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Supplementary Figure 1 | Higher order diffraction and electric field distribution at the 

transmission minima. a, Photograph of the zero and higher grating orders produced by 

diffraction of a broadband visible probe by the ITO-NRA sample at normal incidence. b to f, 

Simulated total electric field distributions at transmission minima λ1 to λ5, averaged over the 

length of the nanorod.
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Supplementary Figure 2 | Permittivity of ITO in the visible and near-infrared range. a and 

b, Real and imaginary parts of the relative permittivity in the visible range (using the Drude-

Lorentz model). c and d, Real and imaginary parts of the relative permittivity in the near-infrared 

range (using the Drude model). 
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Supplementary Figure 3 | Substrate transmission and comparison of simulated and 

experimental transmission spectra of the ITO-NRA. a, Transmission spectrum of a 0.5 mm 

thick YSZ substrate. b, Comparison of the simulated and experimental spectra of the array. The 

ITO permittivity used in the optical simulation is shown in Supplementary Fig. 2a and Fig. 2b. 
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Supplementary Figure 4 | Static optical measurements using an integrating sphere. a, b and 

c, Total transmission, total reflection and deduced absorption spectra for the ITO-NRAs. The 

periodicities of ITO-NRAs in a, b and c are 1 µm, 800 nm and 1 µm, respectively, and the 

heights of ITO-NRAs are 2.6 µm, 1.4 µm and 2.9 µm, respectively. d, Total transmission, total 

reflection and deduced absorption spectra for a bare YSZ substrate (0.5 mm thick). 
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Supplementary Figure 5 | Off-resonance pumping of the ITO-NRA. ∆T(t)/T(0) kinetics of 

the ITO-NRA at 568 nm. The sample is pumped at 800 nm. 
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Supplementary Figure 6 | Schematic diagram of the direct interband optical transition in a 

semiconductor with a non-parabolic conduction band and a parabolic valence band. 
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Supplementary Figure 7 | Theoretical calculation of the change of electron distribution. a, 

Electron distribution as a function of Ec and electron temperature. b, Change of electron 

distribution as a function of Ec and electron temperature. c, Ec as a function of photon energy ħω. 

d, Change of electron distribution as a function of photon energy ħω and electron temperature. 

The vertical dashed line in a, b, c and d indicates the conduction band minimum. The dotted line 

in a and b indicates the temperature dependent electron chemical potential µ (or equivalently the 

Fermi energy). 
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Supplementary Figure 8 | Theoretical calculation of the change of imaginary part of 

permittivity. a, Joint-density-of-states ρ(ħω) as a function of photon energy ħω. b, Product of 

the electron distribution change and ρ(ħω) as a function of photon energy and electron 

temperature. c, Change of the imaginary part of the relative permittivity as a function of photon 

energy and electron temperature. The vertical dashed line in a, b, c indicates the conduction band 

minimum. d, Red line: α(ω) obtained from ellipsometry measurement of an ITO film. Blue line: 

theoretically calculated α(ω) for the case of a constant matrix element of (2.8×10
-49

 J·kg)
1/2

. The 

dash-dot line in d represents the absorption onset energy, Eg + µ(300 K), obtained by 

extrapolating the straight dotted line to the α = 0 axis. 
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Supplementary Figure 9 | Ellipsometric measurements of ITO film. a, Experimental and 

simulated Ψ and Δ angles for the ITO film in the ultraviolet to the visible range; the 

corresponding refractive indices from the ellipsometric data fitting were used to calculate α(ω) 

shown in Supplementary Fig. 8d. The experimental data was acquired at 55° using a J. A. 

Woollam M2000U instrument. b, Experimental and simulated Ψ and Δ angles for the ITO film 

in the NIR range; the data fitting assumed a Drude permittivity with ɛ∞ = 3.90, ωp = 2.10 eV, and 

γp = 0.0.065 eV. The experimental data was acquired at 70° using a Horiba UVISEL instrument. 
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Supplementary Figure 10 | Heat capacities and initial temperatures of the electron and 

lattice. a, Electron temperature Te,0 as a function of pump fluence. b, Lattice temperature Tl,0 as a 

function of pump fluence. In both a and b, the curves are numerically calculated results, whereas 

the circles are associated with actual pump fluences used in the short-delay-TA experiments. c, 

Temperature dependent heat capacity of the electron gas. d, Temperature dependent heat 

capacity of the lattice (circles: measured data points
1
; curve: interpolated dependence). 
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Supplementary Figure 11 | Dephasing of the acoustic vibrations of the ITO-NRA. ∆T(t)/T(0) 

spectrum of the ITO-NRA at 475 nm, arising due to the excitation of acoustic vibrations. 
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Supplementary Figure 12 | Heat-transfer simulation results of the temperature decay of the 

lattice. Temporal decay of (∫TLdV)/V (which is lattice temperature averaged over the nanorod 

volume) with a uniform initial temperature of 474 ºC. a, Edge length is fixed at 180 nm. Arrow 

indicates increasing the nanorod height from 1 µm to 3.6 µm with a step size of 200 nm. b, 

Height is fixed at 2600 nm. Arrow indicates increasing the edge length from 120 nm to 260 nm 

with a step size of 20 nm. Periodicity of the ITO-NRA in all heat-transfer simulations is 1 µm. 
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Supplementary Figure 13 | Morphologies and optical properties of additional ITO-NRA 

samples. a, b, c, SEM image, static near-infrared transmission spectrum and ∆T(t)/T(0) spectral 

map for an ITO-NRA with 1.4 µm height. Scale bars in a and b are 2 µm. d, e, f, SEM image, 

static near-infrared transmission spectrum and ∆T(t)/T(0) spectral map for an ITO-NRA with 2.9 

µm height. Pump fluence in c and f is 7.4 mJ·cm
-2

. 
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Supplementary Figure 14 | Transient spectral maps of the fast component. ∆T(t)/T(0) 

spectral maps for the ITO-NRA plotted for delay times up to 1.5 ps (acquired from the short-

delay-TA experiments). Pump fluences for a to i are 0.073 mJ·cm
-2

, 0.114 mJ·cm
-2

, 0.235 

mJ·cm
-2

, 0.373 mJ·cm
-2

, 0.739 mJ·cm
-2

, 1.177 mJ·cm
-2

, 1.859 mJ·cm
-2

, 6.755 mJ·cm
-2

 and 10.72 

mJ·cm
-2

, respectively. 
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Supplementary Figure 15 | Spectral maps of the change of optical density and total 

transmission. a, b, ∆OD(t) and T(t) spectral maps for the first 1.5 ps under a pump fluence of 

3.71 mJ·cm
-2

, which are to be compared with the ∆T(t)/T(0) spectral map shown in Fig. 2a. 
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Supplementary Figure 16 | Transient spectral maps of the slow component. ∆T(t)/T(0) 

spectral maps plotted for delay times up to 3 µs (acquired from long-delay-TA experiments). 

Pump fluences for a and b are 1.31 mJ·cm
-2

 and 9.2 mJ·cm
-2

, respectively. 
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Supplementary Note 1: Calculation of the grating order intensities 

        The electromagnetic waves scattered by a periodic phased array can be decomposed into 

orthogonal eigenmodes, which are essentially the grating orders including both propagating and 

evanescent ones. Since the nanorod spacing of 1 µm is comparable to the wavelength in the 

visible range, higher order propagating modes (besides the zero order mode) can be produced. To 

extract intensities of these higher order modes from optical simulations, we decomposed the 

transmitted electric fields according to the procedures shown by J. Jin et al
2
. Briefly, a two 

dimensional Fourier transform was performed on the electric field at the bottom boundary of the 

YSZ interface (the array being in the x-y plane and the bottom boundary is at z = z0),  

      0 0
E , , E exp
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are the electric field intensities for the (n, m) order. S = a
2
 is the cross-sectional area of a unit cell, 

kxn = kx0 - 2πn/a and kym = ky0 - 2πm/a. Here kx0 = k0·sinθ·cosφ, ky0 = k0·sinθ·sinφ, k0 = 2π/λ is the 

incident wave vector, θ = 0 is the incident angle and φ = 0 is the azimuthal angle (the incident 

wave vector is normal to the substrate). The wave vector in the z direction is kznm = (k0
2
- kxn

2
- 

kym
2
)

1/2
; a mode is propagating when kznm is real and evanescent when kznm is imaginary. 

Transmission of the (n, m) grating order is calculated as 
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z
T , where Einc is the 

electric field of the incident wave. The (1, 0) and (1, 1) orders are illustrated in the photograph of 

Supplementary Fig. 1a. 
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        To further verify that the wave propagating along the nanorod follows the fundamental 

HE11 mode, we plot in Supplementary Fig. 1b to Fig. 1f the distributions of the electric field 

intensity averaged along the length of the nanorod at the wavelengths of the five transmission 

minima, which are similar to those reported for the HE11 mode elsewhere
3, 4

, thereby justifying 

our use of the effective mode index for the estimation of the spectral locations of the 

transmission minima. 

 

Supplementary Note 2: Permittivity of ITO 

        The static transmission spectrum of the ITO-NRA from 360 nm to 710 nm was fitted using 

the Drude-Lorentz model, ɛ(ω) = ɛ∞ + AL/(ωL
2
-ω

2
-iγLω) – ωp

2
/(ω

2
+iγpω). Parameters that yield a 

good match between the simulated and the experimental transmission spectra are ɛ∞ = 3.95, AL = 

(1.4 eV)
2
, ωL = 3.8 eV, γL = 0.01 eV, ωp = 2.18 eV, and γp = 0.12 eV. The Drude-Lorentz model 

was adopted simply to provide reasonable wavelength dependent permittivity for the subsequent 

waveguide simulations, from which the effective mode index neff(ω) can be obtained. The single 

Lorentz pole is not expected to accurately describe the permittivity of ITO in the ultraviolet 

range (below 360 nm). In addition, the value of ωp = 2.18 eV obtained by fitting the visible 

spectrum is slightly larger than ωp = 2.02 eV obtained by fitting the NIR spectrum using a pure 

Drude model described previously
5
; in this work ωp = 2.02 eV was used for the calculation of the 

fluence dependent electron distribution. The relative permittivity of ITO in the visible (with the 

Drude-Lorentz model) and near-infrared range (with the Drude model) are plotted in 

Supplementary Fig. 2. 
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        The transmission spectrum of a bare YSZ substrate shown in Supplementary Fig. 3a reveals 

that although the substrate becomes slightly absorptive at wavelengths below 400 nm, its 

transmission is almost constant from 360 nm to 710 nm. As a result, in the optical simulations 

we treated the substrate as a lossless dielectric with a constant refractive index
6
 of 2.2. In 

Supplementary Fig. 3b we plot the simulated transmission spectrum of the array, which 

compares well with the experimental counterpart. The edge length, height and periodicity are 

180 nm, 2.6 µm and 1 µm, respectively. 

 

Supplementary Note 3: Transmission and reflection of the ITO-NRAs measured using an 

integrating sphere 

        Supplementary Fig. 4 shows the total transmission and reflection spectra in the visible range 

for the three ITO-NRA samples investigated in this work measured using an integrating sphere to 

capture the intensities of the higher diffraction orders. Absorption was deduced by subtracting 

the total transmission and reflection from unity. In this case the transmission minima are 

significantly diminished, confirming that the spectral features in the visible range are not due to 

enhanced absorption, as observed for semiconducting nanowires
7-9

. 

 

Supplementary Note 4: Theoretical modelling of the permittivity change of the ITO-NRAs 

        We first generalize the calculation of the imaginary part of the relative permittivity to cover 

the case of direct interband optical transition in a semiconductor with a non-parabolic conduction 

band (CB) and a parabolic valence band (VB). The dispersion relations are ħ
2
k

2
/2mv = Ev for 

holes in the VB, and ħ
2
k

2
/2mc = Ec+CEc

2
 for electrons in the CB; here Ev is the hole energy 
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referenced to the valence band maximum (VBM), Ec is the electron energy referenced to the 

conduction band minimum (CBM), mv is the hole effective mass, mc is the electron effective 

mass (at CBM), and C  is the non-parabolicity of the CB. Both Ec and Ev are taken as positive. 

        Supplementary Fig. 6 shows the schematic diagram of the considered optical transition and 

various quantities defined. We denote R=mc/mv, and1/mr=1/mv+1/mc, where mr is the reduced 

effective mass. When an incident photon with energy ħω is absorbed in a direct, interband 

optical transition, energy conservation dictates that  

        ħω = Eg+Ec+Ev   (1).  

        If we let k
2
 = 2mc(Ec+CEc

2
)/ħ

2
, equation (1) becomes ħω = Eg+Ec+R(Ec+CEc

2
). This is a 

quadratic equation in Ec and can be rewritten as RCEc
2
+(R+1)Ec+(Eg-ħω) = 0, with the solution 
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        The derivative of Ec with respective to the photon energy ħω is given by 
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        The density-of-states (DOS) for electrons at Ec is  
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        Using        c c
d E d E    , where ρ(ħω) is the joint-density-of-states (JDOS) for 

optical transition with photon energy ħω, we get ρ(ħω) = [d(Ec)/d(ħω)]·ρ(Ec), which can be 

calculated numerically using equation (3) and (4). The absorption coefficient α(ω) arising from 

the considered transition can be written as  
 

     
2

2

v c2

0 0

1e
M f E f E

n' cm


   

 
    , 

where n′(ω) is the real part of the refractive index and M is the electric dipole matrix element
10

. 

For the highly doped materials considered here, f(Ev) = 1, hence  
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1
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       (5).  

        Since α(ω) = 2ωn′′(ω)/c, we can write  

             
   

2 
cn'

'' n' n''
  

   


   (6),  

where n′′(ω) is the imaginary part of the refractive index. Combining equation (5) and (6) gives  

             
2

2

c2 2

0 0

1
e

'' M f E
m


   

 
       (7),  

which is a dimensionless quantity. Now the intraband optical pumping in our study gives rise to 

a redistribution of the electrons in the conduction band, whose temperature T can be calculated 

based on our earlier study
5
. As the Fermi function term f(Ec) in equation (7) is electron 

temperature dependent, a temperature dependent ε′′(ω) can be calculated from  

             
2

2

c2 2
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, ,
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'' T M f E T
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    , 
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where      0
, , ,'' T '' T '' T         and      0

, , ,  
c c c

f E T f E T f E T  with 0
300 KT  

corresponding to the static case. Knowing Δε′′(ω, T) we can further obtain Δε′(ω, T) using the 

Kramers-Kronig relation,  
 0 0

0 2 20
0

2 ,
, P

 
 


'' T

' T d
  

  
  

. The procedure described above 

was used as a model to theoretically calculate the change of real part of the relative permittivity 

(shown in Fig. 3f) due to the modification of the interband transition under intraband optical 

pumping, which is the case of the fast component in our TA experiments. Supplementary Fig. 7 

presents the calculated f(Ec, T), Δf(Ec, T), Ec(ħω), and Δf(ħω, T) for electron temperature ranging 

from 300 K to 14,500 K. The Δf(ħω, T) was introduced in Supplementary Fig. 7d to better 

illustrate the connection between Δf(Ec, T) and Δε′′(ω, T). Note that at high electron temperatures 

(> 10,500 K), the electron chemical potential µ falls below the CBM, which is a result of 

conservation of the electron density. 

        Supplementary Fig. 8 shows the results for ρ(ħω), ρ(ħω)∙Δf(ħω), Δε′′(ω, T), as well as the 

experimentally determined α(ω) and theoretically calculated α(ω) on the basis of a constant 

matrix element of (2.8×10
-49

 J·kg)
1/2

. Note that various assumptions and simplifications were 

made for the theoretical calculations: 1) an experimental value of the effective mass for holes has 

not been reported. Density-functional-theory results all predict a much flatter VB compared to 

the CB
11-13

, hence we assumed a flat VB; 2) the dispersion of the non-parabolic CB
14

 is governed 

by mc = 0.263 m0 and C = 0.4191 eV
-1

; 3) the band gap is determined by subtracting the 

theoretically calculated electron Fermi energy referenced to CBM (~ 1.24 eV) from the 

experimentally measured absorption onset energy for an epitaxial ITO film sputtered on YSZ (~ 

4.0 eV as shown in Supplementary Fig. 8d). As it was not possible to get reliable absorption 

versus wavelength data for the ITO-NRA (arising from the scattering as well as absorption due 
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to the substrate, which is evident from Supplementary Fig. 4), we performed ellipsometry 

measurements (in both the ultraviolet to visible, and near-infrared ranges) on an epitaxial ITO 

film (135 nm thick) sputtered on YSZ, with the results shown in Supplementary Fig. 9. The 

experimental α(ω) curve (Supplementary Fig. 8d) was calculated using the refractive index 

obtained from the ellipsometric data fitting. The film plasma frequency was determined to be ~ 

2.1 eV based on the ellipsometry data in the NIR (Supplementary Fig. 9b); this value is close to 

the deduced plasma frequency of 2.02 eV for the ITO-NRAs. 

 

Supplementary Note 5: Estimating the electron and lattice temperatures 

        Measurements of the pump power showed that nearly 50% is transmitted and about 5% is 

reflected (reflection was referenced to a 200 nm thick gold film) by the ITO-NRA for all 

fluences used in the short-delay-TA experiments (up to 10.72 mJ·cm
-2

). We therefore conclude 

that 45% of the pump energy is absorbed by the ITO-NRA. Assuming a spatially uniform 

excitation profile, the energy (in mJ) deposited per unit volume of ITO nanorod (in cm
3
) per 

pump pulse can be calculated as 
2 2

0 45.

/

 p

L H a
, where p is the pump fluence in mJ·cm

-2
, L is the edge 

length in cm, H is the height in cm, and a is the periodicity in cm of the ITO-NRA. Note that in 

numerical calculations p was treated as a continuous variable. 

        The electron temperature at te,0 is denoted as Te,0. This was estimated using the procedure 

described earlier
5
. To assess the lattice temperature (denoted as Tl,0) achieved at tl,0, we used the 

heat capacity data from E. H. P. Cordfunke et al
1
 for In2O3 measured for the range from 0 to 

1000 K. To convert this data into the required units we used the In2O3 molecular weight of 

277.64 g·mol
-1

 and a mass density of 7.16×10
3
 kg·m

-3
 (calculated from the lattice constant of 
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cubic ITO, 1.01 nm). For comparison purposes, Cordfunke’s heat capacity is equivalent to 

2.567×10
6
 J·m

-3
·K

-1
 at 298 K, which is to be compared with a value of 2.58×10

6
 J·m

-3
·K

-1
 

adopted in the independent work by T. Yagi et al
15

. 

        Supplementary Fig. 10a and Fig. 10b show the calculated dependences of Te,0 and Tl,0 on the 

pump fluence (shown as curves). Based on the experimental fluences we can estimate 

temperatures reached in the TA experiments (shown as circles). Notably, the initial temperature 

of electrons (maximum is ~ 14,000 K) is about two orders of magnitude higher than that of the 

lattice (maximum is ~ 500 K), which stems from their very different heat capacities, as shown in 

Supplementary Fig. 10c and Fig. 10d. 

 

Supplementary Note 6: Details of the heat-transfer simulations 

        The heat transfer equation is given by ρCp(∂TL/∂t) + ∇·(-κ∇TL) = 0 where the temperature 

TL is a function of both time and position, and κ is the thermal conductivity. This equation was 

solved using COMSOL Multiphysics in the time domain. A uniform temperature profile in the 

nanorod was used as the initial condition (with temperatures obtained from Supplementary Fig. 

10b). Periodic boundary conditions were used along the in-plane directions. As no perfectly 

matched layer (which is an absorbing boundary) is available in the time domain study, we 

truncated the YSZ substrate in the out-of-plane direction at 10 µm below the interface of YSZ 

and ITO. A constant temperature (300 K) was imposed on the bottom YSZ boundary; this is 

valid since the total volume of YSZ is more than two orders of magnitude larger than the 

nanorod in the heat-transfer simulations, therefore temperature rise at the bottom boundary is at 

most a few degrees. 
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        The thermal conductivity κ of ITO was calculated from the equation κ = κel + κph, where κel 

and κph are thermal conductivities contributed by mobile electrons and phonons, respectively. 

According to T. Ashida et al
16

, κph is almost constant (3.95 W·m
-1

·K
-1

 for ITO films with 

different electron concentrations), whereas κel is well described by the Wiedemann-Franz law of 

κel = LTσ, where L is the Lorentz number (2.45×10
-8

 WΩ·K
-2

) and σ is the electrical conductivity. 

In our heat-transfer simulations we considered κel = LTσ as a temperature dependent quantity, as 

opposed to κph which was assumed to be temperature independent. To get a reasonable estimate 

for σ, we performed Hall measurement (Van der Pauw method, Ecopia HMS-5000) on an 

epitaxial ITO film grown on YSZ substrate, whose electron concentration and mobility were 

found to be ~ 1.3×10
21

 cm
-3

 and 47 cm
2
·V

-1
·s

-1
, respectively, yielding a value of 9.4881×10

5
 

S·m
-1

 for σ. The thermal conductivity of ITO at 300 K is determined to be 10.9 W·m
-1

·K
-1

, which 

is more than an order of magnitude smaller than that of gold (314 W·m
-1

·K
-1

). The thermal 

conductivity and heat capacity of YSZ were taken to be 2.5 W·m
-1

·K
-1

 (from K. W. Schlichting 

et al
17

) and 60.4 J·mol
-1

·K
-1

 (from T. Tojo et al
18

), respectively. Both quantities were assumed to 

be temperature independent, since the temperature rise in the YSZ substrate is negligible in 

comparison to that of ITO. YSZ’s molecular weight and mass density were 123.218 g·mol
-1

 and 

6.0 g·cm
-3

, respectively
17

.  To further explore the geometrical dependence of the lattice heat 

dissipation rate, we performed extra heat-transfer simulations for ITO nanorods with different 

heights and edge lengths; the results are summarized in Supplementary Fig. 12. Interestingly, by 

adjusting the nanorod height the decay rate can be tuned over an order of magnitude. In contrast, 

changing the nanorod edge length has a negligible influence on the heat dissipation rate. 
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Supplementary Note 7: Full ∆T(t)/T(0) spectral maps 

        Supplementary Fig. 14 shows the ∆T(t)/T(0) spectral maps of the fast component acquired 

from short-delay TA experiments. The transient spectra of ∆T(t)/T(0) plotted in Fig. 2b are line-

cuts from these maps at time delay time te,0. Supplementary Fig. 15 presents the ∆T(t)/T(0) 

spectral maps of the slow component obtained from the long-delay TA experiments; the kinetics 

shown in Fig. 5b are line-cuts from these maps at 560 nm. A low signal-to-noise ratio below 400 

nm arises from a relatively weak probe intensity. 

 

Supplementary Note 8: Spectral maps of ∆OD(t) and T(t) 

        In TA experiments 
 
 

   
 

   
 
0 0

0

0 0

0 0 0

/ /

/

  
 

T t T t T I t I I I

T T I I
, where I0 is the intensity of the 

beam transmitting through air (taken as the background in all measurements), and I(0) and I(t) 

are beam intensities transmitting through the sample before and at delay time t after the pump, 

respectively. Another commonly used quantity, ∆OD(t), is related to ∆T(t)/T(0) as, ∆OD(t) = -

log10[1+∆T(t)/T(0)]. The ∆OD(t) spectral map is plotted in Supplementary Fig. 15a for 

comparison with the corresponding ∆T(t)/T(0) spectral map (Fig. 2a). In addition, from T(0) and 

∆T(t)/T(0) we can calculate T(t), which is a direct way to present the dynamic transmission 

property of the array. In Supplementary Fig. 15b we plot T(t) to demonstrate that the visible 

transmission spectrum first redshifts and then recovers rapidly in sub-picosecond time scales. 
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