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S1 Data acquisition

S1.1 Sampling site and time

Saanich Inlet (SI) a seasonally anoxic fjord on the coast of Vancouver Island, British Columbia
Canada has been the site of intensive study for many decades (1, 2). The presence of a shallow
glacial entrance sill at 75 m depth limits mixing and ventilation of basin waters below approx-
imately 100 m, resulting in stratification and oxygen depletion during spring and summer (Fig.
1a). Shifts in coastal currents in late summer and fall lead to an influx of denser, oxygenated and
nutrient-rich water into the Inlet shoaling anoxic basin waters upward in a process known as deep
water renewal (2, 3). Consistent partitioning of the microbial community along the redox cline
and similarity to other OMZ microbial communities make Saanich Inlet a model ecosystem for
studying the intersection between environmental sequence information and biogeochemical activ-
ity along defined redox gradients (3–5).

The fjord has a maximal depth of 232 m at the sampling site SI03 (123◦ 30.300′W, 48◦ 35.500′ N).

Sampling is conducted monthly during daylight hours using a combination of 5 and 8 L Niskin
bottles and 12 L Go-Flo bottles attached to a nonconducting wire. A Sea-Bird CTD (conduc-
tivity, temperature and depth) sensor attached to the bottom of the wire provides depth profiles
for temperature, salinity, PAR/Irradiance, conductivity, density, and dissolved oxygen (Sea-Bird
ElectronicsTM). Water sampling for multiple chemical and microbial parameters proceeds directly
from the bottles in the following order: First, samples are taken for dissolved O2 measurements
via Winkler titration, followed by sampling of dissolved gases. Next, samples are taken for RNA,
then protein followed by ammonium, hydrogen sulfide and nitrite. Finally, salinity is measured for
a subset of depths for CTD calibration, and samples are taken for DNA.

Chemical data were acquired on January 13, 2010 (cruise SI041_01/13/10), February 10
(SI042_02/10/10), March 10 (SI043_03/10/10), April 7 (SI044_04/07/10), July 7 (SI047_07/07/10)
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and August 11 (SI048_08/11/10). All molecular sequencing was performed using samples col-
lected on February 10, 2010 (SI040_02/08/10) at depths 100 m, 120 m, 135 m, 150 m, 200 m for
metagenomes and metatranscriptomes and at depths 97 m, 100 m, 120 m, 150 m, 165 m, 200 m for
metaproteomes.

S1.2 Chemical and physical depth profiles

Temperature, salinity and depthweremeasured using the CTD sensor described above. TheWinkler
titration method was used to measure dissolved oxygen (O2) concentrations (6) and calibrate CTD
measurements. Samples were collected into Winkler glass Erlenmeyer flasks using latex tubing,
overflowing three times to ensure no air contamination, manganese (III) sulphate and potassium
iodide were added in succession, inverted to mix and stored at room temperature. Samples were
titrated using an automatic titrator. CTD data were processed and manually curated using the Sea-
Bird SeasoftTM software.

Samples for dissolved nutrient (nitrate, nitrite, sulphate and silicate) analyses were collected into
60 mL syringes and filtered through a 0.22 µm Millipore AcrodiscTM into 15 mL falcon tubes.
Prior to analysis all samples were stored on ice. Nitrate (NO−3 ) samples were stored at −20◦C
in the laboratory, and later analyses carried out using a Bran Luebbe autoanalyser using standard
colorimetric methods. For nitrite (NO−2 ) analysis, 2 mL of sample water were supplemented with
100 µL sulfanilamide and 100 µL nicotinamide adenine dinucleotide in 4 mL plastic cuvettes.
Prepared standards were supplemented with reagents at the same time. Cuvettes were inverted for
mixing, and temporarily stored on ice for not more than 4 hrs. Concentration was measured using
a Cary60 R© spectrometer, based on absorbance at 452 nm.

Samples for ammonium (NH+
4 ) and hydrogen sulphide (H2S) were collected directly from Niskin

and GoFlo bottles into 15 mL amber scintillation vials and 15 mL falcon tubes aliquoted with
200 µL 20% zinc acetate respectively. Samples were stored on ice prior to analysis. ForNH+

4 analy-
sis, amber vials for standard curve and samples were pre-aliquoted with 7.5 mLO-phthaldialdehyde
(OPA) reagent respectively. 5 mL of sample water in triplicate and standard solutions were trans-
ferred into OPA pre-aliquoted amber vials. Vials were inverted and stored up to 4 hours. From each
standard solution and sample water vial, 300 µL were transferred into a 96 well round bottom plate.
Fluorescence at 380ex/420emm was read using a Varioskan plate reader. For H2S analysis, 300 µL
samples were transferred in triplicate to a 96 well plate, and finally Hach Reagent 1 and 2 (6 µL
per well) were added. Absorbance at 670 nm was read after 5 min incubation using a VarioskanTM
plate reader.

Water for dissolved nitrous oxide (N2O) analysis was collected using Go-flo or Niskin bottles, and
was transferred via a Teflon tube into 30 mL or 60 mL borosilicate glass serum vials. Vials were
overflown three times their volume in order to remove any bubbles from the vial or tubing. Vials
were subsequently spiked with 50 µL saturated mercuric chloride using a pipette. Vials were then
crimp-sealed with a butyl-rubber stopper and aluminum cap, and stored in the dark at 4◦C until
they were analyzed. Dissolved nitrous-oxide concentrations were measured using a purge-and-trap
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auto-sampler coupled with a gas-chromatography mass-spectrometer (7).

S1.3 Metagenomics, metatranscriptomics and metaproteomics

Metagenome and metaproteome datasets were generated using the same methods as described in
Hawley et al. (8). Metaproteome sequence coverage was quantified using normalized spectral abun-
dance factors (NSAF) (9). Metatranscriptome samples were filtered in the field onto 0.2 µm sterivex
filter with inline pre-filter of 2.7 µm pre-filter, adding 1.8 mL of RNAlater R© (Qiagen) and freezing
on dry ice before transferring to −80◦C. RNA later was removed by washing Sterivex filter with
Ringer’s solution before proceeding with cell lysis in the filter cartridge. Total RNA was extracted
using the mirVanaTM miRNA extraction kit (Ambion), DNAwas removed using the TURBODNA-
freeTM kit (Ambion) and total RNA was purified using RNeasyTM MiniElute Cleanup Kit (Qiagen).
RNA concentration and quality was determined using a Bioanalyzer. Production of cDNA libraries
and sequencing was carried out at the Joint Genome Institute using the TruSeq R© Stranded Total
RNA Sample preparation Guide, including depletion of ribosomal RNA using Ribo-Zero. Assem-
bled metagenomic sequences (contigs) were run through Metapathways (10) for annotation using
a combination of RefSeq (11), KEGG (12), COG (13) and MetaCyc (14) databases. KEGG anno-
tations of metagenomic contigs are provided as Dataset S1. Mass-spectrometry (metaproteomics)
run information are provided as Dataset S2. Contig coverage by metagenome or metatranscriptome
reads was quantified using RPKMvalues (Appendix S1.4). KEGG-annotated contigs were assigned
to the selected process proxy genes of the model (Table 1.3 in the Appendix); gene coverage at each
depth was then quantified by summing all assigned contig RPKM values. Because metaproteomes
were missing at depth 100 m (the upper bound of our simulation domain), and in order to increase
statistical power when evaluating our protein models, we used linear interpolation between depths
97 m and 120 m to estimate protein NSAF values at 100 m depth (“unit imputation”).

Nitrate reductase (narGHIJ) assigned to planctomycetes showed a decline with depth, suggesting
that it may be acting in reverse as a nitrite oxidase (15). In fact, narGHIJ counts affiliated with planc-
tomycetes (narGHIJ-P) dominated all other nxr-associated counts in the metagenomes, metatran-
scriptomes andmetaproteomes. We thus associated nxrwith narGHIJ-P. However, because plancto-
mycetes perform anammox in deeper depths (16), we observed a secondary peak in the narGHIJ-P
DNA closer to the SNTZ that did not dissipate completely in bottom waters. Given this ambiguity
in the interpretation of detected narGHIJ-P genes, we omitted the narGHIJ-P metagenomes and
only used the narGHIJ-P metatranscriptomes and metaproteomes. For more details see Appendix
S3.4.

All nosZ-related protein sequences mapped to a nosZ homolog found in the strictly aerobic
Roseobacter Maritimibacter alkaliphilus HTCC2654 (17, 18) and showed strong inconsistencies
with nosZ metagenomic and metatranscriptomic profiles. nosZ genes have been found to be en-
riched on particles, likely because they constitute a more anaerobic niche (19). Our metaproteomes
were pre-filtered to remove eukaryotes and particles and are expected to be impoverished in nosZ
proteins, facilitating a potential masking by related but functionally different proteins. We thus
omitted the nosZ metaproteomic data from our analysis.
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Table S1: KEGG orthologous groups (KOG) identified with each gene in the metagenomes or
metatranscriptomes. The abundance of each gene was the sum of RPKM values (Appendix S1.4)
assigned to all included KOGs.

gene or pathway KOGs restrictions
ROM K12536, K05648 ABC transporters in Pelagibacter and Roseobacter
amo K10945, K10946
nxr K00370, K00371

K00374, K00373
narGHIJ in Planctomycetacea

hzo K10535 hao in Planctomycetacea
PDNO (norBC) K04561, K02305
nosZ K00376
sat K00958
aprAB K00394, K00395
dsrAB K11180, K11181
nirKS K00368, K15864
napAB K02567, K02568
narGHIJ K00370, K00371

K00374, K00373

S1.4 Quantifying metagenomic and metatranscriptomic data using RPKM

Relative open reading frame (ORF) abundance in themetagenomic andmetatranscriptomic datasets
was determined for quantitative assessment of pathway coverage. This was achieved by adapting
the reads per kilobase per million mapped (RPKM) coverage measure as described by Konwar et al.
(20). Briefly, unassembled Illumina reads were mapped to assembled contigs using the short-read
aligner BWA-MEM. The resulting SAM file is then inputed into the MetaPathways v2.5 software
(20), which generates an RPKM value per ORF that is extended to an RPKM per pathway via
summation. For the case of determining the abundance of pathways expressed in the metatran-
scriptome relative to those present in the metagenome, the unassembled metatranscriptome reads
were mapped back to the assembled metagenome contigs. The RPKM calculation is a simple pro-
portion of the number of reads mapped to a particular section of sequence normalized for ORF
length and sequencing depth.

S1.5 Process rate measurements

Ratemeasurements for anammox and denitrificationwere carried out as follows: Samplewater from
each depth was collected anaerobically with sterile nitrile tubing directly into 200 mL glass serum
bottles, six per depth, and capped with butyl-rubber stopper and aluminum cap and stored at 10◦C
for approximately 1 hr while collection was completed. The protocol described by Holtappels et al.
(21),and briefly outlined here, was then followed. One sample from each depth was bubbled with
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He for 30 min to decrease concentration of N2. The following substrates were then added: 15NH+
4

alone, 15NH+
4 and 14NO−2 combined, 15NO−2 alone, 15NO−2 and 14NH+

4 combined or 15NO−3 alone.
A blank for each depth was also bubbled with He. Sample water was then transferred from the
serum bottle into a 12 mL exetainer, capped and stored upside down. Samples in exetainers were
then killed with 50 µL saturated HgCl at time intervals of 0 min, 6 hr, 12 hr, 24 hr, 48 hr and
72 hrs. Partial pressures of 29N2 and 30N2 evolved during the incubations were measured by gas
chromatography coupled to isotope ratio mass spectroscopy. Rates of anammox and denitrification
were calculated as described by Holtappels et al. (21).

Rate measurements using N isotope methods require a compromise between ensuring detection
of labeled tracer elements and avoiding excessive perturbation of ambient substrate concentrations
(22, §2.1). Due to the extremely low in-situ substrate levels in some of our samples (Fig. 2 in the
main article), tracer substrate concentrations in the ex-situ incubator (25 µM NH+

4 , 2 µM NO−2 and
5 µM NO−3 ) significantly exceeded in-situ concentrations. On the other hand, denitrification and
anammox-related genes were found throughout the OMZwater column (Fig. 3a in the main article).
Hence, rates measured in the incubator are only potential rates that likely overestimate actual in-
situ rates, especially in substrate-depleted regions far from the SNTZ. For example, Dalsgaard et al.
(23) reports a 2–4 fold increase of anammox rates following the addition of 10 µM NH+

4 in anoxic
water column experiments. Similarly, Wenk et al. (24) found high potential denitrification rates
in nitrate-depleted regions of a meromictic lake. We thus corrected our rate measurements for
differences between in-situ and incubator substrate concentrations, as described below.

The simplest approach would be to multiply measured rates with the ratios of in-situ over ex-situ
substrate concentrations, as has been done in previous ex-situ incubation experiments (25). How-
ever, such a linear rescaling implicitly assumes that substrate half-saturation constants are much
higher than both the in-situ as well as ex-situ concentrations, an assumption that may not be justifi-
able in regularly substrate-depleted natural environments. For example, members of the Scalindua
candidate clade, which is well represented in Saanich Inlet (16), exhibit nitrite half-saturation con-
stants as low as 0.45 µM (26). To avoid an implicit assumption of 1st order kinetics, and for
consistency with the assumptions of our model, we corrected our rates using Michaelis-Menten
kinetic curves (Appendix S2.4) with the same half-saturation constants as used in our model (Ap-
pendix S2.7). Specifically, if R∗hzo(z) is the measured ex-situ (i.e. potential) anammox rate at some
particular depth, then the corrected in-situ rate was assumed to be

Rhzo = R∗hzo(z) ·
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4 ]
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4
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4 ]
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2 ]
K

NO−
2

+[NO−
2 ]
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4 ]
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. (1)

Here, KNH+
4
and KNO−

2
are anammox half-saturation constants for NH+

4 and NO−2 , respectively
(Appendix S2.7), [NH+

4 ] and [NO−2 ] are the corresponding measured in-situ concentrations and
[NH+

4 ]∗ and [NO−2 ]∗ are the concentrations in the incubator at the beginning of the experiment, i.e.
[NH+

4 ]∗ = [NH+
4 ] + 25 µM and [NO−2 ]∗ = [NO−2 ] + 2 µM. Measured denitrification rates were

corrected in a similar way to account for differences in NO−3 concentrations.
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S1.6 qPCR quantification of SUP05 abundances

All metagenomic, metatranscriptomic and metaproteomic profiles presented here only provide rel-
ative — rather than absolute — biomolecule abundances. This remains the de facto standard for
multi-omic data sets, owing largely due to methodological challenges involved in absolute DNA,
mRNA and protein quantification (but see Smets et al. (27) for recent advancements). As we ex-
plain below (section 2.9), multi-omic depth profiles were linearly rescaled to facilitate comparison
with our model predictions — expressed in absolute gene counts, however this comes at the cost of
additional rescaling parameters.

In order to perform an independent validation of modeled gene concentrations, we compared the
predicted PDNO gene concentrations to independent cell-count estimates for SUP05 (the domi-
nant nitrate reducer in Saanich Inlet; 16), obtained through quantitative polymerase chain reaction
(qPCR). qPCR quantification of SUP05 abundances was performed for water samples collected at
8 distinct depths from the same location and time as for multi-omic sequencing (Fig. 3a in the
main article). Water samples (volume ∼ 1 L) were filtered in the field onto 0.2 µm sterivex filters.
Samples were not pre-filtered in order to obtain an accurate estimate of total in-situ SUP05 abun-
dances. We used a custom SUP05-specific primer set (Ba519F–1048R) to amplify the 519–1048
region of the SUP05 16S rRNA gene, and followed the protocol described by Hawley et al. (8) to
estimate the starting template concentration. qPCR was performed in triplicate for each sample.
We multiplied the average template concentration for each sample by the volume of extracted fluid
(∼ 200 − 400 µL), divided by the volume of filtered seawater, to obtain an estimate for the con-
centration of SUP05 16S gene copies in seawater. To correct for multiple 16S gene copies in single
cells, we divided this concentration by the 16S gene copy number (3.767), estimated for members
of the SUP05 clade based on closely related fully sequenced reference genomes. Specifically, we
used the 16S gene copy number assigned by the Tax4Fun pipeline (28) to the clade “Oceanospir-
illales;SUP05 cluster;uncultured gamma proteobacterium” in the SILVA 123 database (29). Note
that Tax4Fun (28) uses a probabilistic model to assign multiple reference genomes with varying
weights to each clade in the SILVA database. Hence, the effective 16S gene copy number assigned
by Tax4Fun to each clade is the weighted harmonic mean of the 16S gene copy numbers in each
reference genome assigned to that clade.

S2 Mathematical model

S2.1 Overview

The gene-centric model describes the spatiotemporal dynamics of 8 metabolite concentrations and
6 gene (DNA) concentrations along the Saanich Inlet water column between depths 100–200 m.
Each gene is a proxy for a particular redox pathway that couples the oxidation of an external electron
donor to the reduction of an external electron acceptor (Appendix S2.2). The model assumes that
each cell occupies a single metabolic niche, associated with one of the modeled pathways and thus
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one of the considered proxy genes. Reaction rates (per gene) depend on the concentrations of all
used metabolites according to 1st order or 2nd order (Michaelis-Menten) kinetics (30, 31) (Appendix
S2.4). In turn, the production or depletion of metabolites at any depth is determined by the reaction
rates at that depth, taking into account reaction stoichiometry (Appendix S2.3). The production of
genes (or more precisely, their host cells) at any depth is driven by the release of energy from their
catalyzed reactions, and is proportional to the Gibbs free energy multiplied by the reaction rate
(Appendix S2.5) (32). In addition, genes are subject to exponential decay as well as eddy-diffusion
and sinking. Metabolites are also subject to eddy-diffusion.

Mathematically, the model is defined as a set of partial differential equations (PDE) for the gene
and metabolite concentrations across time and depth. More precisely, the DNA concentration of
the r-th gene (Γr, copies per volume) at any a given depth z changes according to

∂Γr
∂t

=− qrΓr +
1

c
ZrHrΓr − v

∂Γr
∂z

+
∂

∂z

(
K(z)

∂

∂z
Γr

)
, (2)

and the concentration of them-th metabolite (Cm, mole per volume) changes according to
∂Cm
∂t

=
∑
r

mrHrΓr +
∂

∂z

(
K(z)

∂Cm
∂z

)
. (3)

Both the DNA concentrations Γr and metabolite concentrations Cm depend on time t and depth z.
The first term in equation (2) corresponds to cell death, with qr being the exponential death rate for
cells hosting gene r in the absence of any metabolites. The 2nd term in (2) corresponds to gene
production proportional to the per-gene reaction rateHr (which in turn depends on metabolite con-
centrations, see Appendix S2.4). The biomass production coefficient Zr is a linear function of the
Gibbs free energy of the reaction catalyzed by gene r and depends on the reaction quotient (Ap-
pendix S2.5). In particular, Zr increases when product concentrations are low and decreases when
substrate concentrations are low. c is the average dry cell mass, which is used to convert biomass
production into cell production. The 3rd term in equation (2) corresponds to cell sinking at a con-
stant speed v. The last term in equation (2) and equation (3) corresponds to diffusive transport
(33), withK being the vertical eddy-diffusion coefficient. The 1st term in equation (3) corresponds
to production or depletion of metabolites due to microbial metabolism. Reaction rates are trans-
formed into metabolite fluxes via the stoichiometric matrix S, with entry Smr corresponding to the
stoichiometric coefficient of metabolitem in reaction r (Appendix S2.3).

The differential equations (2) and (3) give the rate of change of each metabolite and gene profile, if
the profiles are known at a given moment in time. Once all boundary conditions (Appendix S2.6),
model parameters (Appendix S2.7) and initial profiles are specified, the model predicts the profiles
at any future time point. Steady state profiles were obtained by running simulations of the model
until convergence to equilibrium. Because the predicted profiles depend on model parameters, pa-
rameters can be calibrated such that the predicted steady state profiles best reproduce the measured
data: We used chemical depth profiles to fit poorly knownmodel parameters, thus obtaining amodel
calibrated to Saanich Inlet’s OMZ (Appendix S2.8). This calibrated model was then used to make
predictions about steady state DNA profiles, which were compared to measured metagenomic pro-
files (sections S1.3 and S2.9). This comparison, described in the main article, serves as a test of
the model’s ability to explain metagenomic profiles in Saanich Inlet’s OMZ. Reaction rates at each
depth are automatically calculated using the kinetics described in Appendix S2.4.

7



S2.2 Considered pathways

The model considers key dissimilatory redox pathways involved in nitrogen and sulfur cycling.
When comparing model predictions to molecular data, each pathway was represented by a single
gene. For example, nitrous oxide reduction (nosZ gene) coupled to hydrogen sulfide oxidation (dsr,
apr and sat genes) is formally represented by nosZ. Other pathways considered by the model were
aerobic ammonium oxidation (amo), aerobic nitrite oxidation (nxr), partial denitrification of nitrate
to nitrous oxide (PDNO) coupled to sulfide oxidation, anammox (hzo) and remineralization of or-
ganic matter via aerobic respiration (ROM). PDNO comprises 3 denitrification steps: Reduction
of nitrate to nitrite (narGHIJ or napAB genes), reduction of nitrite to nitric oxide (nirKS genes)
and reduction of nitric oxide to nitrous oxide (norBC genes), all three of which are suspected to be
predominantly performed by SUP05 γ-proteobacteria (16, 34). The first denitrification step was as-
sumed to be leaky, so that a small fraction of nitrite was released into the extracellular environment
(35). PDNO was represented by norBC genes when comparing the model to molecular data (Fig.
3a in the main article, but see Figures S4d,e,f for narGHIJ, napAB and nirKS multimolecular data).
Aerobic ammonium oxidation included a weak production of nitrous oxide (nitrifier denitrification
(36)), although the inclusion of this process did not noticeably affect model predictions because
most of the nitrous oxide was produced by PDNO. Aerobic respiration of organic matter included
the release of ammonium and sulfate at ratios adjusted to measured C:N:S ratios for marine bac-
terial biomass (37). The choice of pathways follows the hypotheses made by Hawley et al. (16)
based on metagenomic and metaproteomic depth profiles, as well as reports of nitrous oxide reduc-
tion in Saanich Inlet’s OMZ (38). Hydrogen sulfide is assumed to originate from the sediments via
diffusion, where high rates of sulfate reduction have been observed (39, 40) (Appendix S3.1 for a
discussion of this assumption). Figure 1a in the main article gives an overview of the described
reaction network. The detailed reaction stoichiometry is given in section S2.3.

S2.3 Pathway stoichiometry

We list the stoichiometry of the dissimilatory redox pathways considered by the model:

• Remineralization of organic matter through aerobic respiration:

1

6
POM + O2

ROM−→ CO2 + H2O + νNH+
4 + σSO2−

4 (4)

where POM corresponds to

(C6H12O6)(NH+
4 )6ν(SO2−

4 )6σ (5)

and

1 : ν : σ = 1 : 0.184 : 0.0113 (6)

correspond to typical molar C : N : S ratios in marine bacterial biomass (37).
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• Aerobic ammonium oxidation:

NH+
4 +

1

2
(3− Lamo)×O2 (7)

amo−→ (1 + Lamo/2)× H2O + (1− Lamo)× NO−2 + (Lamo/2)× N2O + (2− Lamo)× H+.
(8)

Here Lamo is a parameter representing the fraction of N released as N2O via nitrifier den-
itrification, compared to the total NH+

4 consumed (36). For example, if Lamo = 0, then
ammonium is completely oxidized and released as nitrite.

• Aerobic nitrite oxidation:

2NO−2 + O2
nxr−→ 2NO−3 . (9)

• Anaerobic ammonium oxidation (anammox):

NH+
4 + NO−2

hzo−→ N2 + 2H2O. (10)

• Partial denitrification to nitrous oxide (PDNO) coupled to hydrogen sulfide oxidation:

(1− LPDNO/2)× H2S + 2NO−3
PDNO−→ (11)

(1− LPDNO)× N2O + 2LPDNO × NO−2 (12)
+ (1− LPDNO/2)× SO2−

4 + (1− LPDNO)× H2O + LPDNO × H+. (13)

Here, LPDNO is a parameter representing the fraction of NO−2 leaked to the extracellular
medium during PDNO, compared to the total NO−3 consumed (35).

• Nitrous oxide reduction coupled to hydrogen sulfide oxidation:

H2S + 4N2O
nosZ−→ 4N2 + SO2−

4 + 2H+. (14)

• Nitrate reduction to ammonium (DNRA, identified with the nirBD gene):

H2S + NO−3 + H2O
DNRA−→ NH+

4 + SO2−
4 . (15)

DNRA was eventually omitted from the model for reasons described in Appendix S3.2.

S2.4 Reaction kinetics

Respiration of organic matter involves the hydrolysis of particulate organic mater (POM) to dis-
solved organic matter (DOM), which is subsequently broken down to simpler organic molecules by
fermenters that provide non-fermenting organotrophs with a reactive DOM pool. However, reactive
DOM rarely accumulates andmost of the DOMpool is expected to be refractory (41). Furthermore,
POMdegradation has been found to be strongly correlated to bacterial growth in subeuphotic zones,
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likely due to limiting POM hydrolysis rates (42). We thus modeled organic matter respiration rates
as a first-order function of POM concentrations (43). More precisely, the gene-specific ROM reac-
tion rate, HROM, is a function of metabolite concentrations C given by

HROM(C) = AROMFT ×
CPOMCO2

CO2 +KROM,O2

, (16)

where KROM,O2 is the oxygen half-saturation constant, AROM is a first-order rate constant (“affin-
ity”) and FT is the unitless thermodynamic potential factor given by Reed et al. (31) (equation
S1)

Half-saturation constants reported for nitrous oxide oxidation are typically in the order of 0.37 −
2.5 µM N2O (44, 45) and 40 µM H2S (46), which are well above the typical N2O and H2S concen-
trations in the Saanich Inlet OMZ (Fig. 2 in themain article). Sulfide-driven nitrous oxide reduction
in Saanich Inlet is therefore likely limited both by electron donor as well as electron acceptor avail-
ability. We thus modeled nitrous oxide reduction using first order substrate kinetics with oxygen
inhibition:

HnosZ(C) = AnosZFT ×
CN2OCH2SKnosZ,O2

CO2 +KnosZ,O2

, (17)

where KnosZ,O2 is the oxygen half-inhibition constant and AnosZ is a first-order rate constant.

All other gene-specific reaction rates (Hr) are modeled using Michaelis-Menten kinetics with pos-
sible inhibition (30, 31):

Hr(C) = VrFT×
∏

m reactant
of reaction r

Cm
Krm + Cm

(18)

×
∏

n inhibitor
of reaction r

K?
rn

K?
rn + Cn

. (19)

Here, Vr is the maximum gene-specific reaction rate andKrm andK?
rn are half-saturation and half-

inhibition constants, respectively, given in Appendix S2.7. The only explicitly modeled inhibition
was oxygen inhibition for anammox (hzo), PDNO and nitrous oxide reduction (nosZ).

S2.5 Gibbs free energy and gene growth

Following Roden et al. (32) and Reed et al. (31), we set

Zr = 2.08γe
r − 0.0211∆Gr, (20)

(in g biomass per mole reaction flux) where γe
r is the negative stoichiometric coefficient of the

electron donor in the reaction,

∆Gr = ∆Go
r +RgT lnQr (21)

10



is the Gibbs free energy of the reaction (in kJ per mol), ∆Go
r is the standard Gibbs free energy of

the reaction and

Qr =
∏
m

CSmr
m (22)

is the reaction quotient (47). Each ∆Go
r depends on the local temperature and pressure and was

calculated using the CHNOSZ R package (48).

S2.6 Boundary conditions

Uniquely solving the partial differential equations (2) and (3) requires appropriate boundary condi-
tions (BC) for all genes andmetabolites at the top and bottom boundaries (100 m and 200 m, respec-
tively). For all metabolites except N2, N2O, SO2−

4 and O2, BCs were fixed values set to the average
measurements from cruises 41 (SI041_01/13/10), 42 (SI042_02/10/10) and 43 (SI043_03/10/10).
For N2 and N2O, lower BCs were set to Neumann (zero flux). For O2, we used Dirichlet BCs (fixed
value) with values equal to the average measurements from cruise 42 and 44 (SI044_04/07/10),
because O2 data were unavailable for cruises 41 and 43. For SO2−

4 we used Dirichlet BCs set to
28 mM on both sides (43). Metabolite boundary conditions are summarized in Table S2. These
boundary conditions result in a net oxygen and nitrate influx from the top as well as an ammonium
and sulfide influx from the sediments (40, 49, 50).

Gene boundary conditions were either set to fixed zero (hzo and norBC top BCs, ROM, amo and
nxr bottom BCs) or to fixed relative gradients (ROM, amo, nxr, nirBD and nosZ top BCs, hzo,
nirBD, norBC and nosZ bottom BCs), with the relative gradient inferred from the metagenomic
profiles.

Table S2: Top (100 m) and bottom (200 m) boundary conditions for metabolites in the gene-centric
partial differential equation model. Numerical values denote Dirichlet boundary conditions. ‘N’
denotes zero-flux Neumann conditions.

Metabolite Top (µM) Bottom (µM)
NH+

4 0 8.67
O2 77.23 0
NO−3 27.59 0
NO−2 0.045 0
N2 4.8× 10−4 N
SO2−

4 28× 103 28× 103

H2S 0 14.07
N2O 24.49× 10−3 N
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S2.7 Model parameterization

Half-saturation and half-inhibition constants for all involved pathways are listed in Table S3. Max-
imum cell-specific reaction rates were set to Vamo = 1.23 × 10−13 mol/(cell · d) (51), Vnxr =
3.26 × 10−13 mol/(cell · d) (51) and Vhzo = 2 × 10−14 mol/(cell · d) (52, 53). The nitrifier den-
itrification fraction Lamo was set to 10−4, according to nitrifier denitrification fractions of marine
ammonium oxidizing archaea measured by Santoro et al. (36, Fig 2) over varying NO−2 concentra-
tions, and the fact that in Saanich Inlet NO−2 concentrations are typically below 2 µM (Fig. 2 in the
main article). Because of a lack of reliable information, the rate constantsAROM, VPDNO andAnosZ,
as well as the PDNO leakage fraction LPDNO, were calibrated to chemical profiles as described in
Appendix S2.8 and in the main article. Calibration yielded AROM = 5.11 × 10−9 L/(cell · d),
VPDNO = 2.18 × 10−14 mol/(cell · d), AnosZ = 0.098 L/(cell · d) and LPDNO = 0.352. An
overview of fixed and calibrated reaction-kinetic parameters is provided in Table S3. The sensitiv-
ity of the model to parameter variation is illustrated in Appendix S2.12.

The dry cell mass was assumed to be c = 5×10−13 g, for consistency with the mass used by Roden
et al. (32) to obtain the regression formula (20). Cell death rates were set to qROM = 0.063 d−1 in ac-
cordance with turnover times estimated by Whitman et al. (54) for marine prokaryotic heterotrophs
above 200 m; to qamo = 0.024 d−1 in accordance with average values reported for ammonium
oxidizing bacteria (55); to qnxr = 0.054 d−1 corresponding to values estimated for nitrite oxidizers
(56) and to 0.0033 d−1 for all other genes, in accordance with turnover times estimated byWhitman
et al. (54) for marine prokaryotes below 200 m.

The concentration of H+ was fixed to 8.5 nM, corresponding to pH= 8.07 (57). The total dissolved
inorganic carbon (DIC) was fixed to 2141 µM, corresponding to a surface DIC of 2180 µmol/kg
(58) and a surface water density of 1018 kg/m3. Accordingly, the dissolved CO2 concentration
was fixed at 28 µM according to aquatic carbonate equilibrium at the given pH and DIC (59). The
particulate organic carbon (POC) profile was calculated from data reported for February 2011 by
Luo et al. (60) and POM was set to (1/6)×POC (Fig. S1c in the Appendix). Fixing the POM
profile circumvents poorly understood physical processes contributing to organic matter fluxes in
Saanich Inlet (60). CO2, H+ and POM concentrations, while fixed, were still included in the reac-
tion quotients (Appendix S2.5) as well as the reaction-kinetics (Appendix S2.4).

The diapycnal eddy diffusion coefficient K was set to N−2 · 3.7 × 10−10 W · kg−1, where N is
the buoyancy frequency (61, 62). The latter was calculated using temperature and salinity profiles
from January 13, 2010, using the oce R package (63) (Fig. S1 in the supplement) after loess-
smoothing temperature at degree 2 and salinity at degree 1, with a span of 75%. We chose this
time point because the two subsequent temperature and salinity measurements (February 10th and
March 10th) were unreliable due to technical problems with our CTD. The cell sinking speed v was
set to 0.1 m/day, in accordance with previous marine microbial ecological models (64, 65).
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Table S3: Reaction-kinetic parameters used in the gene-centric model, either calibrated or taken
from the literature: Half-saturation substrate concentrations (K), half-inhibition concentrations
(K?), cell-specific maximum rates for 2nd order kinetics (V ), 1st order kinetic constants (A, “affini-
ties”), nitrifier denitrification fraction (Lamo) and PDNO leakage fraction (LPDNO). The exact role
of each parameter is explained in Appendix S2.4. Additional (non-kinetic) fixed model parameters
are provided in Appendix 2.7. Clades with members that have been found active in the Saanich
Inlet OMZ (16) are marked with a “†”.
reaction parameter value units organism/region Source
ROM KO2 0.121 µM Escherichia coli (66)

A 5.11 nL/(cell · d) calibr.
amo KNH+

4
0.133 µM Ca. Nitrosopumilus maritimus† (67)

KO2 3.91 µM Ca. Nitrosopumilus maritimus† (68)
V 123 fmol/(cell · d) Nitrosomonas spp.† (51)
Lamo 10−4 – marine ammonia oxidizing archaea† (36)

nxr KNO−
2

11.7 µM Nitrospira spp.† (69)
KO2 0.78 µM Chilean OMZ (70)
V 326 fmol/(cell · d) Nitrobacter sp. (51)

hzo KNH+
4

3 µM Ca. Scalindua sp.† (26)
KNO−

2
0.45 µM Ca. Scalindua sp.† (26)

K?
O2

0.2 µM Peruvian OMZ (31, 71)
V 20 fmol/(cell · d) Planctomycetales† (52, 53)

PDNO KNO−
3

2.9 µM marine anoxic basin (72)
KH2S 2 µM Saanich Inlet OMZ (73)
K?

O2
0.1 µM Eastern South Pacific OMZ (65, 74)

V 21.8 fmol/(cell · d) calibr1.
LPDNO 35.2 % calibr2.

nosZ K?
O2

0.971 µM low-oxygen activated sludge (75)
A 0.098 L/(cell · d) calibr.

1 Frey et al. (76) reports cell-specific thiosulphate-driven denitrification rates for Sulfurimonas gotlandica in the
range 24.2− 74.3 fmol/(cell · d).

2 Reported fractions of nitrite leakage during incomplete denitrification (LPDNO) range from 0% to 87% (77–79).
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S2.8 Calibrating reaction-kinetic parameters to data

As described in the previous section, most model parameters were obtained from the literature,
however a subset of reaction-kinetic parameters (AROM, VPDNO, LPDNO and AnosZ; overview in
Table S3) had to be calibrated due to the lack of available information. Here we describe the statis-
tical methods used to calibrate unknown reaction-kinetic model parameters to available chemical
depth profile data. The steady state solution of the model defines a mapping from a given choice
of parameter values (collectively written as a vector p) to predicted depth profiles for metabolite
concentrations, C1, C2, ... We assumed that measured concentrations (C̃1, C̃2, ..) are normally dis-
tributed:

C̃i = Ci + σi · εi. (23)

Here, εi is a standard-normally distributed error and σi is the (unknown) standard deviation of
measurement errors (henceforth referred to as error scale). We allowed for a different σi for each
metabolite to account for variations in the magnitude of measurement errors.

In the context of our spatial model, the concentrations Ci are predicted as functions of depth, z, i.e.
Ci = Ci(z;p). Calibration data is given as tuples (zij, C̃ij), where each C̃ij is a measurement of the
i-th concentration at some depth zij and j enumerates all measurements of the i-th concentration.
The overall log-likelihood function for such a data set is given by

l(σ,p) =−
∑
i,j

ln
(
σi
√

2π
)

(24)

−
∑
i,j

1

2σ2
i

[
C̃ij − Ci(zij;p)

]2
. (25)

The model was calibrated by maximizing the log-likelihood l(σ,p) by choice of the error scales σi
and the parameter valuesp. This calibrationmethod is known asmaximum-likelihood (ML) estima-
tion, and is widespread in statistical regression and physics (80). Maximization of the log-likelihood
was performed using theMATLAB R© function fmincon, which uses repeated simulations and grad-
ual exploration of parameter space (81). The following chemical concentration data were used for
calibration: NH+

4 , NO−3 , NO−2 , N2O and H2S from cruises 41–43, and O2 from cruises 42 and 44.

S2.9 Calibrating multi-omic data units

Metagenomic, metatranscriptomic and metaproteomic data are given only in relative units. For ex-
ample, the correspondence between metagenomic RPKM values and actual DNA concentrations in
the water column is, a priori, unknown. In fact, RPKM values for different genes may correspond to
different gene concentrations due to detection biases (82–84). Furthermore, model predictions re-
garding RNA and protein abundances are in arbitrary units because the transcriptional, translational
and enzymatic efficiency of proteins is unknown and differs between proteins.

In order to comparemodel predictions tomulti-omic sequence data, we assumed that eachmeasured
DNA, mRNA and protein abundance profile is related to the corresponding model prediction by

14



a constant linear conversion factor. Conversion factors were estimated via maximum-likelihood
estimation, separately for each molecule to account for detection biases. More precisely, for each
data set we assumed a normal error distribution as already described in Appendix S2.8. Hence,
measured environmental biomolecule concentrations, for example amo DNA concentrations, are
distributed as

Γ̃i = Γi/βi + σi · εi, (26)

where εi are uncorrelated standard-normally distributed errors, scaled by an unknown factor σi, and
βi is the unknown proportionality factor between amo metagenomic RPKM values Γ̃i and actual
DNA concentrations. The log-likelihood of a measured depth profile comprising Ni data points,
(zi1, Γ̃i1), .., (ziNi

, Γ̃iNi
), is thus

li(σi,p) =−
Ni∑
j=1

ln
(
σi
√

2π
)
−

Ni∑
j=1

1

2σ2
i

[
Γ̃ij − Γi(zij;p)/βi

]2
. (27)

For any fixed model parameter choice p (and therefore fixed predictions Γi), the log-likelihood
li(σi;p) is maximized by choosing

βi = Ni

√√√√ Ni∏
j=1

Γi(zij;p)

Γ̃ij
, (28)

(i.e. the geometric mean of model predictions over measurements) and

σ2
i =

1

Ni

Ni∑
j=1

∣∣∣Γ̃ij − Γj(zij;p)/βi

∣∣∣2 . (29)

Choosing βi as in equation (28) yields maximum-likelihood estimates for the appropriate conver-
sion factors between metagenomic units (RPKM) and actual DNA concentrations (genes/L) (see
table S4 in the supplement). Inserting the estimated βi and σi back into equation (27) yields the
log-likelihood of the particular metagenomics data set and for a particular choice of model param-
eters p. A similar approach was used to compare metatranscriptomic and metaproteomic data sets
to model predictions (Appendix S2.10).

The estimated proportionality factors βi are listed in table S4 of the supplement, and range from
3.9 × 104 genes · L−1 · RPKM−1 for norBC up to 3.3 × 107 genes · L−1 · RPKM−1 for ROM.
These differences may be due to variable DNA extraction efficiencies across cells, uneven com-
munity sampling due to filter-size partitioning (19) or differences in gene copy numbers per cell.
Additionally, the assumption of a common cell mass for all modeled genes may have resulted in
an inaccurate conversion of predicted biomass production to gene production. However, the good
overall agreement between predicted functional gene concentrations and SUP05 abundances (Fig.
3 in the main article) suggests that this may only be a minor problem.
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Table S4: Proportionality factors (β) between environmental gene abundances and metagenomic
RPKM values (in genes·L−1 ·RPKM−1), as defined in Appendix S2.9. Estimated by comparing the
predictions of the calibrated model with metagenomic data from February 10, 2010. Unambiguous
metagenomic data was not available for nxr (see Appendix S3.4).

gene β

ROM 4.1× 107

amo 1.0× 106

nxr NA
hzo 3.2× 105

norBC 3.4× 104

nosZ 4.5× 104

S2.10 Predicting metatranscriptomic and metaproteomic profiles

A priori, the gene-centric model makes no predictions regarding mRNA or protein dynamics; in
fact transcription and translation are circumvented by assuming that the release of energy manifests
directly as DNA replication. To explore the possibility of explaining mRNA and protein distribu-
tions in Saanich Inlet’s OMZ, we extended the model to a set of hypothetical mechanisms driving
the production, decay and dispersal of these molecules. More precisely, we assumed that mRNA
and protein production rate at a particular depth is proportional to the total reaction rate at that depth
(HrΓr), and that mRNA and proteins disperse similarly to genes (Appendix S2.10). The assumption
that mRNA and protein production rates are proportional to reaction rates is motivated by obser-
vations of a positive relation between transcription and translation rates and metabolic activity or
growth (85–87). A linear relation, in particular, may be justified by the fact that increased enzyme
dilution rates at elevated cell growth must be balanced (at the population level) by correspondingly
increased translation (and hence transcription) rates (88).

This simple description introduces two unknown parameters per mRNA or protein: The proportion-
ality factor that converts reaction rates tomolecule production rates, and the decay time ofmolecules
following production. We calibrated both parameters using metatranscriptomic and metaproteomic
depth profiles and then checked how well the latter could be reproduced. Our methodology is de-
scribed for mRNA in detail below. Protein dynamics weremodeled and compared tometaproteomic
data in a similar way.

As mentioned, our first assumption was that the mRNA production rate (transcripts produced per
time and per volume of seawater) at a particular depth is proportional to the total reaction rate
(mol per time and per volume of seawater) at that depth. We also assumed that mRNA molecules
disperse via diffusion and sinking similarly to genes, as they are hosted by the same cells. Thus,
environmental mRNA concentrations satisfy the partial differential equation

∂tTr = −Tr/τr +Rr/αr − v∂zTr + ∂zK∂zTr, (30)

where Tr(t, z) is the mRNA concentration corresponding to the r-th reaction, τr is the decay time
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of the mRNA molecule, Rr(t, z) = Hr(t, z)Γr(t, z) is the total reaction rate at depth z and αr is
an unknown proportionality constant. We considered Tr in the same units as the multi-omic data
(i.e. RPKM for metatranscriptomes and NSAF for metaproteomes). Consequently, αr is the ratio
between the r-th reaction rate (mol per time per vole of seawater) and the corresponding RPKM (or
NSAF) “production rate” (RPKM per time), and thus not only depends on the particular reaction,
but also on our sampling protocol and sequencing pipeline.

For each gene r, the transcript profile Tr will satisfy the same boundary conditions as the DNA
profile Γr, provided that the latter are either zero value (Dirichlet), zero flux (Neumann) or fixed
relative gradient boundary conditions (Appendix S2.6). We calculated the steady state solution of
equation (30), T ?r , by solving the time-invariant equation

0 = −T ∗r /τr +Rr/αr − v∂zT
∗
r + ∂zK∂zT

∗
r (31)

using the MATLAB function bvp4c (81). This was done after the gene-centric model had already
reached steady state, at which point the reaction rates Rr are time-independent functions of depth.

Note that the steady state profile T ?r (z) is proportional to 1/αr, all else being equal. Hence, by
comparing T ?r to metatranscriptomic data (for some given τr), the constant αr can be calibrated via
maximum-likelihood estimation as described in Appendix S2.9. On the other hand, maximizing the
log-likelihood in equation (27) (separately for each gene) by choice of αr, τr and the corresponding
error scale, yields an estimate of the decay time τr. This was done through repeated solutions of
equation (31) with varying τr and using the interior-point optimization algorithm implemented by
the MATLAB function fmincon (81). We confined the fitted τr to between 10−4 and 105 days.

After calibration of the decay time τr and proportionality factor αr, we calculated the coefficients
of determination,

R2
r = 1−

∑
j

[
T̃rj − Tr(zrj)

]2∑
j

[
T̃rj − T r

]2 , (32)

to evaluate how well the mRNAmodel explained the metatranscriptomic data. Here, T̃r1, T̃r2, .. are
measured mRNA abundances at depths zr1, zr2, .. and T r is their average. For any given gene r,
R2
r is a measure for the goodness of fit of the above model to the multi-omic data. Table S5 in the

supplement lists the results for all genes for which R2
r ≥ 0.5.

The statistical significance (P-value) of the obtained R2 was defined as the probability of obtaining
the same or greater R2 by applying the same procedure to a random data set, with independent
normally distributed values with mean and standard deviation set to the original sample mean and
standard deviation. We estimated the P-values for cases where R2

r ≥ 0.9 using Monte Carlo simu-
lations of 1000 random data sets: all of them were estimated below 0.005.

S2.11 Calculating metabolic fluxes between pathways

Dissimilatory metabolic reactions can be interpreted as sources and sinks of metabolites distributed
along the water column, producing and consuming metabolites at rates given by the first term in
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Table S5: Proportionality factors (α) between mRNA or protein production rates and reaction rates
(in mol/(L ·RPKM) or mol/(L ·NSAF), respectively), exponential mRNA or protein decay times
(τ ) and coefficients of determination (R2), estimated as described in Appendix S2.10. Only cases
with R2 ≥ 0.4 are shown.

molecule α τ (days) R2

nxr mRNA 9.7× 10−10 52.2 0.93
nosZ mRNA 2.5× 10−8 222 0.95
ROM protein 3.9× 10−3 89.2 0.59
amo protein 9.6× 10−6 16.6 0.88
nxr protein 7.5× 10−5 123 0.42
norBC protein 4.9× 10−4 329 0.69

equation (3). Due to diffusive transport (2nd term in equation (3)), metabolite fluxes from sources
to sinks need not be localized and can span across different depths. Furthermore, some metabolites
are partly transported across the OMZ boundaries, towards or from the top layers or the sediments.
In the following we describe our approach for calculating steady-state metabolite fluxes across in-
dividual reactions.

Let us focus on a particular metabolite and consider a single hypothetical particle created at time
0 at depth x. Let G(t, x, y) be the Green’s function of the dispersal-destruction model, so that
G(t, x, ·) is the distribution density of a particle (created at depth x) at depth y and after time t.
Note thatG(t, x, ·) may integrate to less than unity if the particle has a positive probability of being
consumed anywhere in the water column. The probability rate at which that particle is consumed
by any sink j at time t is then ∫

dy G(t, x, y)
λj(y)

C(y)
, (33)

where λj(y) gives the rate at which sink j consumes particles at depth y andC(y) is the steady state
metabolite concentration at that depth. Since each sink corresponds to a pathway consuming the
metabolite, λj(y) is given by the community-wide reaction rate at y multiplied by the appropriate
stoichiometric coefficient. The probability that the particle will eventually be destroyed by sink j
is given by ∫ ∞

0

dt

∫
dy G(t, x, y)

λj(y)

C(y)
. (34)

The total rate at which particles created by source i are destroyed by sink j across the entire OMZ,
denoted Fij , is

Fij =

∫
dx bi(x)

∫ ∞
0

dt

∫
dy G(t, x, y)

λj(y)

C(y)
, (35)
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where bi(x) is the rate at which the metabolite is produced by source i at depth x. Switching
integrals in (35) gives

Fij =

∫
dy

λj(y)

C(y)

∫ ∞
0

dt ϑi(t, y), (36)

where

ϑi(t, y) =

∫
dx bi(x)G(t, x, y) (37)

is the solution to the dispersal-destruction model with initial distribution bi(x):

∂tϑi(t, y) =− ϑi(t, y)

C(y)

∑
j

λj(y) + ∂y [K(y)∂yϑi(t, y)] , (38)

ϑi(0, y) =bi(y). (39)

Particles crossing the domain boundary are considered to be lost. Hence, Dirichlet (Neumann)
boundary conditions in the originalmodel correspond to zero-value (zero-flux) boundary conditions
for ϑi. The total boundary loss rate of particles created by source i is the remainder

Fi,o =

∫
dx bi(x)−

∑
j

Fij. (40)

Similarly, the rate at which particles flow in at the boundary and are destroyed by sink j is given by

Fo,j =

∫
dx λj(x)−

∑
i

Fij. (41)

We solved equation (38) using the MATLAB R© function pdepe and evaluated all integrals in equa-
tion (36), (40) and (41) using the trapezoid integration scheme (81).

S2.12 Local sensitivity analysis

We evaluated the sensitivity of the model predictions to small changes in model parameters using
normalized local sensitivity coefficients (NLSC) (89). NLSCs compare the relative changes in
model output variables (Vj , integrated over all depths) to the relative changes of model parameters
(pi) by means of partial derivatives, evaluated at the default (e.g. fitted) parameter values:

NLSCij =

∣∣∣∣ piVj ∂Vj∂pi

∣∣∣∣ . (42)

Hence, NLSCij is a measure for the relative effects that parameter i has on the output variable j.
The partial derivative in equation (42) was approximated numerically by changing pi by 1% from
its default value. The results are summarized in figure S3 in the supplement.
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The sensitivity of the model varied strongly among parameters. For example, the kinetic constants
for ROM (aerobic remineralization of organic matter) had a relatively strong effect on chemical as
well as gene concentration profiles by modulating the availability of oxygen and ammonium near
and above the SNTZ. On the other hand, the kinetic constants for PDNO and nosZ (which constitute
the denitrification pathway) had relatively little effects on the predicted chemical profiles, as long as
both were increased or decreased in unison. Similar observations weremade for amo and nxr, which
constitute the nitrification pathway. Moreover, the total predicted gene concentrations (Fig. 3 in the
main article) were robust against parameter changes and only varied within an order of magnitude
as long as the calibrated geochemical profiles matched the data moderately well. This suggests
that geochemical fluxes are good predictors for microbial growth, but less suited for estimating
reaction-kinetic parameters, especially when these are correlated (90).

S3 Caveats and special notes

S3.1 The role of sulfate reduction

The choice of pathways included in the model was based on metaproteomics data by Hawley et al.
(16). None of the proteins associated with sulfur-metabolism were mapped to known sulfate reduc-
ers, suggesting that these proteins may act in sulfur oxidation and that sulfate reduction only played
a minor role in Saanich Inlet’s OMZ at the time of sampling. In particular, an NCBI BLASTP
search mapped all detected dsrA and aprAB proteins to SUP05 (91). All other taxonomically re-
solved sulfite reductase proteins were mapped to Candidatus Ruthia magnifica, a sulfur-oxidizing
endosymbiont (92). The mRNA depth profiles of sat, aprAB and dsrAB (Figs S4a,b,c in the Ap-
pendix), which comprise the dissimilatory sulfide oxidation pathway (or sulfate reduction pathway
when reversed), show a clear peak at the SNTZ, consistent with the metatranscriptomic profiles of
norBC and nosZ (Fig. 3 in the main article). These multimolecular data suggest that the sat, aprAB
and dsrAB enzymes act predominantly in sulfur oxidation. The high sat, aprAB and dsrAB gene
concentrations at the bottom might be due to sediment resuspension, cell sinking from the more
productive SNTZ or cell diffusion from the sulfate reducing sediments (60, 93).

Due to the much higher organic matter concentrations in the sediments, heterotrophic sulfate re-
duction and anaerobic remineralization is correspondingly higher in the sediments than in the water
column (39, 40). Hence, most of the H2S and NH+

4 in the sulfidic part of the OMZ is expected to
originate from the adjacent sediments via diffusion. An influx of H2S and NH+

4 predominantly
from the sediments is compatible with the measured steep H2S and NH+

4 gradients (Figs 2 b,f in
the main article), as well as the gradual upward progression of the H2S and NH+

4 fronts following
annual renewal (Figs 1b and 2 b,f in the main article). Sediments have previously been indicated as
the main sulfide sources in other OMZs, such as the the Eastern Boundary upwelling system (94)
or the central Namibian coastal upwelling zone (95).

Due to the lack of rate measurements heterotrophic sulfate reduction and cryptic sulfur cycling
cannot be completely ruled out. However, calibrating the above model to the chemical data (Fig.
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2 in the main article), while including sulfate reduction as an additional pathway, dramatically
decreases the goodness of fit. This is because an additional H2S source in the OMZ shifts the
SNTZ further up, thereby increasing the main discrepancy between the model and the data. Hence,
on grounds of parsimony, we eventually omitted sulfate reduction from the model and assumed that
H2S originates from the sediments via diffusion.

We note that similar theoretical work by Reed et al. (31) did suggest the existence of a cryptic sulfur
cycle in the Arabian Sea OMZ. However, the latter is located more than 1 km above the sediments
and hydrogen sulfide influx from the sediments into the OMZ is not possible due to elevated oxygen
levels below the OMZ (96).

S3.2 The role of DNRA

It has been previously hypothesized that dissimilatory nitrate reduction to ammonium (DNRA)
might be active in Saanich Inlet’s OMZ, possibly providing ammonium to anammox bacteria
(16, 35, 97). So far DNRA was not detected in any of our incubation experiments, although we
cannot rule out cryptic DNRA due to rapid ammonium consumption by anammox (97). Measured
ammonium profiles in Spring 2010 did not indicate a significant ammonium source at or below the
SNTZ (Fig 2 b in the main article). Similarly, Schunck et al. (94) reports negligible DNRA for a
sulfidic OMZ off the coast of Peru.

Nevertheless, we tested an extension of our model with DNRA as an additional pathway. Cali-
brating the model to the same data (January–March 2010) consistently predicted negligible DNRA
rates, and the goodness of fit (in terms of the log-likelihood) did not significantly improve with the
inclusion of DNRA. On grounds of parsimony we thus eventually omitted DNRA from the model.
We mention that calibrating the model to chemical data from September 2009 (16) indicated sig-
nificant DNRA as well as anammox rates (both in the order of 1 mmol N/(m2 · d)), suggesting
that DNRA-fed anammox activity fluctuates strongly throughout the year. High spatiotemporal
variability of N -loss activities are known for other OMZs and may be associated with fluctuations
in surface primary production, as well as fluctuations in electron acceptor availability driven by
annual deep water renewal (98–100).

S3.3 The role of aerobic sulfide oxidation

Extensive previous work points towards NO−3 and other nitrogen compounds as dominant electron
acceptors for H2S oxidation in Saanich Inlet during periods of strong stratification (3, 5, 16, 101,
102). For example, as shown in Fig. 1b in the main article, the upper boundary of H2S concentra-
tions closely follows the lower boundary of NO−3 — rather than O2 — over time, especially during
the period considered in this study (early 2010). The strong similarity between sulfur cycling gene
profiles and denitrification gene profiles (February 10, 2010; Fig. S4) provides further evidence
for the tight coupling between denitrification and sulfide oxidation at that time. Similarly, nitrogen
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compounds have been shown to be the dominant electron acceptors for sulfide oxidation in the Pe-
ruvian OMZ (94), and Canfield et al. (103) established a strong link between sulfide oxidation and
nitrate reduction in the Chilean OMZ. Note that during renewal events in Fall, O2 can indeed be-
come an important electron acceptor for H2S oxidation in Saanich Inlet (3). This does not, however,
affect this study, which focuses on periods of intense stratification near steady state conditions.

We note that we had initially considered aerobic sulfide oxidation as an additional reaction in our
model. Preliminary calibrations to geochemical data showed that the model’s explanatory power
was significantly compromised by this reaction, because diffusive O2 fluxes into the sulfidic zone
could not account for the O2 needed for sulfide oxidation (in addition to O2 needed for nitrification).
In fact, in our simulations ammonium ended up competingwithH2S forO2, which in turn negatively
affected the accuracy of the predicted NO−3 profile. While lateral intrusions of oxygenated water
could in principle account for the additional O2 needed for sulfide oxidation, spatiotemporal O2

profiles do not provide any indication of such intrusions during this period of intense stagnation
(Fig. 1b in the main article). We thus omitted aerobic sulfide oxidation from our final model.

S3.4 Planctomycetes and nxr

Our molecular data suggest that the anammox bacteria planctomycetes (23) are also aerobically ox-
idizing nitrite to nitrate in the oxycline (16) using the nitrate oxidoreductase narGHIJ (15). Meta-
transcriptomic and metaproteomic profiles of planctomycete-associated narGHIJ sequences peak at
about 120 m depth and decrease rapidly below that (Fig. 3 in themain article), while planctomycete-
associated HAO (anammox-associated hydroxylamine-oxidoreductase (15)) sequences are most
abundant at 150 m depth and at appreciable levels all the way down to 200 m. As a consequence,
narGHIJ is expected to also proliferate in regions where it is not actually being transcribed. Indeed,
metagenomic data show a bimodal profile of Planctomycete-associated narGHIJ sequences, with
local maxima at 120 m and 150 m depths, corresponding to the putative maxima of nitrite oxidation
and anammox activity. Due to this bimodality we did not include narGHIJ nor nxr metagenomic
profiles in our analysis.

S4 Simulation code

All simulations, model calibration and sensitivity analysis were performed with MATLAB R© (81).
The complete code is available upon request from Stilianos Louca. In the code, the biochemical
model is defined as a list of genes, a list of metabolites and a stoichiometric matrix for all in-
volved pathways. In addition, the user can specify optional depth profile data sets for chemical
concentrations as well as metagenomics, metatranscriptomics and metaproteomics. These are then
automatically compared to the model predictions, or used for model calibration. The diffusion
coefficient can be provided as an external data set (e.g. calculated from standard CTD data), or
internally as a mathematical function. Boundary conditions for the partial differential equations
can be specified as Dirichlet (i.e. fixed value) or Neumann (i.e. fixed derivative), independently for
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each metabolite or gene. The set of parameters to be calibrated or perturbed for sensitivity analysis
can be customized in the code.

S5 Inverse linear transport modeling (ILTM)

Chemical concentration profiles were used to estimate denitrification and anammox rates across
the water column, independently of the gene-centric model and the rate measurements described
in Appendix S1.5. In short, a steady state diffusion model was used to estimate the net metabolite
production (or consumption) rates that “best” explained the observed depth profiles. This so called
inverse linear transport modeling (ILTM) approach is widespread in oceanography and atmospheric
sciences, were known global distributions of compounds such as trace gases are used to estimate
unknown sources and sinks (104, 105).

In the following, we explain our procedure for estimating the net production profile, ρ(z), for a
particular metabolite with a given concentration profile, Ĉ(z). All calculations were performed
in Mathworks MATLAB R©. Each profile Ĉ(z) was obtained through Piecewise Cubic Hermite
Interpolating Polynomial (PCHIP) interpolation of the actual measured concentrations. ILTM was
applied separately to concentration profiles from cruises 47 and 48, as well as to the chemical
profiles used for model calibration (cruises 41–44, Appendix S2.8) after averaging across replicates
at each depth.

Our starting point is the diffusive transport model

0 = ρ+
∂

∂z

[
K(z) · ∂C

∂z

]
, (43)

which describes the steady-state distribution C(z) across depth z, given a particular net production
profile ρ(z) and eddy diffusion coefficient K(z). The eddy diffusion coefficient was calculated as
described in Appendix S2.7. Our goal is to determine the appropriate ρ(z) that “best” explains the
observed steady state profile Ĉ(z), through the following steps:

1. Calculate the discretized Green’s function (106) of the above partial differential equation (PDE)
with zero Dirichlet boundary conditions: LetGnm be an approximation forG(zn, zm), whereG
solves the time-independent PDE

0 =
∂

∂x

[
K(x)

∂

∂x
G(x, y)

]
+ δ(x− y) (44)

on the domain Ω := [top, bottom], with boundary conditions
G(x, y)

∣∣
x∈∂Ω

= 0. (45)
In practice, Gnm can be set to dzm ·G(zn, zm), where G is the solution to the PDE system

0 =
∂

∂x

[
K(x)

∂

∂x
G(x, zm)

]
+H(x− zm + dzm/2)H(zm + dzm/2− x)/dzm, (46)

G(x, zm)
∣∣
x∈∂Ω

= 0. (47)
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Here, H is the Heaviside step function and dzm is the grid’s step at zm, assumed to be chosen
small enough (dz = 2 m in our case).

2. Note that for any candidate net production profile ρ(x), the sum∑
m

Gnm · ρ(zm) (48)

becomes an approximation forCo(zn), whereCo is a solution to the following steady-state trans-
port problem with zero Dirichlet boundary conditions:

0 =
∂

∂x

[
D(x)

∂Co

∂x

]
+ ρ(x), Co(x)

∣∣
x∈∂Ω

= 0. (49)

3. For the given measured concentrations Ĉ(x) at the domain boundary x ∈ {top, bottom}, cal-
culate the particular solution Cp to the transport problem with given boundary values but no
sources:

0 =
∂

∂x

[
K(x)

∂Cp

∂x

]
, Cp(x)

∣∣
x∈∂Ω

= Ĉ(x). (50)

After solving for Cp, evaluate Cp on the grid, i.e. set Cp
n = Cp(zn).

4. Note that for any candidate net production profile ρ(x), the sum C := Co + Cp is a solution to
the full PDE problem

0 =
∂

∂x

[
K(x)

∂

∂x
C(x)

]
+ ρ(x), C(x)

∣∣
x∈∂Ω

= Ĉ(x). (51)

Similarly, the sum

Cp
n +

∑
m

Gnm · ρ(zm) (52)

is an approximation for C(zn).

5. Note that Cp corresponds to the hypothetical steady-state profile that would result purely from
transport across the domain boundary, in the absence of any sources or sinks in its interior.
Similarly, the difference B = Ĉ − Cp is the part that cannot be explained by transport across
boundaries, but must rather be attributed to production and consumption inside Ω. Hence, using
the particular discretized solution Cp

n , the discretized profile Ĉn = Ĉ(zn) and the discretized
steady-state transport kernel Gnm, one could in principle estimate ρm = ρ(zm) by minimizing
the sum of squared residuals (SSR)

SSR =
∑
n

∣∣∣∑
m

Gnm · ρm −Bn

∣∣∣2, (53)

where Bn = Ĉn − Cp
n . The above problem is a classical linear least-squares problem if one

considers Gnm as a matrix (G) and ρm, Ĉn, Cp
n as vectors (ρ ∈ RM , Ĉ ∈ RN and Cp ∈ RN ):

SSR = ‖G · ρ−B‖2 . (54)
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The minimum SSR is then obtained for

ρ = G̃ · (Ĉ−Cp), (55)

where G̃ is the Moore-Penrose pseudoinverse of G. Put simply, the so estimated ρ is the net
production profile that “best” explains the observed steady-state concentration profile Ĉ, after
subtracting the part Cp explained by transport across the domain boundaries.

6. The least-squares estimator in Eq. (55) becomes unstable if the reference profile Ĉ stretches
linearly (or almost linearly) across large depth intervals, leading to spurious oscillations in the
estimated profile ρ. To address this problem, we “penalized” strong oscillations in the estimated
net production profile by instead minimizing the modified SSR

SSR∗ = ‖G · ρ−B‖2 +M−2 ‖ξρ‖2 , (56)

where ξ is an appropriately chosen regularization parameter (107) that quantifies the penalty
imposed on large |ρ|. The above regularization method is known as Tikhonov regularization. A
larger Tikhonov factor ξ will typically result in a smoother ρ but also a poorer overall fit, since
goodness of fit is sacrificed in favor of small ρ. We manually chose ξ as large as possible but
still small enough such that the residual ‖G · ρ−B‖ remained much smaller than ‖B‖.

7. Assuming that H2S is mostly consumed by denitrification (PDNO and nosZ) according to the
stoichiometry given in Appendix S2.3, one mol of consumed H2S corresponds to 8 · (1 −
LPDNO)/(5− 3LPDNO) mol N released as N2. Similarly, one mol of consumed NH+

4 by anam-
mox corresponds to 2 mol N released as N2, however nitrification likely also contributes to NH+

4

consumption in the more oxygenated layers. Hence, whenever the net NO−3 production was pos-
itive, the net NO−3 production rate was subtracted from the net NH+

4 consumption rate, yielding
an estimate for NH+

4 consumption purely by anammox.

the buoyancy frequency (61, 62). The latter was calculated using temperature and salinity profiles349

from January 13, 2010, using the oce R package (63) (Fig. S1 in the supplement) after loess-350

smoothing temperature at degree 2 and salinity at degree 1, with a span of 75%. We chose this351

time point because the two subsequent temperature and salinity measurements (February 10th and352

March 10th) were unreliable due to technical problems with our CTD. The cell sinking speed v was353

set to 0.1 m/day, in accordance with previous marine microbial ecological models (64, 65).354

a b c

Figure S1: (a) Temperature and salinity profiles at Saanich Inlet main station, January 13, 2010.
(b) Corresponding smoothened eddy di�usivity profile, as used in the simulations. (c) Fixed POM
profile used in the simulations.

S2.8 Calibrating reaction-kinetic parameters to data355

As described in the previous section, most model parameters were obtained from the literature,356

however a subset of reaction-kinetic parameters (AROM, VPDNO, LPDNO and AnosZ; overview in357

Table S3) had to be calibrated due to the lack of available information. Here we describe the statis-358

tical methods used to calibrate unknown reaction-kinetic model parameters to available chemical359

depth profile data. The steady state solution of the model defines a mapping from a given choice360

of parameter values (collectively written as a vector p) to predicted depth profiles for metabolite361

concentrations, C1, C2, ... We assumed that measured concentrations (C̃1, C̃2, ..) are normally dis-362

tributed:363

C̃i = Ci + �i · "i. (23)

Here, "i is a standard-normally distributed error and �i is the (unknown) standard deviation of364

measurement errors (henceforth referred to as error scale). We allowed for a di�erent �i for each365

metabolite to account for variations in the magnitude of measurement errors.366

In the context of our spatial model, the concentrations Ci are predicted as functions of depth, z, i.e.367

Ci = Ci(z;p). Calibration data is given as tuples (zij, C̃ij), where each C̃ij is a measurement of the368

i-th concentration at some depth zij and j enumerates all measurements of the i-th concentration.369

13

Figure S1: (a) Temperature and salinity profiles at Saanich Inlet main station, January 13, 2010.
(b) Corresponding smoothened eddy diffusivity profile, as used in the simulations. (c) Fixed POM
profile used in the simulations.
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Fig. 3. Molecular and rate profiles. (a) Predicted DNA, mRNA and protein concentrations (rows 1–3) for ROM, amo, nxr,
norBC, hzo and nosZ genes (thick curves), compared to corresponding metagenomic, metatranscriptomic and metaproteomic data (circles,
February 10, 2010; metaproteomes at 100 m are interpolations based on data at 97 m and 120 m). The dashed curve under PDNO
genes (row 1, column 4) shows concurrent qPCR-based abundance estimates for SUP05, the dominant denitrifier in Saanich Inlet. (b)
Denitrification and anammox rates predicted by the model (thick blue curves), compared to rate measurements (circles) during cruises
47 (SI047 07/07/10) and 48 (SI048 08/11/10), as well as rates estimated from geochemical concentration profiles using inverse linear
transport model fitting (ILTM; Supplement S5). The ILTM estimates “calibr.” in the 3rd and 6h plot are based on the same geochemical
data as used for model calibration (Fig. 2).
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Fig. 2. Measured and predicted geochemical profiles. (a) oxygen, (b) ammonium, (c) nitrate, (d) nitrite, (e) nitrous oxide and
(f) hydrogen sulfide concentrations as predicted by the calibrated model at steady state (thick blue curves). Dots: Data used for the
calibration, measured during cruise 41 on January 13, 2010 (SI041 01/13/10, rectangles), cruise 42 (SI042 02/10/10, rhomboids) and cruise
43 (SI043 03/10/10, triangles). Oxygen profiles were not available for cruises 41 and 43, hence data from cruise 44 (SI044 04/07/10, stars)
were used instead. Thin black curves: Data measured during cruise 47 (SI047 07/07/10), shortly before deep water renewal. Details on
data acquisition in Supplement S1.
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Fig. 3. Molecular and rate profiles. (a) Predicted DNA, mRNA and protein concentrations (rows 1–3) for ROM, amo, nxr,
norBC, hzo and nosZ genes (thick curves), compared to corresponding metagenomic, metatranscriptomic and metaproteomic data (circles,
February 10, 2010). The dashed curve under PDNO genes (row 1, column 4) shows concurrent qPCR-based cell count estimates for SUP05,
the dominant denitrifier in Saanich Inlet. (b) Denitrification and anammox rates predicted by the model (thick blue curves), compared
to rate measurements (circles) during cruises 47 (SI047 07/07/10) and 48 (SI048 08/11/10), as well as rates estimated from geochemical
concentration profiles using inverse linear transport model fitting (ILTM; Supplement S5). The ILTM estimates “calibr.” in the 3rd and
6h plot are based on the same geochemical data as used for model calibration (Fig. 2).
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Figure S2: Overview of this study. Previous geochemical andmulti-omic investigations provide conceptual
information on the metabolic network in the Saanich Inlet OMZ (3, 5, 16, 34, 101, 102). This information
was used to construct a gene-centric biogeochemical mathematical model, which describes the population dy-
namics of individual genes and metabolic process rates. Unknown reaction-kinetic parameters of the model
were calibrated using geochemical depth profiles. The predictions of the calibrated gene-centric model were
then validated using independent metagenomic sequence data, qPCR-based abundance estimates for SUP05
as well as process rate measurements. A subsequent extension of the model describes the production, dis-
persal and decay of mRNA and protein molecules based on the reaction rates predicted by the calibrated
gene-centric model. Unknown parameters for the mRNA and protein dynamics are estimated using meta-
transcriptomic and metaproteomic data. The “goodness of fit” to these multi-omic data is used to further
evaluate the gene-centric model, to assess the adequacy of the postulated mRNA and protein dynamics and
to gain insight into potentially important but omitted mechanisms of mRNA and protein regulation at ecosys-
tem scales.

26



Figure S3: Local sensitivity heatmap of the calibrated model by means of normalized local sen-
sitivity coefficients. A brighter color corresponds to a higher sensitivity. “Khalf” stands for half-
saturation constants, “Kinh” for half-inhibition constants, “V” for maximum cell-specific reaction
rates and “q” for cell death rates. The heatmap is hierarchically clustered using UPGMA linkage
and Euclidean metric. Methodological details are given in Appendix S2.12.
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Figure S4: Metagenomic, metatranscriptomic and metaproteomic depth profiles of (a) sulfate
adenylyltransferase (sat), (b) adenylylsulfate reductase (aprAB) and (c) sulfite reductase (dsrAB)
genes, which together comprise the sulfide oxidation pathway (or sulfate reduction pathway, if re-
versed), as well as (d) periplasmic nitrate reductase napAB, (e) nitrate reductase narGHIJ and (f)
NO-forming nitrite reductase nirKS. Data taken on February 10, 2014. All of the dsrAB, aprAB
and most of the napAB protein sequences were mapped to the �-proteobacterial SUP05 clade (34).
All detected narGHIJ protein sequences were either mapped to SUP05 or to the anammox plancto-
mycete bacteria Candidatus Scalindua profunda and KSU-1 (96) (only SUP05 proteins are shown).
Similarly, only non-planctomycete-annotated narGHIJ and nirKS DNA abundances are shown.
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Figure S4: Metagenomic, metatranscriptomic and metaproteomic depth profiles of (a) sulfate
adenylyltransferase (sat), (b) adenylylsulfate reductase (aprAB) and (c) sulfite reductase (dsrAB)
genes, which together comprise the sulfide oxidation pathway (or sulfate reduction pathway, if re-
versed), as well as (d) periplasmic nitrate reductase napAB, (e) nitrate reductase narGHIJ and (f)
NO-forming nitrite reductase nirKS. Data taken on February 10, 2014. All of the dsrAB, aprAB
and most of the napAB protein sequences were mapped to the γ-proteobacterial SUP05 clade
(34). All detected narGHIJ protein sequences were either mapped to SUP05 or to the anammox
planctomycete bacteria Candidatus Scalindua profunda and KSU-1 (108) (only SUP05 proteins
are shown). Similarly, only non-planctomycete-annotated narGHIJ and nirKS DNA abundances
are shown.
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