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A - The causal definition of covariate interference

Another way to look at covariate interference is to consider the DAG and figure out what

are the assumption needed to estimate the marginal effect of treatment (path A → Y in

Figure 1).

[Figure 1 about here.]

We focus on cluster i composed of two subjects (1,2); X is an interfering covariate. The

paths X2 → Y1 and X1 → Y2 represent the presence of covariate interference at the outcome

level and X2 → R1 and X1 → R2 the presence of covariate interference at the level of

missingness process. When we analyze the dataset with missing data, subjects with R1 = 0

have Y1 unobserved. In other words, values of Y1 are conditioned by R1. Thus, all paths

flowing through R1 are ’unblocked’. Thus, in the presence of covariate interference for the

outcome and the missing data process, two paths are unblocked compared to an analysis

without missing data: A→ R1 ← X1 → Y1 and A→ R1 ← X2 → Y1. This is due to collider

stratification bias, also called bias due to conditioning on a collider (Pearl et al., 2009). In

order to ensure unbiasedness of the estimation with GEE approaches, solution is to adjust

on X1 (individual covariates) and X2 (interfering covariates). If covariate interference are

only on the outcome generation process, no additional path may create a bias in estimation

of the marginal effect of treatment. If covariate interference are only on the missing data

generation process, A→ R1 ← X1 → Y1 is unblocked, solution is to adjust on X1 (individual

covariates) but there is no need to adjust for X2 (interfering covariates).

B - Derivation of the estimating Equation (EE) for the DR estimator

In this section we present the derivation to obtain the EE for the DR estimator. The idea

is to project the IPW EE ψi(Y i,Ri, Ai,β,ηW ) onto the span of scores corresponding to

all smooth parametric models for the missing data process and the treat- ment assignment
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mechanism given covariates:

0 =
M∑
i

[
ψi(Y i,Ri, Ai,β,ηW )

−E(ψi(Y i,Ri, Ai,β,ηW )|X i,Ri, Ai) + E(ψi(Y i,Ri, Ai,β,ηW )|X i, Ai)︸ ︷︷ ︸
for missing data mechanism

−E(ψi(Y i,Ri, Ai,β,ηW )|X i, Ai) + E(ψi(Y i,Ri, Ai,β,ηW )|X i)︸ ︷︷ ︸
for treatment assignment mechanism

]
.

This gives the following derivations:

0 =

M∑
i=1

[
DT

i V
−1
i W i(Xi, Ai,ηW ) (Y i − µi(β, Ai)) (1)

+
{
−DT

i V
−1
i W i(Xi, Ai,ηW ) (Bi(Xi, Ai,ηB)− µi(β, Ai)) +DT

i V
−1
i (Bi(Xi, Ai,ηB)− µi(β, Ai))

}
+

{
−DT

i V
−1
i (Bi(Xi, Ai,ηB)− µi(β, Ai)) +

∑
a=0,1

pa(1− p)1−aDT
i V

−1
i

(
Bi(Xi, Ai = a,ηB)− µi(β, Ai = a)

)}]
.

We cancel the 3rd term with the 4th term and combine the 1st and 2nd terms to get the

EE for the DR:

0 =

M∑
i=1

[
DT

i V
−1
i W i(Xi, Ai,ηW ) (Y i −Bi(Xi, Ai,ηB))

+
∑
a=0,1

pa(1− p)1−aDT
i V

−1
i

(
Bi(Xi, Ai = a,ηB)− µi(β, Ai = a)

)]
, (2)

=

M∑
i=1

Φi(Y i,Ri, Ai,Xi,β,ηW ,ηB).

C - Proof of CAN for the DR estimator

1- Correct specification of the OM or the PS

The consistency can be considered by evaluating (a) defined in Equation 3 and checking that

(a)=0 when the OM or the PS is correctly specified. For notation simplicity, we omit the

nuisance parameters ηW and ηB while writing this demonstration.

(a) = E

[
DT

i V
−1
i W i(Xi, Ai, ηW ) (Y i −Bi(Xi, Ai,ηB))

+
∑
a=0,1

pa(1− p)1−aDT
i (Ai = a)V −1

i

(
Bi(Xi, Ai = a,ηB)− µi(β, Ai = a)

)]
. (3)
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The OM is correctly specified

When OM is correctly specified we have Bij(X i, Ai,ηB) = E(Y ij|Ai,X i). Let’s denote

(om1) and (om2) the first and second terms of (a) in Equation 3.

(om1) = E
[
E
[
DT

i V
−1
i W i(Xi, Ai, ηW ) (Y i −Bi(Xi, Ai,ηB)) |Rij ,Xi, Ai

]]
= E

[
DT

i V
−1
i W i(Xi, Ai, ηW )E [(Y i −Bi(Xi, Ai,ηB)) |Rij ,Xi, Ai]

]
= E

[
DT

i V
−1
i W i(Xi, Ai, ηW (E [Y i|Rij ,Xi, Ai]−Bi(Xi, Ai,ηB))

]
= E

[
DT

i V
−1
i W i(Xi, Ai, ηW ) (E [Y i|Xi, Ai]−Bi(Xi, Ai,ηB))

]
= 0

(om2) = E

[ ∑
a=0,1

pa(1− p)1−aDT
i (Ai = a)V −1

i (Bi(Xi, Ai = a,ηB)− µi(β, Ai = a))

]
=

∑
a=0,1

pa(1− p)1−aDT
i (Ai = a)V −1

i (E [Bi(Xi, Ai = a,ηB)]− µi(β, Ai = a))

=
∑
a=0,1

pa(1− p)1−aDT
i (Ai = a)V −1

i (E [Y i|Ai = a]− µi(β, Ai = a))

= 0.

The PS is correctly specified

When PS is correctly specified πij(X i, Ai,ηW ) = P (Rij = 1|X i, Ai). We use the extended

form of (a) which is given in Equation 1 in this Web supplementary material Section B, we

have :

(a) = E

[
DT

i V
−1
i W i(Xi, Ai, ηW ) (Y i − µi(β, Ai))−DT

i V
−1
i W i(Xi, Ai, ηW ) (Bi(Xi, Ai,ηB)− µi(β, Ai))

−DT
i V

−1
i (Bi(Xi, Ai,ηB)− µi(β, Ai)) +DT

i V
−1
i (Bi(Xi, Ai,ηB)− µi(β, Ai))

+
∑
a=0,1

pa(1− p)1−aDT
i (Ai = a)V −1

i

(
Bi(Xi, Ai = a,ηB)− µi(β, Ai = a)

)]
,

= E

[
DT

i V
−1
i W i(Xi, Ai, ηW ) (Y i − µi(β, Ai))

]
+ E

[
DT

i (V −1
i − V

−1
i W i(Xi, Ai, ηW )) (Bi(Xi, Ai,ηB)− µi(β, Ai))

]

+E

[ ∑
a=0,1

pa(1− p)1−aDT
i (Ai = a)V −1

i

(
Bi(Xi, Ai = a,ηB)− µi(β, Ai = a)

)
−DT

i V
−1
i (Bi(Xi, Ai,ηB)− µi(β, Ai))

]
.

Let’s denote (ps1), (ps2) and (ps3) the first, second and third terms of equation (a). The

term (ps1) is the traditional IPW estimating equation, then (ps1)=0 if the PS is correctly

specified. Then,
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(ps2) = E

[
DT

i E
[
(V −1

i −
[
V −1

i W i(Xi, Ai, ηW )
]
) (Bi(Xi, Ai,ηB)− µi(β, Ai)) |Xi, Ai

]]
,

= E

[
DT

i E
[

(V −1
i −

[
V −1

i W i(Xi, Ai, ηW )
]
)︸ ︷︷ ︸

K

|Xi, Ai

][
(Bi(Xi, Ai,ηB)− µi(β, Ai))

]]
.

The matrixK is equal to V −1i [I−W i(X i, Ai, ηW )]. The diagonal terms of [I−W i(X i, Ai, ηW )]

are given by
(
πij(Xi,Ai)−Rij

πij(Xi,Ai)

)
. When taking the expectation with respect to (X i, Ai) we have

E(
πij(Xi,Ai)−Rij

πij(Xi,Ai)
|X i, Ai) =

πij(Xi,Ai)−E(Rij |Xi,Ai)

πij(Xi,Ai)
= 0. Follows (ps2)=0. Finally,

(ps3) = E

[ ∑
a=0,1

pa(1− p)1−aDT
i (Ai = a)V −1

i

(
Bi(Xi, Ai = a,ηB)

−µi(β, Ai = a)
)
−DT

i V
−1
i (Bi(Xi, Ai,ηB)− µi(β, Ai)) |Xi

]
=

∑
a=0,1

pa(1− p)1−aDT
i (Ai = a)V −1

i

(
Bi(Xi, Ai = a,ηB)− µi(β, Ai = a)

)
−DT

i V
−1
i E [(Bi(Xi, Ai,ηB)− µi(β, Ai)) |Xi]

=
∑
a=0,1

pa(1− p)1−aDT
i (Ai = a)V −1

i

(
Bi(Xi, Ai = a,ηB)− µi(β, Ai = a)

)
−
∑
a=0,1

pa(1− p)1−aDT
i (Ai = a)V −1

i

(
Bi(Xi, Ai = a,ηB)− µi(β, Ai = a)

)
= 0.

Finally, under certain regularity assumption defined in Van der Vaart (2000), we can

demonstrate with the Slutsky’s theorem and the central limit theorem that any estimator

solving this Doubly Robust estimating equation is CAN.

2- When weights are implemented W
1/2
i (X i, Ai, ηW )V −1i W

1/2
i (X i, Ai, ηW ) instead of

V −1i W i(X i, Ai, ηW )

The demonstration for (ps2)=0 does not hold anymore because E
[
K|X i, Ai

]
= E

[
V −1i −

W
1/2
i (X i, Ai, ηW )V −1i W

1/2
i (X i, Ai, ηW )|X i, Ai

]
6= 0. Let’s illustrate this in a cluster i with

2 individuals, when weights are implemented such as in the GENMOD procedure in SAS,

we have:

[
W

1/2
i (Xi, Ai, ηW )V −1

i W
1/2
i (Xi, Ai, ηW )

]
=

 αwi1 γ
√
wi1
√
wi2

γ
√
wi1
√
wi2 αwi2

 ,
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with V −1i =

 α γ

γ α

 and therefore:

V −1
i −

[
W

1/2
i (Xi, Ai, ηW )V −1

i W
1/2
i (Xi, Ai, ηW )

]
=

 α(1− wi1) γ(1−√wi1
√
wi2)

γ(1−√wi1
√
wi2) α(1− wi2)

 .

In order to ensure (ps2)=0, γ must be set to 0, which correspond to an independence working

correlation structure to ensure CAN of the DR withW
1/2
i (X i, Ai, ηW )V −1i W

1/2
i (X i, Ai, ηW )

implementation of weights. Thus, the OM has to be correctly specified or an independence

correlation structure has to be used. In other words, the DR is doubly robust if and only

if the independence working correlation structure is used. Another alternative is to have

wi1 = wi2, i.e. all the weights equal in the same cluster and non individual-specific, which is

very unlikely for CRTs.

3- Checking asymptotic normality with simulations

Figure 2 displays approximate asymptotic normality of GEE, IPW, AUG, and DR on

simulations described Section 5.2 of the main manuscript.

[Figure 2 about here.]

D - Use of DR in practice: The geeDoublyRobust R package

Implementation of this method in R is available on the CRAN in the function drGeeEstima-

tion of the package CRTgeeDR. Parts of this package had been based on the geeM package

which allows sparse matrix representations, avoiding loops in R and improving computation

times (McDaniel and Henderson, 2014). In particular, estimation of the working correlation

structure and the scale parameters are exactly the same as in geeM, which is derived from

the procedure GENMOD in SAS as well as the geeglm packages in R (Halekoh et al., 2006).
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E - Result of simulation 5.1 with W
1/2
i (X i, Ai,ηW )V −1i W

1/2
i (X i, Ai,ηW )

implementation of weights

In CRTs, weights are always defined at an individual level and thus differ for each individual

in the same cluster. Thus, as demonstrated in Web-supplementary Material Section C2,

implementation of the Estimating Equation should use V −1i W i(X i, Ai,ηW ) rather than

W
1/2
i (X i, Ai,ηW )V −1i W

1/2
i (X i, Ai,ηW ) if a non-independence working correlation matrix

is used. To ensure invertibility in the sandwich estimator of the variance, some software

packages use the latter (SASInc, 2015). In our package we made available, weights are

correctly implemented.

Table 1 presents the same analysis as in Table 3 in the revised manuscript but with

W
1/2
i (X i, Ai,ηW )V −1i W

1/2
i (X i, Ai,ηW ) implementation of weights. There is a bias associ-

ated with the use of an exchangeable correlation structure (true correlation in this case) if

the OM is not correctly specified. If it is, with the W
1/2
i (X i, Ai,ηW )V −1i W

1/2
i (X i, Ai,ηW )

implementation of weights, even if the PS is also correct, the estimation with exchangeable

correlation structure is seen to be consistent but inefficient (large SE).

[Table 1 about here.]

F - Complementary analysis for SAM study

In this section we provide a list of variable selected for the PS and OM (treated and control)

for the SAM study for each outcome of the main manuscript. First regarding the PS in Table

2, we notice that there is always an effect of the treatment on the missingness, being treated

increases the probability of being missing. There is no general pattern except for the Score

for knowledge of HIV/STI which is negatively associated with missingness for every outcome.

The direction of a covariate effect on the PS is always the same for all outcomes for which

it has been selected. Regarding the OM, Table 3 describes the selection of variables in the
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treated arm and Table 4 in the control arm. Different variables are selected showing both

treatment-covariates interactions and imbalance of baseline covariates. Here again, if selected

the association of a covariate with the outcome is in the same direction for all outcomes.

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]
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U

Figure 1: Directed Acyclic graph (DAG) for CRTs data with rMAR for two subjects in
a same cluster and covariate interference for the outcome and the missing data generating
process. Bold arrows represent the covariate interference of subject 2 over subject 1 and the
covariate interference of subject 1 over subject 2. A is the treatment, X is a covariate which
is here also a interfering covariate, Y is the primary outcome correlated in a cluster through
U , and R is the missingness indicator.
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Figure 2: Histograms of estimates values for GEE, IPW, AUG and DR with a data
generation process described in Section 5.2 of the manuscript for 1000 replicates. True value
of the treatment effect is 5.73 and is materialized by a vertical line.
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Table 1: Properties for the Doubly robust estimator with
W

1/2
i (X i, Ai,ηW )V −1i W

1/2
i (X i, Ai,ηW ) implementation of weights using the data

generation mechanism shown below and in Equation 4 for small and large samples.
Statistics for 1000 replicates are the bias compared to M∗

E = 2.0, the empirical standard
errors over the replicates, the mean asymptotic standard error adjusted for nuisance
parameters estimation in the OM and PS and the coverage for GEE and DR with
independence (-I) and exchangeable (-E) working correlation matrix.

{
Yij = 1 +Ai +X1ij +X1i. +AiX1ij + εOi + εOij

logit(P (Rij = 0)) = 1
2
(−6 +Ai +X1ij +X1i. +AiX1ij)

Standard Error (SE) Coverage
Bias Empirical Robust Fay’s Robust Fay’s

M∗
E -I -E -I -E -I -E -I -E -I -E -I -E

Small sample M = 10, ni = (10, 20, 30) with probability 1/3 each, Low correlation

GEE (no missing) 2.0 -0.028 -0.028 0.497 0.497 0.440 0.440 0.527 0.527 88.8 88.8 93.4 93.4

GEE 2.0 -1.768 -1.766 0.434 0.432 0.393 0.321 0.450 0.452 3.0 0.6 4.5 4.5
IPW.NONE 2.0 -1.059 -1.238 0.677 1.025 0.518 0.746 0.624 0.967 42.4 51.2 52.0 64.7
IPW.TRUE 2.0 -0.019 0.527 0.851 1.181 0.663 0.872 0.853 1.396 84.0 89.8 89.9 97.7
AUG.NONE 2.0 -1.812 -1.812 0.179 0.179 0.393 0.321 0.450 0.452 7.1 7.1 17.4 17.4
AUG.TRUE 2.0 -1.800 -1.800 0.292 0.292 0.829 0.829 0.874 0.874 23.9 23.9 36.7 36.7

OM.MISS.PS.MISS 2.0 -1.774 -1.763 0.435 0.432 0.381 0.510 0.402 0.538 1.9 12.9 2.4 14.3
OM.MISS.PS.TRUE 2.0 -0.016 409.7 1.216 325.4 1.143 72.56 1.205 286.8 94.7 18.1 95.7 92.5

OM.TRUE.PS.MISS 2.0 -0.000 0.001 0.126 0.129 0.100 0.202 0.106 0.213 84.9 98.0 86.5 98.3
OM.TRUE.PS.TRUE 2.0 0.002 0.642 0.138 12.21 0.109 1.583 0.115 1.669 85.0 96.7 87.4 97.0

OM.NONE.PS.NONE 2.0 -0.018 0.923 0.231 9.758 0.190 2.264 0.201 2.386 85.6 99.8 87.7 99.9

Large sample M = 100, ni = (90, 100, 110) with probability 1/3 each, Low correlation

GEE (no missing) 2.0 -0.002 -0.002 0.117 0.117 0.113 0.113 0.115 0.115 93.1 93.1 93.6 93.6

GEE 2.0 -1.739 -1.738 0.103 0.103 0.098 0.073 0.099 0.099 0.0 0.0 0.0 0.0
IPW.NONE 2.0 -0.997 -1.248 0.160 0.272 0.147 0.255 0.150 0.263 0.6 2.5 0.6 2.8
IPW.TRUE 2.0 0.003 0.899 0.353 0.573 0.259 0.411 0.272 0.470 92.8 32.7 93.1 40.9
AUG.NONE 2.0 -1.802 -1.802 0.039 0.039 0.249 0.249 0.250 0.250 0.0 0.0 0.0 0.0
AUG.TRUE 2.0 -1.801 -1.801 0.065 0.065 0.255 0.255 0.256 0.256 0.0 0.0 0.0 0.0

OM.MISS.PS.MISS 2.0 -1.739 -1.734 0.103 0.103 0.098 0.136 0.098 0.137 0.0 0.0 0.0 0.0
OM.MISS.PS.TRUE 2.0 -0.001 858.4 0.436 223.4 0.407 195.4 0.409 196.3 97.1 0.0 97.6 1.2

OM.TRUE.PS.MISS 2.0 0.001 0.002 0.025 0.028 0.026 0.092 0.026 0.092 94.4 100.0 94.5 100.0
OM.TRUE.PS.TRUE 2.0 0.001 0.374 0.029 4.151 0.029 0.550 0.029 0.552 95.2 99.2 95.4 99.2

OM.NONE.PS.NONE 2.0 -0.004 0.089 0.053 0.159 0.049 0.408 0.050 0.410 93.9 100.0 94.4 100.0

Marginal model for the GEE:
µij(β, Ai) = β0 + βAAi

OM is fitted for each treatment group Ai = a:
OM.TRUE Bij(Xi, Ai = a) = γa

0 + γa
1X1ij + γa

2X1i.

OM.MISS Bij(Xi, Ai = a) = γa
0 + γa

1X2ij

OM.NONE Bij(Xi, Ai = a) = γa
0 + γa

1X1ij

PS is fitted for the whole dataset:
PS.TRUE πij(Xi, Ai) = expit

(
γM
0 + γM

A Ai + γM
1 X1ij + γM

2 X1i. + γM
3 AiX1ij

)
PS.MISS πij(Xi, Ai) = expit

(
γM
0 + γM

A Ai + γM
1 X2ij

)
PS.NONE πij(Xi, Ai) = expit

(
γM
0 + γM

A Ai + γM
1 X1ij

)
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Table 2: Variable selected in the stepwise regression PS for primary and secondary outcomes
analysis with the DR estimator. The signs of the regression coefficients are displayed to allow
the interpretation of the direction of the association.

PS RY (overall) RY 1 (main vaginal) RY 2 (casual vaginal) RY 3 (main anal) RY 4 (casual anal)

Treated + + + + +
Age + +
Employment
Married + +
Education
Number of children + + +
Wealth
Social Desirability - - -
Religiosity - -
HIV/STI Knowledge - - - - -
Condom Behavior
Condom Knowledge + +
Condom Efficacy + +
Condom Peer Norm
Never had HIV test
Sexual Activity
Eating Attitude -
Exercise - -
CAGE <2 + +
Health -
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Table 3: Variable selected in the stepwise regression OM in the treated arm for primary and
secondary outcomes analysis with the DR estimator. The signs of the regression coefficients
are displayed to allow the interpretation of the direction of the association.

OM (treated) Y (overall) Y 1 (main vaginal) Y 2 (casual vaginal) Y 3 (main anal) Y 4 (casual anal)

Age -
Employment
Married - +
Education
Number of children - - -
Wealth +
Social Desirability + +
Religiosity +
HIV/STI Knowledge + + +
Condom Behavior
Condom Knowledge -
Condom Efficacy + +
Condom Peer Norm
Never had HIV test
Sexual Activity - -
Eating Attitude + +
Exercise + + + +
CAGE <2 + +
Health -
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Table 4: Variable selected in the stepwise regression OM in the control arm for primary and
secondary outcomes analysis with the DR estimator. The signs of the regression coefficients
are displayed to allow the interpretation of the direction of the association.

OM (control) Y (overall) Y 1 (main vaginal) Y 2 (casual vaginal) Y 3 (main anal) Y 4 (casual anal)

Age +
Employment - - - -
Married -
Education
Number of children -
Wealth +
Social Desirability
Religiosity
HIV/STI Knowledge
Condom Behavior + + +
Condom Knowledge +
Condom Efficacy +
Condom Peer Norm
Never had HIV test -
Sexual Activity -
Eating Attitude -
Exercise
CAGE < 2 + +
Health -
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