
 

Supplementary Figure 1 | Schematics of the meta-atom and decoupled control of wave 

parameters. a, Assignment of average pressure p[i] and displacement q[jk] for the membranes and 

sub-cells. b,c, Mapping of (ρ, B-1) with the control of (tO, tI) using b, the full solutions in (14) and c, 

their approximations (15) (right) at 1,300 Hz. 

 

 

 

 

 

 

 



 

Supplementary Figure 2 | Band structures of the meta-atom. a, 2D band diagram (CMT and 

FEM) and b, 3D plot of Dirac cone (CMT) near the operation frequency at 1,300 Hz.  

 

 

 

 

 

 

 

 



 

Supplementary Figure 3 | Characteristic motions of the meta-atom for a, ρ-dipolar and b, B-1-

monopolar modes. Displacement (gray lines) and momentum (black arrows) of the membranes. Also 

shown are the pressure field patterns (+: red, -: blue) at 1,300 Hz. 

 

 

 

 

 

 

 

 



 

Supplementary Figure 4 | Shifting the center of decoupling operation away from the Dirac 

point. a, Schematics of the meta-atom in the background host medium. FEM obtained (ρ, B-1) tuning 

map at 1,300 Hz are shown in b, (ρc, Bc
 -1) = (0,0) without host (ah = a) medium. c, (ρc, Bc

 -1) = (0.2, 

0.36) with (ρh, Bh
-1) = (1, 1). d, (ρc, Bc

 -1) = (0.4, 0.72) with (ρh, Bh
-1) = (2, 2). ah = 6cm, 7.5cm and 

7.5cm for b, c, and d respectively. 

 

 

 

 

 

 

 



 

Supplementary Figure 5 | Extension of ρ tuning range. CMT calculated (ρ, B-1) tuning maps at 

1,300 Hz for different lattice constant, a, a = 6 cm, b, a = 3 cm and c, a = 1 cm. Grid spacings for B-1 

(red lines) are fixed to 0.2, and for ρ (blue lines) are 0.2, 0.5 and 3, respectively. 

 

 

 

 

 

 

 

 



 

Supplementary Figure 6 | Implementation of bianisotropy and CMT obtained ξ values. a, 

Schematics of the asymmetric meta-atom for non-zero bianisotropy ξ with ∆tI ≠ 0. b, Comparison of 

exact (16) and approximated (17) solution of ξ, as a function of ∆tI. ρ = B-1 = 0, 1,300 Hz. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure 7 | Schematics of the asymmetric transmission between a, different 

impedances or b, waveguides widths, using matched zero index and bianisotropic metamaterials. 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure 8 | Schematics of the S parameters in the bianisotropic medium for 

determining effective wave parameters. 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure 9 | Wave parameter value maps in the (φR, φT) coordinate, subject to the 

constraint of 50:50 power divisions for transmission and reflection. Required a, density ρ and b, 

modulus B-1, and c, bianisotropy ξ are plotted. Required phase shifts (φR, φT) for individual meta-

atoms in the 40 × 1 meta-atom array, achieving extra-ordinary transmission and reflections are 

marked with red square (∆φT(x) ≠ 0) and red star (∆φR(x) ≠ 0), respectively (a = 6 cm, λ = 26.4 cm, 

and f = 1,300 Hz). 

 

 

 

 

 

 



 

Supplementary Figure 10 | Required phase shifts (φR, φT) for individual meta-atoms in a single 

sheet of a 40 × 1 array to achieve ordinary (blue marks) or extra-ordinary (red marks) transmission 

and reflection. 

 

 

 

 

 

 

 

 

 

 



Supplementary Note 1. Derivation of effective macroscopic acoustic parameters from the 

homogenization theory 

To derive equation (1) in manuscript, we start from the microscopic acoustic wave equations1 based 

on Newton’s law and Hooke’s law2. Assuming exp(iωt) time dependency of angular frequencyω, 
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where p(r), v(r), e(r) = B0
-1Bs

-1p(r), π(r) = ρ0ρsv(r) denote the pressure, velocity, strain and 

momentum density field at r, respectively. ρ0 and B0 are the density and bulk modulus of the air ‘0’; 

ρs and Bs are the density and bulk modulus (normalized to the air) of the constituting materials in the 

unit cell. 

By following a similar procedure used in Alù3 (homogenization theory for electromagnetic 

waves), we now derive the acoustic equations for the macroscopic fields (p̅, v̅) from (1). Noting that 

the effective parameters are independent of the origin of the coordinate4,5 in case of periodic system 

or finite metamaterial terminated at the same location of the unit cell, we use Floquet theory with 

exp(-iβ∙r) dependence. Averaging the field of p and v over the two-dimensional square lattice (lattice 

constant a, unit cell domain S, effective wavevector β), equation (1) then becomes 
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Now, using Taylor’s expansion in the long wavelength limit (a << 2π/|β|),  
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(2) is rewritten as 
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where ρsn is ρs in the n (r or x) direction. Comparing the microscopic (1) and macroscopic (4) 

equations, we obtain the averaged fields pav, πav, vav, and eav as 
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which make the macroscopic acoustic equations (4) to take the usual forms of -iβpav = -iω πav, and -
iβ∙vav = -iωeav. Under good approximations of ,1~1~ 22 ∫∫

SS
xx pdS

a
panddSv

a
v  we finally obtain the 

effective parameters of ρx and B-1: 
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Supplementary Note 2. Decoupling of the effective macroscopic acoustic parameters near 

the Dirac point  

Near the Dirac point, the decoupling of ρx and B-1 can be achieved using a meta-atom having an 

inner sub-cell with radial symmetry and outer sub-cells supporting linear vibrations, constructed with 

a membrane, air, and solid walls (Fig. 1b in manuscript). Considering that the area (thickness) and 

compressibility of the membrane is much less than that of air such that sm << s0, Bsm
-1 << Bs0

 -1 = 1, 

and noting that the mass of the membrane is much larger than that of air such that ρsmsm >> ρs0s0, 

we achieve, 
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where ISm(0) and OSm(0) refer to the integration region of the inner sub-cell and the outer sub-cell 

at the membrane (air), respectively. Now, near B-1 ~ 0 with zero effective compressibility, 

∫OSm(rρmrvr)dS ~ 0 because the radial movement of the outer membrane is impossible, and because 

the first term in the denominator vanishes from ∫S0pdS = Bs0
 -1∫pdS ~ 0 (with Bs0

 -1 = 1, and B-1 ~ 0 

while B-1 proportional to ∫ Bs0
 -1pdS ), we obtain 
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Similarly, near ρx ~ 0, the outer- and inner- membrane should move out of phase but need to 

maintain the same momentum value. To control ρ with the outer cells we impose ∫IS0vxdS ~ 0, which 

can be achieved with a large ρm in the inner membrane because ρx ~ ∫ISmρmxvxdS + ∫OSmρmxvxdS ~ 0. 

Additionally, for the membrane, sm << s0 thus ∫Sm pxdS << ∫OS0vxdS; thus,  
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Supplementary Note 3. Coupled mode theory derivation of (ρ, B-1) for a meta-atom having 

a sub-cell design 

For a specific geometry of Fig. 1b in the manuscript, a more rigorous solution for (ρ, B-1) can be 

obtained by solving the coupled mode equation. Assuming an average displacement q[jk] (i.e., 

membrane displacement directing from j to k) and pressure p[i] (i.e., pressure in the sub-cell room of 

i) as in Supplementary Fig. 1a, we separately apply Newton’s law to the membranes and Hooke’s 



law to the sub-cells to obtain the relation between p[i] and q[jk]. Assuming Floquet’s boundary 

conditions with an acoustic refractive index of (nx, ny), the coupling equations are then expressed as 
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(10)  

where b[jk], t[jk] and s[i] are the width, thickness and area of the membrane [jk] and sub-cell [i]; the B0, 

β0 are the air modulus and propagation constant, ρAl is the Aluminum density and a is the lattice 

constant. 

To find the eigenmodes of the system, we rewrite (10) in the form of a linear system (Ax = 0), 

where A is the 17 x 17 matrix, and x = [p, q] is the vector consisting of p’s and q’s. Focusing on the x 

direction (nx = n, ny = 0), (10) can be written as 
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It should be noted that the matrix A in (11) consists of the coefficients from Hooke’s law (row 1 to 5), 

Newton’s law (row 6 to 13), and Floquet’s boundaries (row 14 to 17).  

 



To achieve a non-zero physical null space of x = [p, q], Det(A) should vanish, leading to the 

analytical expression for effective n: 
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The effective impedance Z then also becomes 
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Using ρ =  n/Z and B-1 = nZ, we finally obtain rigorous solutions for ρ and B in analytical forms.  

Of critical importance is in solving the inverse problem, to find the design parameters of the 

membranes (MO, MI) from the target wave parameters of n and Z. From (12) and (13), we obtain, 
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Simplifying (14) in the long wavelength limit [exp(iβ0na) ~ 1+iβ0na-1/2(β0na)2] and by setting ±1 = 

+ and ±2 = - for the condition of (Im[n] ≥ 0, Re[Z] ≥ 0), for a first order approximation we achieve 

decoupled equations for MO (ρ) and MI (B−1) that is equivalent to equation (3) in the manuscript: 
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From the CMT (11), the dispersion relation ω(k) also can be obtained. Replacing MI and MO 

with mIω2 and mOω2 respectively, the CMT now becomes the function of ω and k. Directly solving 

Det[A]=0 in terms of wavenumber ω(k), we obtain,  
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Excluding negative valued and trivial solutions, we get solutions corresponding to 5 lowest bands; 

two flat bands and three dispersive bands (Supplementary Fig. 2a). Focusing on the Dirac point6,7 (ρ, 

B-1) = (0,0), we plot band diagram near 1,300Hz as shown in Supplementary Fig. 2b; exhibiting the 

Dirac cone and a third flat band (corresponding to the acoustic transverse mode6) providing a triple 

degeneracy at k = 0.  

 

Supplementary Note 4. Characteristic motions of dipolar (ρ) and monopolar (B-1) 

eigenmodes at the Dirac point 

Combining the eigensolution sets of v and p that were calculated in Supplementary Note 3 

meanwhile considering the excitation directions, it is possible to extract the dipolar-ρ (linear 

vibrations) and monopolar-B-1 (radial vibrations) modes, of the proposed structure. In Supplementary 

Fig. 3, we plot the CMT-calculated eigenmode patterns and displacement of membranes (gray lines) 

near the Dirac point, which clearly shows negligible vibrations of the inner membranes for the ρ - 

dipolar mode and negligible vibrations of the outer membrane for the B-1 - monopolar mode. Black 

arrows indicate the momentum of the individual membranes. These results confirm the proposed 

ansatzs and discussions regarding Eq. (2) in the manuscript. 



Supplementary Note 5. Decoupled operation away from the Dirac point and Extension of 

the tuning range 

To shift the center of decoupling operation away from the Dirac point (ρ, B-1) = (0, 0), we place the 

meta-atom in the host medium of (ρh, Bh
-1) (Supplementary Fig. 4a). In the frame of the effective 

medium theory, the shifted center of decoupling operation is calculated from (ρc, Bc
 -1) = (ρh (1-a/ah), 

Bh
-1(1-a2/ah

2)), well agreeing with the FEM results (Supplementary Fig. 4b-d). For example, with air 

(ρh, Bh
-1) = (1, 1) and ah = 7.5cm, it was possible to shift the decoupled operation point to (ρc, Bc

 -1) 

= (0.2, 0.36); mixing with (ρh, Bh
-1) = (2, 2) we also get (0.4, 0.72). 

For the extension of effective parameters’ tuning ranges, we first focus on the extension of ρ, 

with Eq. (3) in the manuscript and (15). With ρ ~ ρAltO /a and B-1 ~ ρAltI a (as sO ~ a2), the tuning 

range of ρ is extended (while keeping B-1 at same value) by increasing tO and tI, and using smaller 

unit cell a. For example, we get ρ = -36~36 and B-1 = -1~1 with a = 1.0cm & thicker tO and tI 

(Supplementary Fig. 5), as intuitively expected for the smaller and heavier meta-atom. The same 

equation (3) in the manuscript and (15) can be used to change the tuning range of B-1. Nonetheless, it 

is noted that the tuning range of B-1 = -1~1 is already not small, because B-1 is normalized to Air 

(BAir
-1 : BSolid or Liquid 

-1 = 104 ~ 106 : 1)8.  

 

Supplementary Note 6. Coupled mode theory derivation of bianisotropy ξ for a meta-atom 

having a asymmetric sub-cell design 

Decoupled control over the bianisotropy ξ 9-11 of the acoustic meta-atom also can be achieved with 

the asymmetric assignment of the inner membrane thickness (non-zero ∆tI = tI-Right - tI-Left), as shown 

in Supplementary Fig. 6. The analytical formula for ξ is obtained by solving the coupled mode 

equations using a similar process to that described in Supplementary Note 3. Solving for Z+ and Z- 

for + x and – x propagating waves, respectively, ξ = in(Z+ - Z-)/(Z+ + Z-) becomes 
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In a good approximation to the first order ∆tI near the Dirac point (ρ = B-1 = 0), the bianisotropy ξ of 

the meta-atom is solely determined by the structural asymmetry ∆tI, as shown below, which is 

independent (completely decoupled) from tI or tO: 
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Supplementary Note 7. Condition of complete tunneling between asymmetric impedance 

waveguides with bianisotropic meta-waveguide 

In this section, we consider the problem of perfect tunneling between two different impedance 

waveguides (region I and region III, ZI ≠ ZIII), with the introduction of bianisotropic media (ρ, B-1, ξ) 

in their interface (region II, Supplementary Fig. 7, left). Assuming the incident wave from the left, 

we convert the well-known electromagnetic wave equations of bianisotropy9 into the acoustic wave 

equations; by replacing E and H with v and p, and applying the boundary conditions we get, 
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where n is the refractive index; Z+ and Z- are the impedances for the + and - directions (Z+ ≠ Z- when 

ξ ≠ 0), respectively; R and T denote the reflection and transmission coefficients across region II. To 

achieve 100% transmittance with zero phase shift, we impose R = 0 and T = 1 to obtain 
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Eliminating vII+ and vII- in (20), we get 
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Additional equations can be obtained from the other case, where the wave propagates from the 

region of input impedance ZIII to the region of the output impedance ZI. By exchanging ZI and ZIII 

and Z+ and Z- in (21), we get two additional equations, and together with (21) we achieve the 

following expressions for exp(ik0nd):  

.
III

I

I

III

III

I

I

III

I

III

III

I

I

III

III

I0

−

−

−

−

+

+

+

+

+
+

=
−
−

=
+
+

=
−
−

=
ZZ
ZZ

Z
Z

ZZ
ZZ

Z
Z

ZZ
ZZ

Z
Z

ZZ
ZZ

Z
Ze ndik             (22) 

It is evident that (22) holds only if Z+ = 0 and Z- = ∞ (or if Z+ = ∞ and Z- = 0). This leads to two sets 

of solutions (n, Z+, Z-) = (1/2log(ZIII/ZI)/ik0d, 0, ∞) and (1/2log(ZI/ZIII)/ik0d, ∞, 0), which are in fact 

physically identical in terms of (ρ, B-1, ξ) = (2n/(Z++Z-), 2Z+Z-n/(Z++Z-), (Z+-Z-)/(Z++Z-)) = (0, 0, 

1/2log(ZI/ZIII)/k0d). It is important to note that when the impedances of the input and output 

waveguides are identical (ZI = ZIII), all solutions of ρ, B-1 and ξ should be zero concurrently; 

enforcing region II to be matched zero index material (for the initial condition of R = 0 and T = 1). In 

contrast, when ZI ≠ ZIII, the required bianisotropy |ξ| increases for larger impedance mismatch ZI/ZIII.  

The condition for complete transmission between different width waveguides (w1 ≠ w2, right 

of Supplementary Fig. 7) is also obtained by replacing Z with w, which leads to the solution (ρ, B-1, 

ξ) = (0, 0, 1/2log(w1/w2)/k0d). It is noted that the proposed bianisotropic impedance conversion is 

intrinsically different from the resonator-based impedance matching12, as our condition is determined 

only by the ratio of impedances (ZIII/ZI), meanwhile the resonator approach involves both the 

matching of impedances (ZIZIII)1/2 and resonance neff ∙ d = λ/4. 



Supplementary Note 8. Transmittance of bianisotropic impedance conversion as a function 

of ξ 

In this section, we calculate the transmittance for the problem shown in Supplementary Fig. 7 when 

the wave parameters of the medium in region II are (ρ, B-1, ξ) = (0, 0, ξ). For this case, the wave 

equations in (19) are reduced to 
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Solving (23) and also replacing Z with w, the transmittance T as a function of ξ is derived as 

.22

0000

2

1

1

2

III

I

I

III dkdkdkdk e
w
we

w
we

Z
Ze

Z
Z

T
ξξξξ +

=
+

=
−−

                  (24) 

From (24), the maximum transmittance (T = 1) is shown to occur when exp(2k0ξd) = ZIII/ZI, which 

is equivalent to the primary result obtained in Supplementary Note 7. 

 

Supplementary Note 9. Determination of ρ, B-1 and ξ for the target φR, φT  

With the target S11 (= √1/2exp(iφR)), S21 (= √1/2exp(iφT)), and S22 (= √1/2exp(iφ)) for the 

bianisotropic meta-atom (Supplementary Fig. 8), it is straightforward to calculate ρ, B-1 and ξ. 

Adapted from the corresponding solutions in electromagnetic waves9 we have, 
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Assuming the lossless case (i.e., n is real or pure imaginary), we obtain real-valued ξ and B-1 if 

Im[(S11-S22)/S21] = 0 and Re[(1+S11+S22+S11S22-S21
2)/2S21] = 0. Then we get, 
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Both equations in (26) are satisfied when φ =  π - φR + 2φT. Using the target values φR, φT , and φ =  

π - φR + 2φT to calculate S11, S21, and S22, then the required values of (ρ, B-1, ξ) are determined using 

(25). Figure 4a in the manuscript and Supplementary Fig. 9 show the phase shift contour (φR, φT) in 

the parameter octant space of (ρ, B-1, ξ) and the maps of each required wave parameters for the 

decoupled manipulation of the phase shift for (φR, φT) subject to the constraint of 50:50 power 

division. For example, Supplementary Fig. 10 shows the required phase shifts (φR, φT) of an 

individual meta-atom (in a single sheet of 40 × 1 array) achieving ordinary (∆φ(x) = 0, blue marks) 

or extra-ordinary (∆φ(x) ≠ 0, red marks) reflection and transmission. From the target (φR, φT) values 

in Supplementary Fig. 10, the calculation of (ρ, B-1, ξ) are obtained from Eqs. (25); then, the top-

down determination of the corresponding (tO, tI, ∆tI) is straightforward. 
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