IGF-I induces senescence of hepatic stellate cells and limits fibrosis in a p53dependent manner.

Hitoshi Nishizawa², Genzo Iguchi², Hidenori Fukuoka², Michiko Takahashi³, Kentaro Suda¹, Hironori Bando¹, Ryusaku Matsumoto¹, Kenichi Yoshida¹, Yukiko Odake¹, Wataru Ogawa¹, Yutaka Takahashi^{1*}

¹Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan

²Division of Diabetes and Endocrinology, Kobe University Hospital, Japan ³Department of Nutrition, Kobe University Hospital, Japan

Supplementary Table1

RT-PCR Primers for Analysis

Gene	Organism	Direction	Sequence
Cd68	mouse	Forward	GACACTTCGGGCCATGTT
		Reverse	GAGGAGGACCAGGCCAAT
F4/80	mouse	Forward	GGAGGACTTCTCCAAGCCTATT
		Reverse	AGGCCTCTCAGACTTCTGCTT
Tnfα	mouse	Forward	CCGATGGGTTGTACCTTGTC
		Reverse	CGGACTCCGCAAAGTCTAAG
Tgfβ	mouse	Forward	TTGCCCTCTACAACCAACACAA
		Reverse	GGCTTGCGACCCACGTAGTA
II-1β	mouse	Forward	TTGACGGACCCCCAAAGAT
	mouoo	Reverse	GAAGCTGGATGCTCTCATCTG
II-6	mouse	Forward	GCTACCAAACTGGATATAATCAGGA
	mouoo	Reverse	CCAGGTAGCTATGGTACTCCAGAA
Procollagen 1a1	mouse	Forward	GAGCGGAGAGTACTGGATCG
Troconagentian	mouoo	Reverse	GTTCGGGCTGATGTACCAGT
Collagen3a1	mourco	Forward	
	mouse	Povorco	
Collagen4a1	m ou 100	Ferrerse	
	mouse	Forward	
		Reverse	
Mmp3	mouse	Forward	
Мтр9		Reverse	GATTIGCGCCAAAAGTGC
	mouse	Forward	
Timp 1		Reverse	
	mouse	Forward	ATTCAAGGCTGTGGGGAAATG
01		Reverse	
Cox3	mouse	Forward	GCAGGATICICIGAGCGIICI
		Reverse	GICAGCAGCCICCIAGAICAIGI
Cyt c	mouse	Forward	GCAAGCATAAGACTGGACCAAA
		Reverse	TTGTTGGCATCTGTGTAAGAGAATC
Nrf2	mouse	Forward	CCAGAAGCCACACTGACAGA
		Reverse	GGAGAGGATGCTGCTGAAAG
Sco2	mouse	Forward	ATCGCACAGCCCTAAGTCTC
		Reverse	CAGTAGCATCGTGGACCTGA
αsma	mouse	Forward	AAACAGGAATACGACGAAG
		Reverse	CAGGAATGATTTGGAAAGGA
Vimentin	mouse	Forward	CCAACCTTTTCTTCCCTGAA
	medee	Reverse	TGAGTGGGTGTCAACCAGAG
Fibronectin	mourco	Forward	
	mouse	Poverce	CGATATTGGTGAATCGCAGA
p21	mourco	Forward	
	mouse	Poverce	
18s		Ference	
	mouse	Porwaru	
Gapdh		Reverse	
	mouse	Forward	
		Reverse	
αsma	rat	Forward	ICCCAAGCTGTGTGTCTCTG
		Reverse	GTGCCACGTTATGATGATGC
Vimentin	rat	Forward	CTCACCTGCGAAGTGGATG
		Reverse	TCTCTTCCATTTCACGCATCT
Igf-1	mouse	Forward	GCTTGCTCACCTTCACCAGC
		Reverse	AATGTACTTCCTTCTGAGTCT

Supplementary Table 1 Primer sequence for realtime PCR analysis

Supplementary Figure 1 (a) Serum human IGF-I concentrations measured using human IGF-I-specific ELISA kit in NASH model mice. (b) Serum mouse IGF-I concentrations measured using mouse IGF-I-specific ELISA kit. (c) Quantitative realtime PCR analysis revealed no changes in mRNA expression of endogenous *Igf-I* in the liver. Data were compared by Student's *t* test.

Supplementary Figure 2

Supplementary Figure Changes body weight during IGF-I treatment 2 (a) in the in the NASH model mice. Data were compared by MANOVA test. (b) Total NAFLD activity score (NAS) was evaluated by a blinded pathologists. NAS was assessed on a scale of 0-8, with disease; the components of higher scores indicating more severe this measure include steatosis (assessed on a scale of 0-3), lobular inflammation (assessed on a scale of 0-3), and hepatocellular ballooning (assessed on a scale of 0-3). SData were compared by tudent's t test, p < 0.05.

Supplementary Figure 3

Supplementary Figure 3 IGF-I induced cellular senescence in human hepatic stellate cell line, LX2 cells. (a) IGF-I increased expressions of p53 and p21 proteins in a concentration-dependent manner. Cells were incubated with IGF-I for 72 h. (b) Quantitative analysis demonstrated that IGF-I significantly increased p53 and p21 protein expression and phosphorylation of the IGF-I receptor in a concentration-dependent manner. Densitometric analyses were performed using data from 5 independent experiments. Each value was normalized to that of β -actin. (c) IGF-I induced SA- β -gal activation in LX2 cells. HSCs were incubated with IGF-I at the indicated concentrations for 5 days. (SA- β -gal staining, 200×). (d) Quantitative analysis demonstrated that IGF-I significantly increased SA- β -gal-positive cells in a concentration-dependent manner. Data were expressed as the mean ± SEM of 20 random fields (n = 10). Data were compared by Tukey's honestly significant difference test.