Formation of gold nanoparticles by glycolipids of Lactobacillus casei

Fumiya Kikuchi¹, Yugo Kato¹, Kazuo Furihata¹, Toshihiro Kogure², Yuki Imura¹, Etsuro Yoshimura^{1,3*}, Michio Suzuki^{1*}

¹Department of Applied Biological Chemistry, Graduate School of Agricultural and Life

Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.

²Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

³The Open University of Japan, 2-11 Wakaba, Mishima-ku, Chiba-city, Chiba, 261-8586, Japan

*To whom correspondence should be addressed. M. Suzuki, Tel: +81-3-5841-5156; E-mail: amichiwo@mail.ecc.u-tokyo.ac.jp, E. Yoshimura, Tel: +81-3-5841-5153; E-mail: ayoshim@mail.ecc.u-tokyo.ac.jp

Keywords

autoxidation, biomineralization, glycolipid, gold nanoparticle, Lactobacillus casei

Fig. S1. (a) Auric acid solution (1: 0 mM K[AuCl₄], 2: 0.25 mM K[AuCl₄], 3: 0.5 mM K[AuCl₄]) without *L. casei* cells and their UV/VIS spectra after 24 h. (b) Auric acid solution (1: 0 mM K[AuCl₄], 2: 0.25 mM K[AuCl₄], 3: 0.5 mM K[AuCl₄]) with *L. casei* cells (0.25 g/L) their UV/VIS spectra after 24 h. (c) Auric acid solution (1: 0 mM K[AuCl₄], 2: 0.25 mM K[AuCl₄], 3: 0.5 mM K[AuCl₄]) with *L. casei* cells (1.0 g/L) their UV/VIS spectra after 24 h. (d) Auric acid solution (1: 0 mM K[AuCl₄], 2: 0.25 mM K[AuCl₄], 3: 0.5 mM K[AuCl₄]) with *L. casei* cells (1.0 g/L) their UV/VIS spectra after 24 h. (d) Auric acid solution (1: 0 mM K[AuCl₄], 2: 0.25 mM K[AuCl₄], 3: 0.5 mM K[AuCl₄]) with *L. casei* cells (2.0 g/L) their UV/VIS spectra after 24 h. The green line: 0 mM K[AuCl₄], the blue line: 0.25 mM K[AuCl₄] and the red line: 0.5 mM K[AuCl₄] in UV/VIS spectra.

Fig. S2. (a) Magnified image of the cell from *L* .*casei* treated with Au(+) solution. (b) The size distribution of nanoparticles in the image of (a).

Fig. S3. The visual of each solution in the cell. 1: Pure water, 2: the supernatant of Au(-) after ultrasonication. 3: the supernatant of Au(+) after ultrasonication.

Fig. S4. MALDI-TOF-MS spectra of Au(-) extract (a) and Au(+) extract (b).

Fig. S5. MALDI-TOF/TOF-MS spectra of 939.6 (a), 953.6 (b), 967.6 (c), 981.6 (d) and 969.3 (e) peaks.

Fig. S6. DQF-COSY spectrum of DGDG.

Fig. S7. HSQC spectrum of DGDG.

Fig. S8. HMBC spectrum of DGDG.

Fig. S9. The schematic representation of the correlations from DQF-COSY and HMBC. Fig. S10. (a) MALDI-TOF-MS spectrum of the extract from spot 2 in Fig. 3 (c). (b) MALDI-TOF-MS analysis of Au(-) extract. (c) MALDI-TOF-MS analysis of Au(+) extract.

Fig. S11. MALDI-TOF/TOF-MS spectra of 1101.2 (a), 1115.2 (b), 1129.2 (c) and 1143.2 (d) peaks.

Fig. S12 (a) Auric acid solution (0.25 mM K[AuCl₄]) with DGDG purified from the TLC plate (1: 0 μ g/mL, 2: 5.0 μ g/mL, 3: 40 μ g/mL, 4: 160 μ g/mL) and their UV/VIS spectra after 24 h. The blue line: 0 mg/mL DGDG, the red line: 5.0 μ g/mL DGDG, the green line: 40 μ g/mL DGDG, the purple line: 160 μ g/mL in UV/VIS spectra. (b) The size distribution of nanoparticles in the image of Fig. 4f.

Fig. S13 (a) Auric acid solution (0.5 mM K[AuCl₄]) with caDGDG (1: 0 μ g/mL, 2: 10 μ g/mL, 3: 50 μ g/mL, 4: 100 μ g/mL) and their UV/VIS spectra after 24 h. The blue line: 0 mg/L DGDG, the red line: 10 μ g/mL DGDG, the orange line: 50 μ g/mL DGDG, the purple line: 100 μ g/mL in UV/VIS spectra. (b) TEM image of gold nanoparticles synthesized by caDGDG (100 μ g/mL). (c) The size distribution of nanoparticles in the image of (b)

Fig. S14 The speculated schematic scheme of autoxidation reaction of glycolipids with unsaturated fatty acids in auric acid solution.

Fig. S15. The correlation between dry weight of cells and OD_{600} .

(a)

(a)

Wavelength (nm)

500 600 Wavelength (nm)

700

0.05

0

400

(b)

