1 Repository Text

2 Methods

3 Cell lines and Transfections

IL-6R expressing Cos-7 (Origene) cells and U3A cells (provided by G. Stark, Cleveland
Clinic, Ohio), were used. The cells were maintained in complete Dulbecco modified Eagle
medium (DMEM; Life technologies, NY) supplemented with 10% FCS, 2mM L-glutamine,
HEPES and antibiotics. Transient transfections were carried out using either electroporation
(Lonza, Germany) or Lipofectamine 2000[®] transfection reagent (Life technologies, NY)
following manufacturers' protocol.

10 Plasmids and constructs

Plasmid encoding Myc-DDK tagged wild type STAT3 transcript variant 1 was purchased from Origene Technologies, MD, USA (RC215836). Point mutations were introduced in the wild type sequences using point mutagenesis PCR and the resulting PCR products were cloned into the pCM6-XL4 background (BioInnovatise, Rockville, MD). Endotoxin-free plasmid preparations were made using Endo Free plasmid kits purchased from Qiagen (Germany).

16 STAT3 phosphorylation assay

17 Cells transfected with plasmids encoding wild type or mutant *STAT3* were stimulated with 18 oncostatin M (OSM; 50ng/ml) or IL-6 in increasing concentrations (20ng, 100ng, 200ng, 19 1,000ng) for 30 min at 37°C. Cells were then fixed with 4% paraformaldehyde (Electron 20 Microscopy Sciences, PA), permeabilized with 100% methanol and stained for STAT3 (BD 21 APC) and phosphoSTAT3 (BD AF 488, pY705). Fold induction of phosphoSTAT3 (Y705) in 22 OSM or IL-6 stimulated cells over non-stimulated cells was calculated using the geometric mean of the fluorescent values and the fluorescent values are denoted as MFI values (MeanFluorescent Intensity).

All data were acquired on either FACS Calibur or BD LSR Fortessa (BD Biosciences). A
minimum of 50,000 counts were acquired within the live cell population gate for each tube. Data
were analyzed using FlowJo version 9 (Tree Star Inc.).

28 **Protein Models**

- 29 The 3D models of STAT3 were generated using I-TASSER server. The electrostatic potential
- 30 was calculated with APBS and displayed using UCSF Chimera.

31

32 **References**

- E1. Chandesris MO, Melki I, Natividad A, Puel A, Fieschi C, Yun L, et al. Autosomal
 dominant STAT3 deficiency and hyper-IgE syndrome: molecular, cellular, and clinical
 features from a French national survey. Medicine (Baltimore) 2012; 91:e1-19.
- 36 E2. Jerez A, Clemente MJ, Makishima H, Rajala H, Gómez-Seguí I, Olson T, et al. STAT3
 37 mutations indicate the presence of subclinical T-cell clones in a subset of aplastic anemia
 38 and myelodysplastic syndrome patients. Blood 2013; 122:2453-9.
- E3. Schimke LF, Sawalle-Belohradsky J, Roesler J, Wollenberg A, Rack A, Borte M, et al.
 Diagnostic approach to the hyper-IgE syndromes: immunologic and clinical key findings
 to differentiate hyper-IgE syndromes from atopic dermatitis. J Allergy Clin Immunol
 2010; 126:611-7.e1.
- E4. Ohgami RS, Ma L, Monabati A, Zehnder JL, Arber DA. STAT3 mutations are present in
 aggressive B-cell lymphomas including a subset of diffuse large B-cell lymphomas with
 CD30 expression. Haematologica 2014; 99:e105-e.
- 46 E5. Heimall J, Davis J, Shaw PA, Hsu AP, Gu W, Welch P, et al. Paucity of Genotype47 phenotype correlations in STAT3 mutation positive Hyper IgE Syndrome (HIES).
 48 Clinical immunology (Orlando, Fla.) 2011; 139:75-84.
- 49 E6. Holland SM, DeLeo FR, Elloumi HZ, Hsu AP, Uzel G, Brodsky N, et al. STAT3
 50 mutations in the hyper-IgE syndrome. N Engl J Med 2007; 357:1608-19.
- E7. Koskela HL, Eldfors S, Ellonen P, van Adrichem AJ, Kuusanmäki H, Andersson EI, et
 al. Somatic STAT3 mutations in large granular lymphocytic leukemia. N Engl J Med
 2012; 366:1905-13.

- E8. Liu JY, Li Q, Chen TT, Guo X, Ge J, Yuan LX. Destructive pulmonary staphylococcal
 infection in a boy with hyper-IgE syndrome: a novel mutation in the signal transducer
 and activator of transcription 3 (STAT3) gene (p.Y657S). Eur J Pediatr 2011; 170:661-6.
- E9. Ives ML, Ma CS, Palendira U, Chan A, Bustamante J, Boisson-Dupuis S, et al. STAT3
 mutations underlying autosomal dominant hyper-IgE syndrome impair human CD8(+) T
 cell memory formation and function. The Journal of allergy and clinical immunology
 2013; 132:400-11.e9.
- E10. Couronné L, Scourzic L, Pilati C, Valle VD, Duffourd Y, Solary E, et al. STAT3
 mutations identified in human hematologic neoplasms induce myeloid malignancies in a
 mouse bone marrow transplantation model. Haematologica 2013; 98:1748-52.
- E11. Kristensen T, Larsen M, Rewes A, Frederiksen H, Thomassen M, Møller MB. Clinical
 Relevance of Sensitive and Quantitative STAT3 Mutation Analysis Using NextGeneration Sequencing in T-Cell Large Granular Lymphocytic Leukemia. The Journal of
 Molecular Diagnostics 2014; 16:382-92.
- E12. Pilati C, Amessou M, Bihl MP, Balabaud C, Nhieu JT, Paradis V, et al. Somatic
 mutations activating STAT3 in human inflammatory hepatocellular adenomas. J Exp
 Med 2011; 208:1359-66.
- E13. Milner JD, Vogel TP, Forbes L, Ma CA, Stray-Pedersen A, Niemela JE, et al. Early-onset
 lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function
 mutations. Blood 2015; 125:591-9.
- 74
- 75
- 76

77 Supplementary figure legend

78 Figure E1

- 79 Previously reported *STAT3* mutations by STAT3 domain. Hypomorphic dominant negative
- 80 mutations found in HIES (Job's) patients are indicated in purple; hypermorphic gain of function
- 81 mutations found in leukemia or lymphoma patients are in green; hypermorphic gain of function
- 82 mutations found in autoimmune disorders are in orange.
- 83
- 84

i <mark>gure E1</mark> 1 13	30 32	20	465 585	5	688 77
N-terminus	Coiled Coil	DNA Binding	Linker	SH2	ТА
Hypermorphi	ciated ic /lymphoma asso	C328_P330 dup H332L/Y R335W K340Q/E/N/del T341N G342D V343F/L D371_G380del R382W/Q/L F384L/C/S T389I N395Y T412S R423Q N425Y V432L/M H437P/Y V463del S465A/F S381Y H410R Q344H V353F K392R M394T E415K N420K G421R	N466D/S/T/K Q469R/H R471R N472D W479C S560del N567D I568F D502Y C550R D570N	K591E/M S614G R593P S614R R609G S611G/N G617E G618R F621V/L/S G617E G636F/Y G617R C638G N647D N6471 N6471 K642E Y657C/S/N Q644P/del Y657C/S/N G655D Y657_K658 ins M660R/T I665N S668F/Y Y657_M660 du S668F/Y K658E K658F K658E S6491 I6591 D661V/Y/H/I/Ins A662V T6631 V671F	qu