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Supplementary Figure 1 | Schematics of the meta-atom and decoupled control of wave

t, (um)

parameters. a, Assignment of average pressure pp; and displacement g for the membranes and

sub-cells. b,¢, Mapping of (p, B™') with the control of (o, #1) using b, the full solutions in (14) and c,
their approximations (15) (right) at 1,300 Hz.
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Supplementary Figure 2 | Band structures of the meta-atom. a, 2D band diagram (CMT and

FEM) and b, 3D plot of Dirac cone (CMT) near the operation frequency at 1,300 Hz.
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Supplementary Figure 3 | Characteristic motions of the meta-atom for a, p-dipolar and b, B'-

monopolar modes. Displacement (gray lines) and momentum (black arrows) of the membranes. Also

shown are the pressure field patterns (+: red, -: blue) at 1,300 Hz.
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Supplementary Figure 4 | Shifting the center of decoupling operation away from the Dirac
point. a, Schematics of the meta-atom in the background host medium. FEM obtained (p, B') tuning
map at 1,300 Hz are shown in b, (pc, Bc ') = (0,0) without host (an = @) medium. ¢, (pc, B.™!) = (0.2,
0.36) with (pn, Br™') = (1, 1). d, (pc, Bc ') = (0.4, 0.72) with (pn, Br™') = (2, 2). an = 6cm, 7.5cm and

7.5cm for b, ¢, and d respectively.
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Supplementary Figure 5 | Extension of p tuning range. CMT calculated (p, B') tuning maps at
1,300 Hz for different lattice constant, a, a =6 cm, b, a =3 cm and ¢, a = 1 cm. Grid spacings for B!

(red lines) are fixed to 0.2, and for p (blue lines) are 0.2, 0.5 and 3, respectively.
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Supplementary Figure 6 | Implementation of bianisotropy and CMT obtained ¢ values. a,
Schematics of the asymmetric meta-atom for non-zero bianisotropy & with A¢; # 0. b, Comparison of

exact (16) and approximated (17) solution of & as a function of At1. p=B"' =0, 1,300 Hz.



Supplementary Figure 7 | Schematics of the asymmetric transmission between a, different

impedances or b, waveguides widths, using matched zero index and bianisotropic metamaterials.
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Supplementary Figure 8 | Schematics of the S parameters in the bianisotropic medium for

determining effective wave parameters.
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Supplementary Figure 9 | Wave parameter value maps in the (¢r, ¢r) coordinate, subject to the
constraint of 50:50 power divisions for transmission and reflection. Required a, density p and b,
modulus B!, and ¢, bianisotropy & are plotted. Required phase shifts (¢gr, ¢r) for individual meta-
atoms in the 40 x 1 meta-atom array, achieving extra-ordinary transmission and reflections are
marked with red square (A¢r(x) # 0) and red star (Agr(x) # 0), respectively (a = 6 cm, A = 26.4 cm,
and = 1,300 Hz).



Supplementary Figure 10 | Required phase shifts (¢r, ¢r) for individual meta-atoms in a single
sheet of a 40 x 1 array to achieve ordinary (blue marks) or extra-ordinary (red marks) transmission

and reflection.



Supplementary Note 1. Derivation of effective macroscopic acoustic parameters from the

homogenization theory

To derive equation (1) in manuscript, we start from the microscopic acoustic wave equations' based
on Newton’s law and Hooke’s law?. Assuming exp(ier) time dependency of angular frequency e,

Vp(r) = —ien(t)= —iop,v(r)-iop,(p, ~HV(r)

V-v(r)= —iwe(r)= —iwB, p(r)—iwB, (B,' —1)p(r) )

where p(r), v(r), e(r) = Bo'By'p(r), m(r) = popsv(r) denote the pressure, velocity, strain and
momentum density field at r, respectively. po and By are the density and bulk modulus of the air ‘0’;
ps and By are the density and bulk modulus (normalized to the air) of the constituting materials in the

unit cell.

By following a similar procedure used in Alu® (homogenization theory for electromagnetic
waves), we now derive the acoustic equations for the macroscopic fields (p, V) from (1). Noting that
the effective parameters are independent of the origin of the coordinate®’ in case of periodic system
or finite metamaterial terminated at the same location of the unit cell, we use Floquet theory with
exp(-if-r) dependence. Averaging the field of p and v over the two-dimensional square lattice (lattice

constant a, unit cell domain S, effective wavevector B), equation (1) then becomes

P 1)) o
—ifp = —iwp,V - afO [Go, ~Dvr)eas
S
0B |
~ip-V=—iaB,' p- " [ (B, ~)p(r)e™ ds @)
a S

where V= sz v(r)e®dS, andp= %J.p(r)e"ﬁ*ds,
a S a S

Now, using Taylor’s expansion in the long wavelength limit (a << 27/|B|),

[(p, =Dv(r)e™ dS = [(p, ~1)v(r)dS —iB jw S+
S S S G)

[(B =Dp(r)e®ds = [(B ~1)p(r)ds i | Mds .



(2) is rewritten as

B =2 [r-(p, ~DV()dS] = —i0p [V + 5 [ (p, ~Dv(r)dS]
2a” % a’ s @
B[V 22 [r(B," ~ D p()dS) = ~iwB, [P+ [ (B, ~)p(r)dS].
2a” % a s

where pg, is ps in the n (r or x) direction. Comparing the microscopic (1) and macroscopic (4)

equations, we obtain the averaged fields pav, Tav, Vav, and eay as

P = P2 1o, ~DVONS, = Py [ (o, ~D(r)aS)
a 5 a s (5)

Vo = V22 (KB -Dp()dS, e, = B[P+ [ (B ~Dp(r)ds],
2a” % a

which make the macroscopic acoustic equations (4) to take the usual forms of -iBpay = -i® Tav, and -

iB+Vay = -iweay. Under good approximations of 3 ~ Lz“‘vxds and p ~ Lz j pdS, we finally obtain the
a a

effective parameters of p, and B™":
Vx + LZJ.(IDV( - l)vde J.p.\'xvde
Ravs ? 5 ~ § ,and

B PoVavs 3 _io (B —1)pxdS dS_iL’) 1
x . —Dpx v, (B, ~1)pxdS
2a2£ l 2 ! (6)

B+ (B ~1)pds [ pas
B—l _ eav — a S - S
B)'p _ iw iw ’
o 542 (o ~1wdS [ pdS+'?[r(p. —1yv.dS
Pt !r(p,\, W, ! pdS+= lr(pﬁ, W,

X

Supplementary Note 2. Decoupling of the effective macroscopic acoustic parameters near

the Dirac point

Near the Dirac point, the decoupling of px and B! can be achieved using a meta-atom having an
inner sub-cell with radial symmetry and outer sub-cells supporting linear vibrations, constructed with
a membrane, air, and solid walls (Fig. 1b in manuscript). Considering that the area (thickness) and
compressibility of the membrane is much less than that of air such that sm << s0, Bsm™ << By ' =1,
and noting that the mass of the membrane is much larger than that of air such that psmsm >> psoso,

we achieve,



[ pyev.ds [pov.ds+ [ p,v.ds
Sm —

ISm OSm

P io B io
g[)vde + 2y Sjm pxdS [_S[vadS + 0‘[ ;/de + 2y S_L pxdS e
[ B pas [ B pas
B ~ 50 _ _ S0 .
[ pas+ % [rovds  [Bpds+ %( [rpuv,ds+ [rp,v,ds)
S0 Sm S0 ISm OSm

where ISm(0) and OSm(0) refer to the integration region of the inner sub-cell and the outer sub-cell
at the membrane (air), respectively. Now, near B! ~ 0 with zero effective compressibility,
[ 0sm(rPmvr)dS ~ 0 because the radial movement of the outer membrane is impossible, and because
the first term in the denominator vanishes from [sopdS = Byo '|pdS ~ 0 (with Byo ™ =1, and B! ~ 0
while B! proportional to | By "'pdS ), we obtain

[ B pds

B—l — S0
iw

A rpmrvrdS

ISm

(8)

Similarly, near p. ~ 0, the outer- and inner- membrane should move out of phase but need to
maintain the same momentum value. To control p with the outer cells we impose J50vxdS ~ 0, which
can be achieved with a large pm in the inner membrane because px ~ JismPmevedS + [0smPmevedS ~ 0.

Additionally, for the membrane, sm << s thus [sm pxdS << [osov«dsS:; thus,

[povds+ [ p,vds
— ISm OSm 9
P J v.dS ' ®

0S0

Supplementary Note 3. Coupled mode theory derivation of (p, B) for a meta-atom having

a sub-cell design

For a specific geometry of Fig. 1b in the manuscript, a more rigorous solution for (p, B!) can be
obtained by solving the coupled mode equation. Assuming an average displacement g (i.e.,
membrane displacement directing from j to k) and pressure py; (i.e., pressure in the sub-cell room of

i) as in Supplementary Fig. la, we separately apply Newton’s law to the membranes and Hooke’s



law to the sub-cells to obtain the relation between pp;; and gpix. Assuming Floquet’s boundary

conditions with an acoustic refractive index of (., n,), the coupling equations are then expressed as

1 _ _
By apys;y = Zb[ik]q[ik] Zb[ji]q[ji]’
e j

Pr7 t Py
Pisy T Py

2
— Palin®@ di g = (P = Prjy)s

. (10)
= 7] = exp(_iﬂonxa)a
951

Pyt Prey i
D)+ Py

=exp(—ifjyn,a)

91341

where byju, fj and sy are the width, thickness and area of the membrane [jk] and sub-cell [i]; the Bo,
Po are the air modulus and propagation constant, pai is the Aluminum density and a is the lattice

constant.

To find the eigenmodes of the system, we rewrite (10) in the form of a linear system (Ax = 0),
where A is the 17 x 17 matrix, and x = [p, ¢] is the vector consisting of p’s and ¢’s. Focusing on the x

direction (nx = n, n, = 0), (10) can be written as
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It should be noted that the matrix A in (11) consists of the coefficients from Hooke’s law (row 1 to 5),

Newton’s law (row 6 to 13), and Floquet’s boundaries (row 14 to 17).



To achieve a non-zero physical null space of x = [p, ¢], Det(A) should vanish, leading to the

analytical expression for effective n:

exp(ifyna) = 2clc (MM, +Co)(M, +Cy+4C,)+2C,[M,(M, +C,)+C,(4M, +C,)]+ (12)

\/[ZMICO + M (M, +C )M, +Cy+4C1[2M Co(M |+ Cp) +4C,C,2M | + Cy) + My (M, + Co)(M, + C, +4C))]}.

The effective impedance Z then also becomes

4y~ dedn 2i(M, + Co)yJM, + C, +4C, (13)
\ = -

21a)q[7]
p[7] +p[3] _\/[ZMICO Jr1\40(1‘41 Jr(/’())][21\41(;0(M1 +CO)+4COC1(2MI +(:O)‘FA4()(A4I +(/‘())(1\41 +CO Jr4(;1)] .

Using p= n/Z and B! = nZ, we finally obtain rigorous solutions for p and B in analytical forms.

Of critical importance is in solving the inverse problem, to find the design parameters of the

membranes (Mo, M1) from the target wave parameters of #n and Z. From (12) and (13), we obtain,

c,’ .
2001+ cos("4)] 4C]a)\/[1 + -0 7 7sin(Z4y)]
M. =-2C + Cy n 4CIO) C,
o~ 0 —1 -2
7,7 sin(%) C,2,Z sin(“2%) (14)
C S

wna )]

0

C 2
2C1a)\/[1 1 ﬁZOZ sin(
I

M, =-C,-2C, +(£,-1,) .

Simplifying (14) in the long wavelength limit [exp(ifona) ~ 1+ifona-1/2(Bona)?] and by setting +1 =
+ and +; = - for the condition of (Im[xn] > 0, Re[Z] > 0), for a first order approximation we achieve

decoupled equations for Mo (p) and M (B~') that is equivalent to equation (3) in the manuscript:

2
o2~ () 201+ Co 7,2 :
PoSo~ 2 1 2 8C,0 < 1 c, Bysi 1 (15)
—(topa + Yo =—M,~-Cy+ =-C, —* app, ———= a(— — >+ -0 pp,)
2a 2 7,7 wna 7,7 wna ) 4C, So  4s,t 2
¢, ¢,

2 -1 2 -1

—(t,py, + 2000 po ')a) ala, =M, ~-C, -2, —20,[1+ <0 (Z Znay) - ¢, —4c,-Co “Bil :—a(ﬁﬁﬁuBﬂ“z Bil ).

2a, 8C, ¢, 4 B, So S 4s," B,

From the CMT (11), the dispersion relation a(k) also can be obtained. Replacing M7 and Mo
with mi1@’ and mo @’ respectively, the CMT now becomes the function of @ and k. Directly solving

Det[A]=0 in terms of wavenumber a(k), we obtain,



®=0,+i VCo | N=Um +mo)Co .

Sm " mymg

B -1/3 1/3
i\/_zco_zco_«am .2 }/3,

L Mg m m mam
L[ 26 _2¢, _4c, 2™ 1—Iz P+2”3 1+fz o,
B | o m, m;  mgm, P
o |2 26 _tq, 20 1y po 221 o],
h mg, m, m;  mgm, P

1= Z(mo3 + 3m02mI - 6mom12 - 8m13)CO3 + 12(m03 - mozmI + 4m0m12 )COZCI
+54my’m, [cosh(kxa)+ cosh(kya) C,’C, + 48(— my’ +2my’m, )COC,2 —-128m,’C,’

where

1
p— ‘:17+ \/172 —4[(m02 +2mom; + 4’”12 )C02 + 4(m02 — 2mOmI)COCI + 16!1102(?12]3 T (16)

0 = (o +2m, +4m? 1 my )Co? +4(mg —2m, ) CoCy +16myC,2
Excluding negative valued and trivial solutions, we get solutions corresponding to 5 lowest bands;
two flat bands and three dispersive bands (Supplementary Fig. 2a). Focusing on the Dirac point®’ (p,
B = (0,0), we plot band diagram near 1,300Hz as shown in Supplementary Fig. 2b; exhibiting the
Dirac cone and a third flat band (corresponding to the acoustic transverse mode®) providing a triple

degeneracy at k= 0.

Supplementary Note 4. Characteristic motions of dipolar (p) and monopolar (B')

eigenmodes at the Dirac point

Combining the eigensolution sets of v and p that were calculated in Supplementary Note 3
meanwhile considering the excitation directions, it is possible to extract the dipolar-p (linear
vibrations) and monopolar-B! (radial vibrations) modes, of the proposed structure. In Supplementary
Fig. 3, we plot the CMT-calculated eigenmode patterns and displacement of membranes (gray lines)
near the Dirac point, which clearly shows negligible vibrations of the inner membranes for the p -
dipolar mode and negligible vibrations of the outer membrane for the B! - monopolar mode. Black
arrows indicate the momentum of the individual membranes. These results confirm the proposed

ansatzs and discussions regarding Eq. (2) in the manuscript.



Supplementary Note 5. Decoupled operation away from the Dirac point and Extension of

the tuning range

To shift the center of decoupling operation away from the Dirac point (p, B') = (0, 0), we place the
meta-atom in the host medium of (pn, Bn') (Supplementary Fig. 4a). In the frame of the effective
medium theory, the shifted center of decoupling operation is calculated from (pc, Bc ™) = (on (1-a/an),
Bw'(1-a*/an?)), well agreeing with the FEM results (Supplementary Fig. 4b-d). For example, with air
(pn, Bn") = (1, 1) and an = 7.5cm, it was possible to shift the decoupled operation point to (pc, Bc ™)

= (0.2, 0.36); mixing with (pn, Bn™') = (2, 2) we also get (0.4, 0.72).

For the extension of effective parameters’ tuning ranges, we first focus on the extension of p,
with Eq. (3) in the manuscript and (15). With p ~ paito /a and B! ~ paitia (as so ~ a?), the tuning
range of p is extended (while keeping B! at same value) by increasing fo and ¢, and using smaller
unit cell a. For example, we get p = -36~36 and B! = -1~1 with @ = 1.0cm & thicker 70 and #
(Supplementary Fig. 5), as intuitively expected for the smaller and heavier meta-atom. The same
equation (3) in the manuscript and (15) can be used to change the tuning range of B™'. Nonetheless, it
is noted that the tuning range of B! = -1~1 is already not small, because B! is normalized to Air

(Bair™" : Bsolid or Liquia ' = 10 ~ 10° : 1)8,

Supplementary Note 6. Coupled mode theory derivation of bianisotropy & for a meta-atom

having a asymmetric sub-cell design

Decoupled control over the bianisotropy &°!! of the acoustic meta-atom also can be achieved with
the asymmetric assignment of the inner membrane thickness (non-zero At; = tiRight - t1-Left), as Shown
in Supplementary Fig. 6. The analytical formula for & is obtained by solving the coupled mode
equations using a similar process to that described in Supplementary Note 3. Solving for Z+ and Z.

for + x and — x propagating waves, respectively, &= in(Z+ - Z.)/(Z++ Z.) becomes

¢,C.° 1 1
~ 2020 (M +C, +2C)AM —1 17
d aw (M, +Co+2C) F Og((ZCé(M1+CO)CI)(G—F)) (17




F=\(M,+C,)H-K +2C,2H - K +2C,2H — K)]
G=(M,+Cy)H—-K)+2C,(2H - K +2M,C, +C) and AM = — aw’p,, AL,
H=(M,+Cy)2M,Cy+ MM, +C,)) @,
K =(M,+2C,)AM*

where

In a good approximation to the first order A¢; near the Dirac point (p = B! = 0), the bianisotropy & of
the meta-atom is solely determined by the structural asymmetry A4¢;, as shown below, which is

independent (completely decoupled) from ¢ or fo:

2 AMAAM? +16C?
f=— 20 log(1+ 24", SRR
aw\|AM? +16C? 8C, G (18)
G AM = — CoS1DPy AL
2aCow B,2aa,, !

Supplementary Note 7. Condition of complete tunneling between asymmetric impedance

waveguides with bianisotropic meta-waveguide

In this section, we consider the problem of perfect tunneling between two different impedance
waveguides (region I and region 111, Z; # Zm), with the introduction of bianisotropic media (p, B, &)
in their interface (region II, Supplementary Fig. 7, left). Assuming the incident wave from the left,
we convert the well-known electromagnetic wave equations of bianisotropy’ into the acoustic wave
equations; by replacing £ and H with v and p, and applying the boundary conditions we get,

—ikonx ikgnx

Vi = Vi€ tv.e

Z 1-R 1
zvlie—ikonx _ Vi eiko'LV > V]I(O) =1+ ann (d) = %Ta Pu (0) = 77]91[ (d) = ﬁT (19)
1

I 111

Pu 7 2

+

where 7 is the refractive index; Z+ and Z. are the impedances for the + and - directions (Z+ # Z. when
& # 0), respectively; R and T denote the reflection and transmission coefficients across region II. To

achieve 100% transmittance with zero phase shift, we impose R =0 and 7'= 1 to obtain



Vi, v =1
vIHe ikond +VH_ ikond — ZHI
Zl
20
Vi Ve _ 1 (20)
zZ. 7 2z
vH+ —ikond vH_ eikund _ 1
Z Z Z7Z

+ - 111

Eliminating vii+ and v in (20), we get

Z.(Z,+2) oikond . Z(Z,-2)) ond Zy

Z(Z,+Z.) Z(Z,+Z.) Z, 21)
Z+Z_ o Hond _ Z,-Z, gl _ 1
Z(Z.+Z) Z(Z.+Z) yAVA

Additional equations can be obtained from the other case, where the wave propagates from the
region of input impedance Zi to the region of the output impedance Zi1. By exchanging Z1 and Zm
and Z+ and Z. in (21), we get two additional equations, and together with (21) we achieve the

following expressions for exp(ikond):

oo — Zm Z, Zm +Z, III III (22)
Zy Zy Z,+Z, ZHI Z ZIII +Z

It is evident that (22) holds only if Z+ = 0 and Z. = o (or if Z+ = 00 and Z. = 0). This leads to two sets
of solutions (n, Z+, Z.) = (1/2log(Zm/Z1)/ikod, 0, ©) and (1/2log(Z1/Zm)/ikod, «, 0), which are in fact
physically identical in terms of (p, B, &) = Qu/(Z++Z.), 2Z+Z-n/(Z++Z.), (Z+-Z(Z++Z-)) = (0, 0,
12log(Z1/Zm)/kod). Tt is important to note that when the impedances of the input and output
waveguides are identical (Z1 = Zm), all solutions of p, B! and & should be zero concurrently;
enforcing region II to be matched zero index material (for the initial condition of R=0and 7= 1). In

contrast, when Z1 # Z, the required bianisotropy |& increases for larger impedance mismatch Z1/Z.

The condition for complete transmission between different width waveguides (w1 # wa, right
of Supplementary Fig. 7) is also obtained by replacing Z with w, which leads to the solution (p, B!,
& = (0, 0, 1/2log(wi/w2)/kod). Tt is noted that the proposed bianisotropic impedance conversion is
intrinsically different from the resonator-based impedance matching'?, as our condition is determined
only by the ratio of impedances (Zm/Zi), meanwhile the resonator approach involves both the

matching of impedances (Z1Zm)"? and resonance nefr - d = A/4.



Supplementary Note 8. Transmittance of bianisotropic impedance conversion as a function

of &

In this section, we calculate the transmittance for the problem shown in Supplementary Fig. 7 when
the wave parameters of the medium in region II are (p, B!, & = (0, 0, &). For this case, the wave

equations in (19) are reduced to

R 1

vy = Ve Z -
[ I 1+ VH(O) =1+ R’vn(d) = %T, pH(O) = T,pn(d) = T. (23)

—kg&x?

Pn =Pu-€ I I 141

Solving (23) and also replacing Z with w, the transmittance 7 as a function of £is derived as

2 2
T = = .
Lt yhost | | L gt (Wa ket [ M kst
Z, Zyy M W,

From (24), the maximum transmittance (7"= 1) is shown to occur when exp(2ko&d) = Zm/Z1, which

24)

is equivalent to the primary result obtained in Supplementary Note 7.

Supplementary Note 9. Determination of o, B! and £ for the target ¢r, ¢r

With the target Sii (= V1/2exp(igr)), S21 (= V1/2exp(igr)), and S (= V1/2exp(i¢)) for the

bianisotropic meta-atom (Supplementary Fig. 8), it is straightforward to calculate p, B! and &

Adapted from the corresponding solutions in electromagnetic waves’ we have,

-1 1_S11Szz +S221 Sn _Szz
cos ( ) n ) R o
- 28, _ S, plo_—in 1+8,+8,+8,,5, —SZI] o= n +¢& . (25)
k,d ’ —2sin(nk,d)’ sin(nk,d) 28, ’ B

Assuming the lossless case (i.e., n is real or pure imaginary), we obtain real-valued & and B! if

Im[(S11-S22)/S21] = 0 and Re[(1+S11+S522+511522-521%)/2521] = 0. Then we get,



151 =52) 1 €% _ gin(g, ) sin(g - g) = 2sin( %Py cos P =2y g
S o 2 2

21
1+8,+8,,+8S,,8,, -
28,

P+ =20
>l

Re( (26)

Say_ 1 _g+t _ -
)= 5 \E[COS(¢T)+COS(¢+¢R ¢T)]+2[COS(¢R ¢r) +cos(¢—¢r)]

= cos(

¢R2_¢)+\1Ecos(¢“2+¢)] =0.

Both equations in (26) are satisfied when ¢= 7 - ¢gr + 2¢r. Using the target values ¢r, ¢r, and ¢=
7- ¢r + 241 to calculate S11, Sa1, and S»2, then the required values of (p, B!, &) are determined using
(25). Figure 4a in the manuscript and Supplementary Fig. 9 show the phase shift contour (¢r, ¢r) in
the parameter octant space of (p, B!, & and the maps of each required wave parameters for the
decoupled manipulation of the phase shift for (¢gr, ¢1) subject to the constraint of 50:50 power
division. For example, Supplementary Fig. 10 shows the required phase shifts (4r, ¢1) of an
individual meta-atom (in a single sheet of 40 % 1 array) achieving ordinary (A¢(x) = 0, blue marks)
or extra-ordinary (A@(x) # 0, red marks) reflection and transmission. From the target (¢r, ¢r) values
in Supplementary Fig. 10, the calculation of (p, B!, &) are obtained from Egs. (25); then, the top-

down determination of the corresponding (zo, t1, At1) is straightforward.
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