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Application of the Rod Model to Light Scattering
The scattering from a dilute solution of weakly interacting par-
ticles can be approximated by
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where q= 4πn0 sinðθ=2Þ=λ is the scattering vector magnitude
with the scattering angle θ, the refractive index of the solvent n0,
and the wavelength of the light λ. Rθ is the excess Raleigh ratio and c
is the concentration of the solute in grams per liter, K is a constant
given by K = 4π2n20
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fractive index increment of the solute in the solvent, PðqÞ is the form
factor, A2 is the second virial coefficient; Mw is the weight-averaged
molecular weight of the solute, defined as
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where ni is the number fraction of a species with molar mass Mi.
hR2

giz is the z-averaged square radius of gyration, given by
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Vimentin assemblies adopt a structure close to that of rigid
cylinder-like particles. Hence, Eqs. S1–S6 relate results from SLS
to suitable model parameters. The form factor for thin rods of
length L is given by (24)

Pðq,LÞ= 2
qL

Z ∞

0
sinðqLÞ=ðqLÞdL−

�
sinðqL=2Þ
ðqL=2Þ

�2

.

For polydisperse systems, the form factor Pzðq,LÞ is the z-average
over a distribution of particle sizes,
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where wðLÞ is the weight distribution function of particle length
L, which can be modeled by a Schultz–Zimm (SZ) function,
based on the weight average of the length Lw (30),
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where Γ is the Gamma function.
The z average of the squared radius of gyration hR2

giz for poly-
disperse thin rods following an SZ distribution is given by (30)

�
R2
g

�
z
=
ðz+ 3Þðz+ 2Þ

ðz+ 1Þ2
L2
w

12
. [S4]

The first to third moments of the molar mass for an SZ distribu-
tion are related by
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The second virial coefficient for cylinders of diameter d is ap-
proximated by (24)
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Dynamic light scattering measures the intensity time correlation
function g2ðtÞ :

g2ðq, tÞ= hIðq, tÞIðq, 0Þ〉�hIðq, tÞ〉2.
Iðt, qÞ is the intensity of scattered light at time t and scattering
vector magnitude q. The field autocorrelation function g1ðt, qÞ
can be calculated from g2ðt, qÞ with the Siegert relation,

g2ðt, qÞ= 1+ β½g1ðt, qÞ�2,

where β is a constant. For a monodisperse solute g1ðt, qÞ= e−Γt. Γ
is referred to as the inverse decay time. Generally, a distribution of
inverse decay times ðGðΓÞÞ is expected for a polydisperse system:

g1ðt, qÞ=
Z

GðΓÞe−ΓtdΓ. [S7]

GðΓÞ may be obtained by Laplace inversion, for example, by
using the CONTIN algorithm. A simple approach (15) to extract
the moments of the distribution is by a modified cumulant
method, where g1ðt, qÞ is expanded as
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with Γ, μ2, and μ3 the first, second, and third cumulants, respec-
tively. Due to limitations in data quality, it is common to fit
g1ðt, qÞ with only the first two cumulants.
The first cumulant Γ is used to calculate the z-averaged diffusion

coefficient Dz via Eq. 2 of the main text. The second cumulant μ2 in
Eq. S8 is the variance ðhΓ2iz −Γ2

z Þ of Γ. It can be used to calculate the
polydispersity p. d. =Mw=Mn = 1 + 1=z of rod-like molecules (14):
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The z-averaged diffusion coefficient for polydisperse cylinders,
where the length distribution follows the SZ formula, can be calcu-
lated using an expression analogous to Eq. S2 with DðL, dÞ the
diffusion coefficient, in place of P(q,L). The diffusion coefficient
of cylinders is approximated using a formula derived by Yoshizaki
and Yamakawa (25), based on an interpolation between spheroids
and long cylinders,
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where x=L=d and d is the cylinder’s diameter.
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Effect of Filtering
In an effort to understand the variability of our starting solutions
we performed the following experiment: 0.1 mL of a 4 g/L
vimentin solution was dispensed into a cuvette without filtering,
followed by 3.9 mL of filtered buffer. SLS of this sample yields a
molar mass of Mw ’ 2.2 × 106 g/mol. The sample was further
diluted with filtered solvent to 0.035 g/L and remeasured and no
change was found. A Holtzer plot of this sample is shown in Fig.
S1 (black crosses) along with the fit to the rod form factor (blue
line). The fit was obtained leaving Mw and Lw as free parameters
while z was fixed to the value obtained from cumulant analysis.
The sample was then filtered through a 0.22-μm filter, resulting
in a significantly less aggregated (Mw ’ 106 g/mol) sample. The
decrease in Mw is accompanied by a corresponding decrease in
Rg, which yields a constant ML within experimental error if a
rigid structure is assumed. The constant value of ML suggests a
longitudinal breakage of aggregates rather than lateral disag-
gregation. A second filtration did not induce further disaggre-
gation. The results of these experiments are summarized in
Table S1.

Zimm Plots of Dilution Series of Vimentin in Sodium
Phosphate Buffer
Preparation of solutions of tetrameric vimentin in sodium
phosphate buffer turned out to result in oligomers of the tet-
ramers. To determine whether the oligomers are stable or de-
pend on vimentin concentration, two vimentin solutions were
used as stock solutions for two dilution series. Fig. S2 shows
static and dynamic Zimm plots for two dilution series, including
fits to Eqs. 1 and 2 in the main text with an added term in q4.
Crucially, parameters A2 and kD can be obtained if the aggre-
gation state is independent of concentration. Both series show
a positive virial coefficient typical for stable entities. The sta-
bility of our solutions was further confirmed by the constant Mw
observed for a sample stored in a light-scattering cuvette at
room temperature for 1 wk. Further, the values of A2 are cal-
culated using Eq. S6 for samples 1 and 2 as 3 ± 1 × 10−7 mol·L·g−2

and 5 ± 2 × 10−7 mol·L·g−2, respectively, with d being extracted
from Eq. S10 integrated over the SZ distribution that was
fixed at the corresponding experimental Dz, Lw, and p. d.
These values agree with the measured values within experimental
error. The agreement between measured and calculated values
for A2 suggests that no concentration-dependent aggregation
occurs: If samples were significantly more aggregated as the
concentration increased, an abnormally low value for A2 would
result. Conversely, if aggregation increased upon dilution,
a higher than expected value of A2 would be measured. The
results of these datasets, along with those of readings at single
concentrations, are summarized in Table S2. Together with the
results in Table S1, these are plotted in Fig. 2 of the main text.

Evaluation of SLS and DLS Curves in Kinetic Runs
Fig. S3A shows the scattering intensity in the Zimm represen-
tation for the 0.07-g/L kinetic run at three different times along
with the line of best fit, corresponding to Eq. 1 of the main text
with A2 = 0. Fig. S3B shows three field autocorrelation functions
as squares ðg1ðt, qÞÞ2 taken at q2 = 0.00029 nm2 (θ = 80°) for the
same three times used in Fig. S3A along with fits to Eq. S8. Fig.
S3C shows the decay time Γ as a function of q2 for the same times
used in Fig. S3A, along with the fit to Eq. 2 of the main text
(setting kD = 0).

Data Cleaning
Fig. S4 plots Mw, Rg, and RH as a function of time for the 0.07-g/L
sample discussed in the main text. Points where the scattering signal is
dominated by the presence of dust, as manifested by an artificially large
Mw, were omitted in Figs. 2–5 of the main text; they are indicated as
blue crosses. Additionally, due to the large scatter in Rg, every five
points in Fig. S4 were binned into one for Rg in Fig. 2 of the main text.

Kinetic Equations
The kinetic equations describing the reaction scheme outlined in
the main text can be found in ref. 23. Pallitto and Murphy (23)
consider a more complicated scheme, which reduces to our model
when only the last two steps are used. This is equivalent to setting
to zero all reaction constants except k1a and ki,j in ref. 23. Further,
we consider the reaction order in step one (Fig. 1 of the main text)
to be equal to p, which corresponds to setting p= q in the model
of Pallitto and Murphy. The equations describing the time de-
pendence of the concentration of nonlaterally assembled species
fi and laterally assembled species Fi, where the subscript refers to
the longitudinal degree of polymerization (i.e., the number of length
increments corresponding to the elongation by an additional tet-
ramer in fi or by an additional ULF in Fi), are given by
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The first term in Eq. S12 accounts for the filaments generated
from lateral association of the “f” species. The second and third
terms correspond to the loss and generation of filaments of lon-
gitudinal degree of polymerization i due to end-to-end assembly
of other filaments, respectively. If a polydisperse distribution of
the species f is assumed, the first term in Eq. S12 must be inter-
preted carefully. Because f-type oligomers of any length can lat-
erally assemble with others of different length, the laterally
assembled filaments of p oligomers (which account for the first
term in Eq. S12) will have a heterogeneous mass per unit length
along the respective filament. Thus, ½F1� refers to the concentra-
tion of ULFs that contain at least one oligomer f1, set by the
prefactor ½f1� (outside the big brackets) in the first term of Eq.
S12. The nature of the initially occurring f and “F” species can
be adjusted to the measured values of Mw and Rg (Fig. 2 of the
main text) for the sample selected. The smallest soluble vimentin
unit is the tetramer, with L = 60 nm and Mw = 214,000 g/mol.
Given that these are values commensurate with the observed Rg
and Mw values, the discrete nature of vimentin should be con-
sidered for the evaluation of the initial state of the respective
kinetic run. The effective cross-sectional diameter of tetramers
and longitudinal multifolds thereof is taken to be dtet = 5 nm
(11). The diameter of ULF dF is left as a free parameter. The
end-to-end aggregation constant ki,j is given by the product of
the sum of diffusion coefficients of two molecules ðDi +DjÞ, the
distance between centers required for a collision to occur
ðRi,j ’ ðLi +LjÞ=2Þ, and the probability that a collision results
in aggregation pi,j. The latter was calculated by Hill (33),
who predicted a scaling of pi,j ∝ ðδωÞ2=ðLi +LjÞ2. Combining the
expressions of Hill for pi,j and Ri,j and Tirado and de la Torre’s (26)
expression for Di and Dj, the following relation is obtained (23),

Lopez et al. www.pnas.org/cgi/content/short/1606372113 2 of 11

www.pnas.org/cgi/content/short/1606372113


ki,j = 4πRi,jpi,j
�
Di +Dj

�
=
kBTNAðδωÞ2

3η
Li +Lj�
Li +Lj

�2

×

0
@lnðLi=dFÞ+ 0.312+ 0.565 dF

Li
− 0.1 d2F

L2
i

Li

+
lnðLi=dFÞ+ 0.312+ 0.565 dF

Lj
− 0.1 d2F

L2
j

Lj

1
CA,

[S13]

where η is the kinematic viscosity of the solvent, kB is the Boltz-
mann constant, δω is the product of the maximum distance and
the maximum angle at which a collision between two filaments
results in aggregation, and Li and Lj are the lengths of the re-
acting filaments. For simplicity ki,j was reduced in the model of
Pallitto and Murphy (23) to
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where �L is the number-averaged length of the F species. Eq. S14
can be further approximated as

ki,j =
kBTNAðδωÞ2
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1
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where A and μ are parameters set so that A=�L1−μ closely matches
the expression in large brackets in Eq. S14. A and μ are therefore
fully set by �L and dF . As an example, for the 0.07-g/L kinetic run
we use μ ’ 0.4822 and A ’ 1,206 with �L in units of decimeters.
For our experiments, where �L=dF does not vary by more than an
order of magnitude, using this approximation never leads to an
error in ki,j greater than ’ 3%.
The nth moment of the concentration of the two species is

defined as

λfn =
X∞
i=0

in½fi� and λFn =
X∞
i=0

ðipÞn½Fi�.

The equations describing the zeroth to second moments of the
concentration of the nonlaterally assembled species (subscript f)
and the laterally assembled species (subscript F) are given as
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The initial conditions are given by

λf0ð0Þ=


Mf
� Mtet

Mf ,nð0Þ

λf1ð0Þ=


Mf
�

λf2ð0Þ=


Mf
�Mf ,wð0Þ
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,

where ½Mf � is the total concentration of vimentin in f species
expressed as (number of tetramers in initially existing f species)/
liter, Mtet is the molar mass of a tetramer, and Mf ,n(0) and Mf ,w(0)
are the number- and weight-averaged molecular weights of the
f species at time 0, respectively. The starting conditions for
λF0ð0Þ, λF1ð0Þ, and λF2ð0Þ are calculated in an analogous manner,

λF0ð0Þ= ½MF �
pnL,0

λF1ð0Þ= ½MF �

λF2ð0Þ= ½MF �pnL,0,

where ½MF � is the total concentration of vimentin in F species
expressed as (number of tetramers assembled in initially existing
filaments)/liter and nL,0 is the longitudinal degree of polymeri-
zation of the initially existing filaments F, expressed as number
of ULFs per filament.
The kinetic model applied in the present work represents a

special case of the process determined by Eqs. S11 and S12
where we assume a simple scenario to fix the initial state of our
kinetic model: a bimodal population consisting of (i) tetramers
and (ii) an oligomeric ULF with a longitudinal degree of po-
lymerization of nL,0. This leads to the simplified versions of
Eqs. S11 and S12,

df1
dt

=−pkn½f1�p [S22]

dFi

dt
=+kn½f1�pδi,1 −

X∞
j=1

ki,j½Fi�


Fj
�
+
1
2

Xi−1
j=1

kj,i−j


Fj
�

Fi−j
�
, [S23]

where δi,1 is the Kronecker delta function, and to the simple
starting conditions for the f species of Mf ,n(0) = Mf ,w(0) = Mtet
and λf0ð0Þ= λf1ð0Þ= λf2ð0Þ = ½Mf �. Eqs. S16–S21 and the starting
conditions for λF0ð0Þ, λF1ð0Þ, and λF2ð0Þ remain unaffected. The
mass per unit length of the ULFs generated by the lateral as-
sembly of tetramers is p times that of a tetramer. The scenario
outlined above is capable of reproducing the Rg vs. Mw results
collected in Fig. 2 of the main text. The number fraction of
oligomeric ULFs is approximately constant at 0.5% (correspond-
ing to mass fractions of 2% for the least aggregated samples
and ’ 10% for the more aggregated ones) and the variation in
Mw and Rg is caused by the degree of longitudinal assembly of
filaments. For the three samples used for kinetic runs in the main
text, the longitudinal degree of polymerization of the filaments
present at t = 0 is nL,0 = 3. The mass fractions of filaments at t=
0 are 2.3% for the 0.09-g/L sample, 2.4% for the 0.07-g/L sam-
ple, and 7% for the 0.06-g/L sample.
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Mw for the entire ensemble is calculated from

Mw =
λF2 + λf2
λF1 + λf1

Mtet,

which allows us to fit Mw data obtained from light-scattering
experiments with the above model.
To be able to also fit hR2

g iz, we assume that the filaments
of species F are distributed according to the SZ formula (Eq. S3).
The polydispersity of the filament population is calculated using

p. d. =
λF2λF0
λ2F1

.

Once the polydispersity is known, the z-averaged square radius of
gyration for each population can be calculated according to Eq.
S4. The z-averaged squared radii of gyration for the f and F
species are R2

g,f and R2
g,F , respectively. We note that in the sce-

nario applied in the present work R2
g,f = 17 nm (pure tetramers) and

independent of time. Due to the partial overlap between ULFs,
the mass per unit length of the filaments ML, which is required
to calculate R2

g,F , is a function of the filament length LF . We
approximate the weight-averaged length of the filaments Lw,F as
Mw=ML, where ML is the average mass per unit length of the
ensemble at a given time. ML is given by Mw=ð63+ 43ðnL − 1ÞÞ
nm, where nL is the longitudinal degree of polymerization for the
filaments at an arbitrary time. For nondiscrete values of nL poly-
nomial interpolation is used. The z-averaged square radius of
gyration for the entire ensemble, which is measured by static
light scattering, is given by
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g,F + λf2R2
g,f

λf2 + λF2
.

The z-averaged diffusion coefficient for the f species Df ,z and
for the F species DF,z can be calculated by integrating Eq. S10
over the length distribution [in an analogous way to Eq. S2
with DðLÞ instead of Pðq,LÞ]. This requires input of the weight-
averaged lengths for the tetramer and filaments Lf ,w and LF,w,
respectively, and the polydispersities for both populations. The
z-averaged diffusion coefficient for the full ensemble can be
calculated as

Dz =
λf2Df ,z + λF2DF,z

λf ,2 + λF,2
.

Eqs. S16–S21 cannot, to the best of our knowledge, be solved
analytically for the general case of finite kn and ki,j ≠ 0. For
the special case where end-to-end elongation does not take
place (ki,j = 0), the above equations can be solved to give
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We can also obtain an analytical solution when kn =∞. The initial
conditions have to be changed to reflect the initial population of
laterally assembled filaments. The analytical expressions for λF0,
λF1, and λF2 are then given by
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λF1 = λF1ð0Þ [S31]
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To fit data, we solve Eqs. S16–S21 and S15 numerically, using a
Runge–Kutta 4 method implemented in Igor Pro v6.36. The time
step was varied depending on sample and fit parameters between
0.03 s and 0.01 ms. We use the values of p and kn obtained from
first fitting Eqs. S24–S29 as our starting guesses. The initial
conditions are obtained from the values of Mw and hR2

giz mea-
sured for the sample before salt addition. We did not implement
a least-squares minimization routine; rather, the parameters
were adjusted by eye until they gave a good fit to the data. This
typically took on the order of 20 iterations.

Multiplicity of Fits
Fig. S5 shows fits to Mw and Rg for the 0.07-g/L sample discussed
in the main text. The parameter p was fixed to 5, 6, and 7 and kn
and δω were adjusted to fit the Mw data for t≤ 100 min (before
precipitation). Whereas the quality of the fits to Mw remains
similar for all three p values, the fits to Rg vary considerably, and
p = 6 yields the best fit to the Rg vs. t data. We note here that the
calculated value of Rg initially decreases as step one proceeds.
The reason for this is that when tetramers assemble laterally to
form a ULF, their relative contribution to Rg increases and
therefore the relative contribution of the longer species (trimers
F3 in this case) decreases. This decrease occurs only at very early
times; Rg then levels off and eventually increases due to end-to-
end elongation. Our data do not permit checking this feature of
our model.

Justification of Number of Free Parameters and Alternative Fit
Number of Free Parameters. The model presented uses four free
parameters: two reaction constants kn and δω, one for each re-
action step; the degree of laterally assembled tetramers in fila-
ments, p (or alternatively the mass per unit length ML of the
filaments); and one hydrodynamic parameter, dF . We judge this
to be an appropriate number of free parameters relative to the
amount of data presented. A minimum of two reaction constants
are required to model a two-step process and p is fully determined
by the correlation between Mw and Rg. Further, a hydrodynamic
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diameter (which is not available from the literature and is expected
to deviate significantly from the cross-sectional diameter measured
by electron microscopy or calculated from p or ML) is required to
fit the RH vs. time data. Once the optimized value of dF is obtained,
we rerun the procedure outlined in Supporting Information, Multi-
plicity of Fits for Mw and Rg and find that using this new value has
virtually no effect on the quality of the fits. dF is therefore in-
dependently set by the RH vs. time data. Compared with other
techniques such as UV-Vis spectroscopy, which measures con-
centrations of filaments, or electron microscopy, which typically
yields the relative length (and/or width) distribution of filaments
(without having access to absolute concentrations of a given spe-
cies), combined SLS/DLS provides mass, structural, and hydrody-
namic data on an absolute scale. As explained in Supporting
Information, Multiplicity of Fits, if one considers only one of either
parameter Mw or Rg, for example Mw, p can be set to any rea-
sonable value without the fit being significantly affected. Avail-
ability of bothMw and Rg from SLS resolves a final value for p. If Rg
is obtained from electron microscopy images at variable time, its
kinetic interpretation, which has to be inevitably based on mono-
mer loss and particle growth in terms of mass values, requires an
additional guess on the mass per unit filament length.
In conclusion, the different parameters are set by either in-

dependent datasets (p and dF) or different time regions (kn and
δω). Compared with other techniques commonly used to study
protein self-assembly, time-resolved–SLS/DLS yields relatively
extensive datasets where different quantities (mass, length, and
diffusion) are measured.

Use of a Modified Exponent Fit. The fit presented in the main text
was carried out with as few free parameters as possible, with
deviations of the fit from experimental data not larger than 20%
(except for Rg recorded at very early times where the scatter in
the data is large). We now consider the inclusion of an additional
free parameter to improve the agreement with our data. Hill (33)
estimated the probability that a collision between two rods with
lengths Li and Lj results in aggregation as pi,j ∝ ðδωÞ2=ðLi +LjÞ2.
In his calculation, rotational motions of rods and intermolecular
excluded volume were neglected. Even if his calculation is exact
for rods, the predicted scaling may be modified if additional
interactions like, for instance, electrostatic or van der Waals
interactions exist between the ends of two rods. It therefore
seems possible that the true exponent for pi,j could deviate sig-
nificantly from Hill’s (33) value of 2. We have therefore also
fitted our data using pi,j ∝ ðδωÞ2=ðLi +LjÞα, where α is left as a
free parameter. The best-fit value of α= 3.5 significantly deviates
from Hill’s prediction and yields a correct description of Mw, Rg ,
and RH as a function of time, shown in Fig. S6. All data (Mw, Rg ,
and RH) in the elongation-dominated regime (t≥ 5 min) never
deviate by more than 10% from the fit. The deviation of the
exponent can be interpreted as a length dependence of δω,
meaning that the maximum distance or angle between two col-
liding rods decreases with rod length as ∼L−0.75. An exponent
of α= 4 would have a simple geometrical interpretation: A
sphere with diameter L is drawn around each of the reacting
filaments involved in an elongation step. Along with this, two
identical surface areas (independent of rod length) are fixed at
opposing sides of each sphere corresponding approximately to

the ends of the rods. A collision between these spheres results in
aggregation when the two drawn surface areas contact without
the spheres overlapping. This schematic leads to a dependence
on length of the maximum angle between rods for a successful
collision of ω∼ 1=L and pi,j ∼ 1=ðL4Þ and thus to an exponent of
α = 4 . However, we consider the addition of this parameter as a
first hint for a more complicated elongation mechanism as has
been so far applied and therefore we have opted to present the
fit with α= 3.5 in Fig. S6 as an alternative fit to the one of the
more simple model shown in the main text.

Comparison with Literature Data. Portet (34) carefully analyzed the
filament length distribution data of vimentin at several times in
the interval of 60–14,400 s in 0.1 M KCl at 37 °C by means of
images from electron microscopy, atomic force microscopy, and
total internal reflection fluorescence microscopy. Fits with a
model similar to ours yielded an elongation rate constant [p̂ for
model I in ref. 34, which is equivalent to ðδωÞ2/8 in our model]
that increased with increasing reaction time, which is similar to
using an exponent of α< 2. This trend is opposite to our modified
fit where a best fit is obtained with α = 3.5, corresponding to a
δω=

ffiffiffiffiffi
8p̂

p
[in the terminology of Portet (34)] decreasing with

time. Although we do not know the cause of this disagreement, it
is worth noting that both studies suggest that the elongation step
for vimentin is more complex than simple end-to-end aggregat-
ing rods.

Variability with Concentration
Fig. S7A showsMw vs. time for the three different concentrations
studied. A significant variation in the kinetics between the 0.07-g/L
and the 0.09-g/L samples can be observed. Fig. S7B shows a
plot of Rg vs. Mw for the three kinetic runs, along with limiting
power laws of Rg = kM1

w, which is the functional form expected
for rigid rods of constant polydispersity. The mass per unit length
determines the value of k given a value for the polydispersity.
The aggregation process remains qualitatively the same for all
samples as seen in Fig. S7 C and D: First, a lateral aggregation
step occurs, signaled by a large increase in Mw without any sig-
nificant increase of Rg. Eventually, the increase in Rg coupled with
an increase in the ρ parameter signals elongation, with a
Mw ∝ t1=3 characteristic for end-to-end association of rods. Fig.
S7B shows that the mass per unit length for the 0.09 sample is ’
1.5 times and 1.8 times larger than those for the 0.07-g/L and 0.06-
g/L samples, respectively. This difference could be due to an error
in the determination of concentration of our protein solutions,
which in turn affects the calculated values of Mw (but not Rg).
Specifically, if the actual concentrations for the 0.06-g/L and
0.07-g/L samples are 30–40% lower than the value we used for our
calculations, and the concentration of the 0.09-g/L sample is 30%
higher, the three curves overlay and the p values obtained from
our model fits coincide for all three samples, giving within ex-
perimental uncertainty p= 7–8, in agreement with previous re-
ports (4). The fits shown in Fig. S7 C and D refer to the
experimentally determined protein concentration; however, the
quality of the fits to Mw or Rg is not affected significantly by a
change of 30% in the assumed concentration set to make all Mw
trends compatible with a unique p = 8.
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Fig. S1. Holtzer plot for the sample without filtering corresponding to the highest Mw and Rg in Fig. 2 of the main text. Blue line indicates the fit to the
polydisperse rod form factor.

Fig. S2. Static (A and B) and dynamic (C and D) Zimm plots for two vimentin samples in sodium phosphate buffer. Shown are sample 1 (B and D) and sample 2
(A and C) (details in Table S2). Squares represent data points and circles represent values extrapolated to zero concentration. Lines are quadratic fits to the
data. Open symbols are deleted points. k is an arbitrary constant set to 4,000 for sample 1 and to 20,000 for sample 2.
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Fig. S3. Color code: red symbols, t = 0.5 min; green symbols, t = 2 min; blue symbols, t = 35 min. (A) SLS data in the Zimm representation. Lines are fits to Eq. 1
of the main text. (B) Square of the electric field time correlation functions g1ðtÞ2. Correlation functions at angle 80° along with fits to Eq. S8. Green and blue
curves are shifted vertically by values of 1 and 2, respectively, for clarity. (C) Decay time Γ vs. q2 along with fits to Eq. 2 of the main text.
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Fig. S4. Mw , Rg, and RH as a function of time for the 0.07-g/L vimentin sample discussed in the main text. Blue points correspond to the deleted data points
and red points to the data presented in the main text.
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Fig. S5. Fit according to the kinetic model. Red symbols show Mw vs. time (Top) and Rg vs. time (Bottom) for the kinetic run at vimentin concentration of 0.07
g/L. Lines are fits to the model presented in the main text. Green line, p = 5; blue line, p = 6; black line, p = 7. kn and δω are adjusted to yield a best fit to theMw

data for t ≤ 100 min.
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Fig. S6. Fit with modified α= 3.5 and p = 6. Symbols and lines have the same meaning as in Fig. 5 of the main text.

Fig. S7. (A)Mw vs. time for three different kinetic runs. Blue symbols, c = 0.09 g/L; red symbols, c = 0.07 g/L; green symbols, c = 0.06 g/L. (B) Rg vs. Mw . Symbols
have the same meaning as in A. (C) Mw (red diamonds), Rg (blue circles), RH (black squares), and ρ × 10 (green stars) for the kinetic run with vimentin con-
centration of 0.09 g/L. Large open symbols at t = 0.03 min represent values before addition of KCl. (D) Same as C but for 0.06-g/L vimentin concentration. The
lines in C and D represent fits with the kinetic model applied in the same way as done for c = 0.07 g/L in Fig. 5 and Fig. S5. The results from all fits are
summarized in Table 1 of the main text.
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Table S1. Effect of filtering

Sample Rg, nm Mw , g/mol RH, nm C p.d. ML*, kg·mol−1·nm−1 c, g/L

Not filtered 140 ± 30 2.2 ± 0.3 × 106 63 ± 7 0.22 ± 0.05 2.2 ± 0.1 6.9 ± 2 0.098–0.035†

Filtered 52 ± 10 9.2 ± 0.1 × 105 31 ± 1 0.3 ± 0.1 1.8 ± 0.1 9 ± 2 0.035
Refiltered 56 ± 5 9.2 ± 0.1 × 105 33 ±2 0.35 ± 0.1 1.8 ± 0.1 8.6 ± 0.9 0.035

*ML = Mw=Lw .
†A first measurement was taken at 0.098 g/L, and the solution was then diluted to 0.035 g/L and remeasured. Values correspond to the
average between the two readings.

Table S2. The parameters from Zimm analysis for two vimentin samples studied as a function of concentration (first two rows) and the
parameters measured at a single concentration (other rows)

Sample Rg, nm Mw , g/mol Lw , nm RH, nm C ρ

ML,
kg·mol−1·nm−1 A2, mol·L·g−2 kD, dm

3/g p.d. c, g/L

Dilution 1 58 ± 3 6.1 ± 0.3 × 105 115 ± 4 26 ± 5 0.34 ± 0.05 2.3 ± 0.5 5.3 ± 0.5 2.4 ± 0.6 × 10−7 — 1.5 0.5–0.13
Dilution 2 73 ± 2 1.1 ± 0.1 ×106 220 ± 10 37 ± 3 0.26 ± 0.05 2 ± 0.2 6.3 ± 0.5 5.5 ± 0.3 × 10−7 1.2 ± 0.3 1.5 0.2–0.046
Sample 1 25 ± 6 3.2 ± 0.2 ×105 60 ± 10 14 ± 1 0.17 ± 0.06 1.8 ± 0.6 5 ± 1 — — 1.3 0.14
Sample 2 32 ± 3 4.5 ± 0.1 ×105 84 ± 6 15 ± 1 0.20 ± 0.03 2.2 ± 0.3 6 ± 1 — — 1.5 0.12
Sample 3 28 ± 5 3.9 ± 0.4 ×105 70 ± 14 13 ± 1 0.22 ± 0.05 2.1 ± 0.6 6 ± 1 — — 1.3 0.12
Sample 4 27 ± 2 3.5 ± 0.3 ×105 66 ± 6 12.6 ± 0.5 0.2 ± 0.04 2.1 ± 0.3 5 ± 1 — — 1.4 0.18
Sample 5 100 ± 10 1.9 ± 0.2 ×106 220 ± 20 52 ± 5 0.2 ± 0.05 2.0 ± 0.4 8.6 ± 0.1 — — 1.8 0.18
Sample 6 58 ± 4 1.0 ± 0.1 ×106 120 ± 10 38 ± 3 0.32 ± 0.09 1.5 ± 0.2 6.3 ± 0.5 — — 1.8 0.2
Sample 7 55 ± 4 1.2 ± 0.1 ×106 120 ± 10 36 ± 3 0.32 ± 0.07 1.5 ± 0.2 6.3 ± 0.5 — — 1.8 0.2
Sample 8 56 ± 4 1.2 ± 0.1 ×106 120 ± 10 36 ± 3 0.32 ± 0.05 1.5 ± 0.2 6.3 ± 0.5 — — 1.8 0.2

In column 3, Lw is calculated via Eq. S4 and the mass per unit length in column 7 is set to ML =Mw=Lw .
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