtain Cov(η̂i(s), η̂i(t)|S, X, η, ) and complete the proof of (i).

It follows from that

M∑
m=1

K̃M (sm − s, h2){g(XT
i β(sm))− E[ĝ(XT

i β(sm))|S, X}

=0.5h2
1µ2(K)g̈(XT

i β(sm))[1 +Op(h1 + n−1/2 + (Mh1)−1/2)],

Furthermore, it can be shown that

η̂i(s)− ηi(s)− E[η̂i(s)|S, X]

=
M∑
m=1

K̃M (sm − s, h2)[ηi(sm) + εi(sm)− ηi(s)]−
M∑
m=1

K̃M (sm − s, h2)

{[1 0]Σ̂(XTβ(s), h1)−1
∑
i′,m′

Kh1(XT
i′ β̂(sm′)−XT

i β̂(sm))Ẑi,m,s[ηi′(sm′) + εi′(sm′)]}

=

M∑
m=1

K̃M (sm − s, h2)[ηi(sm) + εi(sm)− ηi(s)]−
M∑
m=1

K̃M (sm − s, h2)

{[1 0]Σ(XTβ(s), h1)−1
∑
i′,m′

Kh1(XT
i′ β(sm′)−XT

i β(sm))Zi,m,s[ηi′(sm′) + εi′(sm′)]}[1 + op(1)].

With tedious calculations, we have

Cov(η̂i(s)− ηi(s), η̂i(t)− ηi(t)|S, X)

=K#((s− t)/h2)σε(s)π(t)−1(Mh2)−1[1 + op(1)]− (nMh1)−1π(s)−1π(t)−1Op(1)

+ {0.25µ2(K)2h4
2Σ(2,2)

η (s, t) + n−1Ση(s, t)

− 0.5n−1µ2(K)h2
2[Σ(2,0)

η (s, t)π(s)−1 + Σ(0,2)
η (s, t)π(t)−1]}[1 + op(1)].

It follows from Lemma 1 and (16) that

E{[η̂i(s)− ηi(s)]2|S, X]

={E[η̂i(s)− ηi(s)|S, X]}2 + Var[η̂i(s)− ηi(s)|S, X]

={0.25µ2(K)2h4
1[g̈(Xiβs)]

2 + 0.25µ2(K)2h4
2Σ(2,2)

η (s, s)

+ n−1Ση(s, s) + v0(K)σ2
ε(s, s)π(s)−1(Mh2)−1}[1 + op(1)],

which leads to Theorem 3 (ii).
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Furthermore, by noting that E{[η̂i(s) − ηi(s)]
2|S] = E(E{[η̂i(s) − ηi(s)]

2|S, X]|S), we can

easily obtain Theorem 4 (iii) and (iv).

To show (v), we define

εi(s) =
M∑
m=1

K̃M (sm − s, h2)εi(sm),

∆ηi(s) =
M∑
m=1

K̃M (sm − s, h2)[ηi(sm)− ηi(s)],

∆gi(s) =
M∑
m=1

K̃M (sm − s, h2)[g(XT
i β(sm))− ĝ(XT

i β̂(sm))],

∆i(s) = εi(s) + ∆ηi(s) + ∆gi(s).

Recall from (17) that

η̂i(s)− ηi(s) = ∆i(s).

It follows from Lemma 2 and Taylor series expansion that

sup
s∈S
|εi(s)| = Op(

√
| log(h2)|
Mh2

) and sup
s∈S
|∆ηi(s)| = Op(1) sup

s∈S
|η̈i(s)|h2

2.

By Theorem 2, the sequence
√
n[ĝ(xT β̂(s))− g(xTβ(s))− 0.5h2

1µ2(K)g̈(xTβ(s))] is asymptoti-

cally tight. Thus, we have

∆gi(s) = −
M∑
m=1

K̃M (sm − s, h2)0.5h2
1µ2(K)g̈(·)[1 + op(1)]

+

M∑
m=1

K̃M (sm − s, h2)[0.5h2
1µ2(K)g̈(·)[1 + op(1)] + g(XT

i β(sm))− ĝ(XT
i β̂(sm))],

sup
s∈S
|∆gi(s)| = Op(h

2
1) +Op(n

−1/2).

Combining these results, we have

sup
s∈S
|η̂i(s)− ηi(s)| = Op(| log(h2)|1/2(Mh2)−1/2 + h2

1 + h2
2 + n−1/2).

2

Proof of Theorem 4
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Recall that η̂i(s) = ηi(s) + ∆i(s), we have

n−1
n∑
i=1

η̂i(s)η̂i(t) =n−1
n∑
i=1

∆i(s)∆i(t) + n−1
n∑
i=1

ηi(s)∆i(t)

+ n−1
n∑
i=1

∆i(s)ηi(t) + n−1
n∑
i=1

ηi(s)ηi(t). (18)

This proof consists of two steps. The first step is to show that the first three terms on the right hand

side of (18) converge to zero uniformly for all (s, t) ∈ S2 in probability. The second step is to show

the uniform convergence of n−1
∑n

i=1 ηi(s)ηi(t) to Ση(s, t) over (s, t) ∈ S2 in probability.

We first show that

sup
(s,t)

n−1|
n∑
i=1

∆i(s)ηi(t)| = Op(n
−1/2 + h2

1 + h2
2 + (log n/n)1/2). (19)

Since
n∑
i=1

∆i(s)ηi(t) 6 |
n∑
i=1

εi(s)ηi(t)|+ |
n∑
i=1

∆ηi(s)ηi(t)|+ |
n∑
i=1

∆gi(s)ηi(t)|, (20)

it is sufficient to focus on the three terms on the right-hand side of (20). Since

|∆gi(s)ηi(t)| 6 sup
s∈S
|∆gi(s)| sup

t∈S
|ηi(t)|,

we have

n−1|
n∑
i=1

∆gi(s)ηi(t)| 6 n−1
n∑
i=1

sup
s,t∈S

|∆gi(s)ηi(t)| = Op(h
2
1 + n−1/2) = op(1).

Similarly, we have

n−1|
n∑
i=1

∆ηi(s)ηi(t)| 6 n−1
n∑
i=1

sup
s,t∈S

|∆ηi(s)ηi(t)| = Op(h
2
2) = op(1).

It follows from Lemma 4 that sup(s,t) n
−1{|

∑n
i=1 εi(s)ηi(t)| = O((log n/n)1/2). Similarly, we

can show that sup(s,t) n
−1|
∑n

i=1 ∆i(t)ηi(s)| = Op(n
−1/2 + h2

1 + h2
2 + (log n/n)1/2).

We next show that

sup
(s,t)
|n−1

n∑
i=1

[ηi(s)ηi(t)− Ση(s, t)]| = Op(n
−1/2). (21)

This can be argued by noting that

|ηi(s1)ηi(t1)− ηi(s2)ηi(t2)|

62(|s1 − s2|+ |t1 − t2|) sup
s∈S
|η̇i(s)| sup

s∈S
|ηi(s)|
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holds for any (s1, t1) and (s2, t2). Therefore the functional class {η(u)η(v) : (u, v) ∈ S2} is a

Vapnik and Cervonenkis (VC) class (Van der Vaart, 1998). Thus, it yields that (21) is true.

Finally, we can show that

sup
(s,t)

n−1|
n∑
i=1

∆i(s)∆i(t)| = Op((Mh2)−1 + (log n/n)1/2 + h4
1 + h4

2). (22)

With some calculations, for a positive constant C1, we have

|
n∑
i=1

∆i(s)∆i(t)|

6C1 sup
(s,t)

[|
n∑
i=1

εi(s)εi(t)|+ |
n∑
i=1

εi(s)∆ηi(t)|+ |
n∑
i=1

∆ηi(t)∆gi(s)|

+ |
n∑
i=1

εi(s)∆gi(t)|+ |
n∑
i=1

∆gi(s)∆gi(t)|+ |
n∑
i=1

∆ηi(s)∆ηi(t)|.

It follows from Lemma 4 that

sup
(s,t)

n−1|
n∑
i=1

εi(s)εi(t)| = Op((Mh2)−1 + (log n/n)1/2),

sup
(s,t)

n−1[|
n∑
i=1

εi(s)∆ηi(t)|+ |
n∑
i=1

∆ηi(t)∆gi(s)|+ |
n∑
i=1

εi(s)∆gi(t)| = Op((log n/n)1/2).

Since sups∈S |∆ηi(s)| = C2 sups∈S |η̈i(s)|h2
2, we have sup(s,t) n

−1|
∑n

i=1 ∆ηi(s)∆ηi(t)| = O(h4
2).

Furthermore, we have

n−1|
n∑
i=1

∆gi(s)∆gi(t)| = Op(n
−1 + h4

1)

Thus, combining (19)-(22)) leads to Theorem 4 (i).

To prove Theorem 4 (ii), we may follow the same arguments in Lemma 6 of Li and Hsing (2010).

For completion, we highlight several key steps below. We define

∆ψ(s) =

∫ 1

0
[Σ̂η(s, t)− Ση(s, t)]ψ(t)dt. (23)
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Following Hall et al. (2006) and the Cauchy-Schwartz inequality, we have

{
∫ 1

0
[ψ̂(s)− ψ(s)]2ds}1/2

6C2{[
∫ 1

0
∆ψ(s)2ds]1/2 +

∫ 1

0

∫ 1

0
[Σ̂η(s, t)− Ση(s, t)]

2dsdt}

6C2{
∫ 1

0

∫ 1

0
[Σ̂η(s, t)− Ση(s, t)]

2dsdt}1/2{
∫ 1

0
[ψ(t)]2dt}1/2

+

∫ 1

0

∫ 1

0
[Σ̂η(s, t)− Ση(s, t)]

2dsdt

6C3 sup
(s,t)∈S2

|Σ̂η(s, t)− Ση(s, t)|,

which yields Theorem 4 (ii.a).

Using (4.9) in Hall et al. (2006), we have

|λ̂− λ|

6|
∫ 1

0

∫ 1

0
[Σ̂η − Ση](s, t)ψ(s)ψ(t)dsdt+O(

∫ 1

0
∆ψ(s)2ds)

6C4 sup
(s,t)∈S2

|Σ̂η(s, t)− Ση(s, t)|,

which yields Theorem 4 (ii.b). 2

Web Appendix B: Figures

Typical estimated covariance function Ση(·, ·) and eigen-functions ψi(·), i = 1, 2 are shown in

Figure 1. The estimated covariance function and curves are quite close to their true values.

Figure 2 shows the Q-Q plots of η̂ and ε̂ at 3 randomly selected grid points. Their quantiles are

quite close to the straight lines, which represent standard normal distribution. It verifies the Gaussian

assumptions of individual curve variations and random errors.

Figure 3 presents the estimated seven varying coefficients their corresponding 95% simultaneous

confidence bands. It reveals that MMSE, age, education level and AD status are the most important

factors. Moreover, gender and handiness have little effects on FA.
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Figure 1. Simulation results for the first index function with n = 200: true and estimated

Ση (top row), and the estimated eigenfunctions (bottom row). The solid lines are true

functions and the broken lines are estimated functions.
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Figure 2. ADNI data analysis: the qq plots of η̂ (left column) and ε̂ (right column) at grid

points 20 (top row), 40 (middle row) and 60 (bottom row).



25

Figure 3. ADNI data analysis: the seven estimated varying coefficients. The black solid

lines are estimated coefficients and the red broken lines are their corresponding 95%

simultaneous confidence bands.
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