
SUPPLEMENTARY MATERIAL

Supplementary Figures

Supplementary Fig. 1: TiO2 devices support gradual switching. (a) Biasing pa-
rameter optimiser testing protocol pulsing sequence as applied to subject device. (b)
Resistive state time evolution in reaction to the stimulation from (a). (c) Change in
resistive state as a function of applied pulse voltage (pulse duration 100µs) and starting
resistive state. Note that overall resistive state change is restricted to approximately
±15% around a baseline value (in this case approximately 130µS). Dark gray projection
shows resistive state change versus pulse voltage independent of starting resistive state.
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Supplementary Fig. 2: The read operation used in this work was minimally
invasive. In the white, neutral region of the plot each pulse represents 5 ms at 300 mV.
The read-out operation lasts about 20 ms at 200 mV by comparison. The device remains
firmly at high conductance during this final stage of pulsing. Thus, in combination with
Fig 1(d) we confirm that the read-out operation used in this work most likely does not
affect DUT resistive state regardless of the conductance value at the time of read-out.
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Supplementary Fig. 3: Estimate of software plasticity from the fitted exponen-
tials fLTP and fLTD. A sigmoidal shape emerges.
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Supplementary Fig. 4: Memristors encode conditional probabilities. Same as Fig.
2 but extrapolated resistive state convergence points are now also shown as cross marks
in panel (a). Points with the same colour at each LTP probability point arise from the
same data block. Error bars: standard deviation, number of samples (individual resistive
state readings) per data point n = 25. In (b,c) exponential fits are added to both data
blocks.
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Supplementary Fig. 5: Typical memristor behaviours under experimental pro-
tocol used for Supplementary Fig. 1. Panels (a,c,e,g) and (b,d,f,h) as in Fig. 1(d,e)
respectively for the four devices used as artificial synapses in this work.
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Supplementary Fig. 6: Three consecutive runs of the ANN unsupervised learn-
ing experiment. ((a-e), (f-j), (k-o)): as in Fig. 4. Before the beginning of each run all
synapses are initialised so that no neuron has any preference for either prototype pattern.
At the end of each run the prototype patterns have been segregated successfully. Legend
similar to Fig. 4. The last run (k-o) corresponds to figure 3.
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Supplementary Fig. 7: Synapse behaviour during learning. Evolution of hardware
(synapses 0-3) and software (syn. 4-7) weights over the WTA network run from Fig. 3
(thin traces) and corresponding exponential fits (thick traces).

Supplementary Fig. 8: Example of WTA learning in a test run where the soft-
ware synapses are not afflicted by noise. Panels (a-e) similar to Fig. 4.
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Supplementary Fig. 9: Synapse behaviour during learning. Evolution of hard-
ware (synapses 0-3) and software (syn. 4-7) weights over the WTA network run from
Supplementary Fig. 8 (thin traces) and corresponding exponential fits (thick traces).

Supplementary Fig. 10: 3000 trial learning reversal experiment immediately
following the last trial from Fig. 4. Panels (a-e) similar to Fig. 4. The 1200
trial point is marked by the red, vertical, dashed lines in (b,c). The hardware synapses
successfully switch their preference to pattern 1001 by the end of the run as evidenced
by the computed membrane potentials shown in (b). At the 1200 trial mark this hasn’t
yet occurred very clearly.
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Supplementary Fig. 11: Endurance data from TiO2-based device family used for
this work. 500 full cycles of stimulate-assess are shown in the figure.

Supplementary Fig. 12: Retention data from TiO2-based device family used for
this work. Both high and low resistive states were individually checked for drift.
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Supplementary Fig. 13: Voltage-time dilemma in TiO2-based memristors. Esti-
mated threshold voltages for LTP-like SET resistive state transitions (a) and for LTD-like
RESET transitions (b) are shown as a function of applied pulse durations. In the case of
RESET transitions we see a good exponential fit, whilst in the case of SET transitions
the relation grows faster-than-exponentially. Standard deviation bars shown, number
of samples (individual resistive state readings) per data point n = 17. Data presented
previously by our group in reference [1].
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Supplementary Fig. 14: Membrane potentials and homoeostasis during learning.
Computed full membrane potentials Ui(pattern, time) for both hardware (i = 0) and
software (i = 1) neurons to patterns 0110 (purple) and 1001 (green) including the
influence of the homoeostatic term θi from eq. (3); same as Fig. 3(c). Additionally, the
contribution of the homoeostatic plasticity to the membrane potential is also plotted
alone in orange/cyan. Red arrows indicate the trials when the homoeostatic correction
term reaches its maximum (+0.419) and minimum (-0.225) values.

Supplementary Fig. 15: Memristor characterisation and handling instrumenta-
tion. (a) Photograph of and (b) read-out scheme used by the instrumentation used to
carry our all experiments in this work.
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Supplementary tables

Supplementary Table 1: Drift in memristor resistive state as a result of the application
of only pre-type events.

DUT ID Resistive state drift (µS) % of resistive state range (abs. val.)

0 -1.65 5.15
1 +0.79 6.05
2 +0.40 1.76
3 +2.83 9.42

Read-check +0.31 -

Case Read-check corresponds to Supplementary Fig. 2; all other cases directly
from Supplementary Fig. 5. The resistive state range is directly computed
from Supplementary Table 3 as the difference between the conductance levels
corresponding to the weight values [+2.2V,−2.2V ] (final - initial). The
read-check case has no defined operating range.

Supplementary Table 2: Voltage threshold levels extracted under 100µs pulsed stimulation
for the devices used in this work.

Device ID Vth, LTD (V) Vth,LTP (V)

0 -1.07 +0.98
1 -1.08 +0.91
2 +1.31 -1.19
3 -1.40 +1.19

Supplementary Table 3: Biasing parameters and conductance-to-weight mappings used
for all WTA network runs.

Device
ID

LTD
ampl. (V)

LTP
ampl. (V)

Conduct. at
weight = -2.2 (µS)

Conduct. at
weight = +2.2 (µS)

0 -0.90 +0.90 398 430
1 -0.90 +0.90 150 163
2 +1.20 -1.10 153 176
3 -1.30 +1.10 234 264
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Supplementary Table 4: Order of test blocks in each conditional probability encoding
experiment run - see Fig. 2.

Run no.
LTP probability (%)

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

0 7th 5th 3rd 6th 4th 8th 2nd 10th 9th 1st
1 10th 9th 8th 7th 6th 5th 4th 3rd 2nd 1st
2 7th 5th 3rd 6th 4th 8th 2d 10th 9th 1st
3 10th 9th 8th 7th 6th 5th 4th 3rd 2nd 1st

Supplementary Table 5: Initial and final weights for software and hardware synapses for
WTA network runs 1 (Fig. 3) and 2 and 3 (Fig. 4).

Synapse ID
Run no. Synapse type Initial/final 1 2 3 4

1
Memristive

Initial 0.046 -0.423 -0.578 -0.414
Final -2.823 4.088 3.188 -2.269

Software
Initial 0.064 0.228 -0.069 0.381
Final 2.471 -2.542 -1.969 2.626

2
Memristive

Initial -3.400 3.862 3.528 -2.362
Final 1.909 -0.101 0.006 1.705

Software
Initial -2.734 4.465 3.286 -2.922
Final -3.322 3.614 2.982 -3.964

3
Memristive

Initial 1.614 0.263 0.348 1.549
Final -2.600 4.267 3.106 -2.675

Software
Initial 2.179 -1.092 -0.697 2.859
Final 2.926 -2.100 -2.167 1.886
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Supplementary Table 6: Noise quantification for weight evolution during WTA network
run from Fig. 3.

Synapse ID ∆wtotal σresidual σmeaserror σunexplained
0 -2.9205 0.6062 0.3673 0.4823
1 3.3125 0.4167 0.3539 0.2200
2 2.7363 0.3470 0.2002 0.2834
3 -2.1748 0.4364 0.2534 0.3553
4 2.4748 0.4236 - -
5 -2.7820 0.4152 - -
6 -1.7032 0.4580 - -
7 2.5998 0.4329 - -

σresidual: Standard deviation of residuals of weight ver-
sus exponential fit from Supplementary Fig. 7. ∆wtotal:
Overall change in weight over the duration of the learn-
ing run as extracted from the polynomial fitting (final
- initial). σmeas: Uncertainty directly attributable to
measurement error. σunexplained: Remaining uncertainty.
All values in units of abstract weight.
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Supplementary note 1

Device characterisation and behaviour. The capability of TiO2-based memristors
to encode conditional probabilities largely relies on their ability to support gradual
switching. Supplementary Fig. 1 shows the biasing parameter optimiser test routine [2]
being applied on a single device. During this routine the device under test (DUT) is
subjected to a series of pulse trains in alternating polarities. Each pulse train consists of
a succession of progressively higher voltage pulses; all at fixed duration (Supplementary
Fig. 1(a)). The effect of each voltage amplitude used on DUT resistive state is assessed
by measuring resistive state between pulses. The test shows how the choice of bias voltage
determines the speed of switching (Supplementary Figure 1(c)). We find that in our
devices appropriate choice of pulsing voltage can lead to gradual switching corresponding
to very small δR in response to input stimulation.

Applying successive barrages of identical, pulsed stimuli (LTP only or LTD only)
as described in Fig. 1 confirms the capability of gradual switching and uncovers the
dependence of the magnitude of switching on the value of the running conductance.
Supplementary Fig. 5 shows results from the experimental procedure carried out in Fig.
1 on all devices used for this work. We note that all devices are well-behaved, with LTP
and LTD easily fitting to the exponential model used in Fig. 1.

Moreover, Supplementary Fig. 5(e) shows a typical case of cycle-to-cycle variation
in memristive devices. Final resistive state at the end of the second LTD event block is
slightly different compared to the first LTD block. Whilst this may be at least partially
explained by incomplete convergence to an equilibrium point, our experience with the
TiO2-based devices suggests that cycle-to-cycle variation is likely to play a role in this
phenomenon.

Another important aspect of device behaviour is the voltage-time dilemma, that is
the trade-off between pulse duration and voltage. We tested our samples with the biasing
parameter optimiser routine at different pulse widths and recorded the pulse voltages at
which the resistive state of the DUT had changed by 2% versus its state at the start of
the test. The obtained values provide rough, but comparably obtained estimates of the
DUT voltage threshold. Supplementary Fig. 13 shows extracted threshold voltages from
a typical device in the same family as used in this work versus pulse duration whilst
Supplementary Table 2 summarises the 100µs pulse thresholds extracted for the devices
used in this work. The exponential relation between pulse duration and pulse voltage
is encouraging towards the notion that switching can be achieved at significantly lower
power cost if shorter, but stronger pulses are used as stimulation.

The thresholded nature of switching in our devices as shown in Supplementary Fig.
1 provided good read-disturb immunity to our devices. Fig. 1(d) shows that the DUT
read-out operation did not lead to appreciable changes in DUT resistive state when
the DUT is at its minimum operational conductance. We ran experiments to confirm
that this is still the case when the DUT is at its maximum operational conductance.
Results are shown in Supplementary Fig. 2, confirming the immunity of our devices to
read-disturb at both extremes of their operating resistive state range. In addition, we
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quantified these results by fitting conductance evolution data from the neutral regions
(pre-type stimulation only) of Supplementary Figs 5(a,c,e,g) and 2 to exponentials via
least-squares optimisation and then computing the fitted change in conductance at the
start versus the end of the region. The results, summarised in Supplementary Table 1,
indicate that the effect is small (less than 10% of DUT resistive state range as defined in
Supplementary Table 3).

Finally, basic endurance and retention data is shown in Supplementary Figs 11, 12.
The endurance run was conducted by repeatedly applying stimulus units (trains of 10
identical pulses lasting 100µs at +1 V or −1 V amplitude) of alternating polarities, each
followed by resistive state assessments (1 assessment = average of 5 reads). Results
indicate reliable and repeatable switching of our TiO2 devices for 500 cycles (that is
1000 stimulus units) with a small but clear (approximately 3% of Low Resistive State
(LRS) resistive state level) window between High Resistive State (HRS) and LRS. The
retention run was carried out by driving a test device at its operational resistive state
ceiling, measuring resistive state for 2.5 hours in 30 minute intervals and then driving the
device to its operating resistive state floor and taking another set of half-hourly resistive
state measurements. We notice that the low resistive state is very stable (max. - min.
value: approximately 44 Ω) whilst the high resistive state experiences a slight upward
drift (max. - min.: approximately 505 Ω corresponding to approximately 13% of the
resistive state operating range of approximately 4 kΩ).

Supplementary note 2

Functional form of plasticity. The estimated functional form for software plasticity
is shown in Supplementary Fig. 3. This relies on the two exponential fits for fLTP and
fLTD from Fig. 1(e).

Supplementary note 3

Experimental protocols. In the experiment testing for the capability of memristors
to encode conditional probabilities, four test runs were carried out. Two of them used
test blocks visiting the LTP probability points in scrambled order for the purposes of
confirming that results obtained from the other two runs were not a consequence of
visiting the various LTP probability points in a monotonically decreasing order. The
precise sequence in which LTP probability points were visited are shown in Supplementary
Table 4.

In all WTA network experiments both the biasing parameters used to implement
plasticity and the mappings between memristor conductance and synaptic weight were
kept constant. The numbers used are summarised in Supplementary Table 3. The initial
and final software and hardware weights for each WTA network run are summarised in
Supplementary Table 5.

The effects of homoeostasis can be observed by examining the computed membrane
potential response of the hardware-synapse neuron for the two prototype patterns
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and noting how significant the effect of the homoeostatic term is. This is shown in
Supplementary Fig. 14 for the ANN run corresponding to Fig. 3, where the homoeostatic
term fluctuated between +0.419 and −0.225 units of abstr. weight. However, the
homoeostatic term can take much larger values, reaching a magnitude maximum at
−1.333 abstract weight units during the learning reversibility check ANN run, which
indicates a potentially powerful effect on overall membrane potential.

Supplementary note 4

Fitting converged conductance versus LTP/LTD composition. The linear fitting
used for Fig. 2(a) followed the formula:

S(p) = a · p+ b (14)

where S(p) is final, converged conductance as a function of LTP/LTD composition p,
a = 3.87 · 10−7 and b = 3.73 · 10−6).

Supplementary note 5

Quantifying quality of convergence. The quality of convergence achieved during the
experimental runs shown in Fig. 2(a) is very hard to assess reliably given the difficulty in
extrapolating how memristors might behave after the end of each 104-point data block.
However, as a simple check the memristor resistive state evolution during each data
block -conductance g(k)- was fitted to an exponential as per eq. 15. The constant offset
term c then denotes the expected resistive state saturation level for each data block.
Extrapolated convergence values are plotted in Supplementary Fig. 4 along with two
data block runs and their corresponding exponential fits. We note that the exponential
fits in both cases tend to qualitatively underestimate the degree with which the resistive
state continues to drop/increase towards the end of each data block. Further study is
required in order to understand precisely why this occurs and determine a more suitable
fitting model. Moreover, we notice that on most occasions (38/40), despite the possible
unsuitability of the exponential model as a fitting function, the extrapolated resistive
state convergence points are within 400 nS of their counterparts as extracted from the
experimental data. In the remaining two cases the conductance versus input event
number plots does not exhibit a sufficiently strong saturating trajectory and causes the
extrapolation to fail. We therefore conclude that: i) Incomplete convergence cannot be
ruled out as a reason behind the qualitatively worse convergence observed for run no. 2,
ii) preliminary checks attempting to fit data to exponentials do not lend support to this
hypothesis but do not disprove it either and iii) exponential fits may be poor predictors
of future memristor behaviour.
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Supplementary note 6

Repeatability of learning. In order to demonstrate that the memristive synapses
can repeatably perform learning as shown in Fig. 3, the experiment was performed
three consecutive times. In each experiment run all devices were initialised through the
memristor control instrument to values corresponding to an abstract weight of 0 (within
the limits of the measurement noise). The software was then initialised to 0 weights (on
top of which measurement noise was added during operation). The three experimental
runs are shown in Supplementary Fig. 6 where we observe that the last run is the one
from Fig. 3. In all cases the data clearly shows that both neurons start from a situation
where they both display no specialisation on either pattern and simultaneously their
membrane potentials show no inherent preference to either pattern. At the end of each
run, the prototype patterns have been successfully segregated.

Supplementary note 7

Quantifying the weight evolution noise during WTA network runs. In order to
quantify the noise present in the evolution of the memristive synapse weights throughout
the WTA network trial shown in Fig. 3 we first fitted the weight data to first order
exponentials of the form:

w(k) = a · e−
k
b + c (15)

where w(k) the memristor synapse weight at input event k and a, b, c fitting parameters.
Results are shown in Supplementary Fig. 7. The residuals were then extracted and their
standard deviations computed. These results are summarised along with overall weight
change throughout the WTA run ∆wtotal as estimated by the fittings in Supplementary
Table 6.

It is important to note that the standard deviations of the residual levels computed
will include contributions from at least three main components: First, The stochastic
nature of the input signal. Second, in the case of the hardware synapses, random
measurement error. Third, extra error introduced by the mismatch between the choice of
fitting function and the underlying synaptic weight evolution dynamics. The random
measurement error can be quantified by examining the standard deviation in the resistive
state of the hardware synapses as computed from the neutral region seen in the left half
of Supplementary Fig. 5 (residual versus exponential fitting to mitigate spontaneous drift
effects). If we then combine the standard deviation in the resistive state with the mapping
between resistive state and weight from Supplementary Table 3 we can compute the
contribution of the measurement error to overall noise levels in units of abstract weight.
These values are shown for the hardware synapses in Supplementary Table 6. Notably,
software and hardware synapses show similar levels of overall noise. Note: throughout
this analysis we have assumed that the distribution of residuals is normal. Whilst this
may not be necessarily true, the overall values of standard deviation are still indicative
of noise levels in the system.
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Supplementary note 8

Comparison case: what if software synapses are immune to noise? For the
purposes of comparison we have also carried out a WTA learning experiment where
the software synapses were implemented without added noise. Results are seen in
Supplementary Figs 8 and 9. The difference is very clear especially with regard to the
progress of learning between the neuron using software and the neuron using hardware
synapses (Supplementary Fig. 8(b)), but also when examining the evolution of synaptic
weight.

Supplementary note 9

Learning reversibility timescale check. The learning experiments shown in Fig. 4
did not fully elucidate whether the system is truly capable of developing a new, stable
weight configuration during reversal learning since the memristor synapses still exhibited
notable changes by the end of the 1200 trial WTA run. For that reason, immediately
after the conclusion of the experimental runs from Fig. 4 an additional reversibility run
lasting 3000 trials was carried out. Results are shown in Supplementary Fig. 10 where
we notice that after 1200 trials the system has not yet fully settled at a stable weight
configuration. After 3000 trials, however, the reversal is very clear as indicated by the
computed membrane potentials of the hardware neuron. Thus the system is truly capable
of not just learning, but if necessary also complete relearning.

Supplementary note 10

Materials level interpretation. In this section we attempt to link the observations
made throughout this paper to a materials-level interpretation on a working hypothesis
basis, which is, however, not the focus of the current publication.

Pristine memristive Pt/TiO2/Pt devices used in this study being their lives at highly
insulating states due to the stoichiometry of the oxide layer. The process of electroforming
then serves to create a conductive path within the oxide, commonly called conductive
filament (CF). During electroforming an external electric field is applied between the
two electrodes oxygen vacancies and/or metal (titanium in our case) interstitials migrate
towards the anode and accumulate until bridging the electrodes, consequently, reducing
the pristine resistive state towards a LRS. It is now well known that the CF consists of
oxygen vacancies in devices operating through valence change memory (VCM) mechanisms
such as ours. Subsequent application of voltage in the opposite polarity (in systems
exhibiting switching of the bipolar type) resets the device towards HRS by thinning,
or breaking the CF. In this step, the oxygen ions fill some of oxygen vacancies cites
disrupting the filament continuity, thus increasing the resistance the high resistive state
(HRS) [3, 4, 5, 6]. It is worth mentioning, on one hand, that the pristine state is never
recovered because of the influence of all the filament branches that where created during
electroforming step, thus forcing the device to toggle between some LRS and HRS
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resistance values far below the initial, pristine level. The stochastic nature of the CFs
explains the variability in the threshold voltages; the voltage levels at which the device
begin to experience switching towards lower (higher) resistive states. Notably, the precise
magnitude of the voltage stimulus pulses affects the values of HRS and LRS between
which the device can toggle: higher applied voltages enhance the HRS/LRS contrast,
but at the expense of endurance and switching graduality (higher voltages - most of the
resistive state change tends to occur upon the first pulse [7]). When applying long trains
of constant voltage pulses the vacancies/ions susceptible to drift under the accumulated
energy gradually migrate, resulting in a progressive shift in resistance until reaching a
plateau (convergence), where no more vacancies/ions can drift unless the pulse amplitude
or/and width are increased.

It is important to specify that especially when operating at near-threshold levels
many pulses are needed to migrate all the vacancies/ions sensitive to the applied voltage.
This is the basic explanation of the results depicted in Figure 2. The more LTP (LTD)
events are applied to the device the higher (lower) the conductance becomes. At a
probability of 0.05% of LTP events for example, the number of positive pulses overcomes
the negative ones resulting in drifting more vacancies thus building the CF. The nature
of the experiment in runs 2 and 4, which consists of applying LTP and LTD events to
the device and slowly and regularly increasing (decreasing) the number of LTP (LTD)
events at each event block, causes the final (and ideally converged) conductance to
increase smoothly. However, larger variability in converged conductances was observed
for run 1 and run 3, where the probabilities of LTP (LTD) events was randomly applied.
These more abrupt changes in pulsing regime render the overall vacancy/ion drift more
aggressive throughout each run and thus are the possible cause of the increased end result
variability.

It is worth mentioning that the filamentary nature of the switching of our devices
makes the ON state very stable, possibly because at that state the filament bridge is
completely formed; determining whether this is indeed the case requires further study.
However, the CF is disrupted and interrupted in the OFF state, and at the end of each
pulse train the OFF resistive state drifts slightly, particularly immediately following
stimulation interruption. This is observed in Supplementary Fig. 12 where the test device
drifts from 8.4 kΩ to 8.9 kΩ within the first 30 minutes after stimulus interruption. The
drift continued with smaller changes, from 8.9 kΩ to 9 kΩ for the following 2 hours, as
can be seen. We attribute this to the active component of the resistive switching devices,
named nano-battery effect [8]. Indeed, Valov et al. have studied this phenomenon and
demonstrated that an inherent electromotive force (emf) exists within the device that
causes the resistance value to change even when no external voltage is applied. This emf
or diffusion is generated by the inhomogeneous charge distribution and charge motion
resulting from the electroforming or set/reset processes. This happens at HRS where
vacancy/ion drift occurs slowly, however, when a CF is completely formed, in the LRS,
this phenomenon does not occur. The nanobattery effect is partially masked in this proof
of principle study, as learning occurs under a constant barrage of input data, which allows
the vacancies/ions to drift and achieve repeatedly relatively stable conductance values.
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However, carefully studying the influence of this phenomenon in further exploiting this
work should be considered. Interesting open questions for further research would be
whether the presence of this emf materially affects the balance between potentiation and
depression during network operation and to precisely what extent drift in resistive state
after stimulation interruption is tolerable (even though results from Supplementary Figs
5 and 2 suggest the overall effect is relatively small).

Supplementary note 11

Measurement instrumentation. All experiments in this work were carried out using
our in-house developed instrument shown in Supplementary Fig. 15(a) that derives from
the work in [9]. The instrument uses a trans-impedance amplifier-based (TIA) read-out
procedure which is schematically described in Supplementary Fig. 15. DUT resistance is
always assessed at the read-out voltage of 0.2 V.
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