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Supplementary Texts 

A. Intuitive explanation on why Eq. (2) can reproduce the local distances 

approximately 

Here is our intuitive explanation on why the local distance reconstructed by Eq. 

(2) is proportional to the local distance between two neighbors in the original 

three-dimensional space. Suppose that (i) points are distributed uniformly, (ii) the 

local distance between two neighbors in the original space is r and (iii) the 

threshold used for obtaining a recurrence plot is ε (see Supplementary Figure 

5). Then, Eq. (2) for the two points in the three dimensional space can be 

derived as 
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By calculating Eq. (S1), we have 
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If we assume 𝑟 ≪ 𝜀, it is easy to see that Eq. (S2) is proportional to 𝑟. By 

assembling this type of local distances, we reproduce global distances and thus 

the topology of chromosomes. See Refs. 13 and 14 for the detail. 

 



B. How to compare local structures in our reconstruction: “3D correlation 

coefficients” 

In Figure 6, we compared local structures of our reconstructions by first 

obtaining distance matrices and second obtaining their correlation coefficients. 

By following this procedure, we can compare local structures which are invariant 

under rotation, reflection, shift, and change of size. 

 

Suppose that we have a series {𝑥𝑖 ∈ 𝑅3|𝑖 = 1,2, … ,𝑁}  of points in the 

three-dimensional space. For this series, an 𝑁-by-𝑁 distance matrix 𝐷 can be 

obtained as 𝐷(𝑖, 𝑗) = �𝑥𝑖 − 𝑥𝑗�, where ‖ ‖ shows the Euclidean norm, namely 

the square root of the sum of squares for the 

components,  𝐷(𝑖, 𝑗) = ��𝑥𝑖 − 𝑥𝑗�
𝑇
�𝑥𝑖 − 𝑥𝑗�. Here, we consider a transformed 

series of {𝑥𝑖} by  

𝑦𝑖 = 𝑐𝑐𝑥𝑖 + 𝑏,                          (S3) 

where 𝐴 ∈ 𝑅3×3 is a square matrix with |𝐴| = 1 𝑜𝑜 − 1 representing the rotation 

and/or the reflection, 𝑏 ∈ 𝑅3 corresponds to the shift in the space, and 𝑐 > 0 is 

a coefficient for the change of the size. We define that the distance matrix for 

{𝑦𝑖|𝑖 = 1,2, … ,𝑁} as ∆. Thus, each component of ∆ can be written as  
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which implies ∆= 𝑐𝑐 as a whole. Thus, if Eq. (S3) holds and we take the 

correlation coefficient between 𝐷 and ∆, it becomes 1. Namely, by obtaining 

distance matrices followed by taking their correlation coefficient, we can identify 

whether their structures are similar or not when we remove the freedoms of the 

rotation, the reflection, the shift, and the change of size. 

 

We compared local structures for a pair of reconstructed chromosomes in a 

similar way to Ref. 32. Namely, we prepared the window of 1Mb in the axis of X 

chromosome. Then, we slid it by 0.05 Mb repeatedly from the left arm to reach 

the right arm. At each position of the window, we applied the above two-step 

comparison to produce Figures 6a and 6b. Namely, if the local structures of the 

two X chromosomes at the corresponding window position are similar in 1Mb 

wide, then the value for the correlation coefficient becomes close to 1, while if 

their local structures at the corresponding window position in 1 Mb wide are 

more different, then the value for the correlation coefficient becomes smaller. 



 

In addition, we used the dendrogram for representing which cell is closer to 

which cell in the topological structure. We used the correlation coefficient 

between the distance matrices for the whole X chromosome reconstructions of 

every pair of 10 cells to produce the dendrogram. 

 

Additional Reference 

32. Fukino, M., Hirata, Y. & Aihara, K. Coarse-graining time series data: 

Recurrence plot of recurence plots and its application to music. Chaos 26, 

023116 (2016). 

 

 

 

 

 

 

 

 



 

Supplementary Figure 1 | Attractors for two models of deterministic chaos 

and their reconstructions from recurrence plots 

(a) and (f) are for the original shapes of the Lorenz and Rössler models. (b)–(e) 

and (g)–(j) are the reconstructions by recurrence plots using our previously 

published method11. (b) and (g) are from the original recurrence plots, where 

only 20% of points retain information. (c) and (h) show reconstructions of  

models that lose information of 90% of the plotted points. In (d) and (i), 1% of the 

points are bit flipped. (e) and (j) are the same as (b) and (g), except that only 

0.2% of points retain information but with a longer time series to mimic the case 

of Hi-C data of a single cell. 

 
 
 



 
 

Supplementary Figure 2 | Three dimensional chromosome reconstructions 

for single cells in 250kbp resolution 

Three-dimensional reconstructions for Cells 4-10 based on single-cell Hi-C data. 

  



 

Supplementary Figure 3 | Three-dimensional reconstruction of X 

chromosome in 50kbp resolution 

Each panel corresponds to Cells 1-10 and the ensemble Hi-C data. 

 

 

 

 

 

 

 



 

Supplementary Figure 4 | Comparison in computational time required for 

the method of Paulsen et al. (blue) and the proposed RPR method (red). 

The error bar was obtained for reconstructing three-dimensional structures for 

Cells 1 and 2. The computational time was obtained using a computer with 8 

core CPU (Intel(r) Xeon(r) E5-4640 at 2.40GHz) and 1TB memory. 

  



 

Supplementary Figure 5 | Schematic graph for two neighboring points for 

an intuitive explanation. There are two three-dimensional balls of radius ε 

defining the neighbors for the two points separated by 𝑟. Region B is the 

intersection between the two balls. Region A is the region where points belong to 

the left ball but not to the right ball, while in Region C, points belong to the right 

ball but not the left ball. If points are distributed uniformly, then Eq. (2) becomes 

proportional to the original local distance 𝑟 between the two points. See the 

Supplementary Texts A for the detailed calculation. 

  



Supplementary Table 1 | Comparisons of reconstructions using the 

method of Appendix B between the method of Paulsen et al. and the 

proposed RPR method when the reconstruction resolution was varied. 

Reconstructions for Cells 1 and 2 were compared for the method of Paulsen et al. 

(MBO) and the RPR method. We excluded the entries for which we obtained 

NaN for MBO for the comparisons. We found the tendency that the two 

reconstructions for MBO and RPR become more similar when the resolution 

becomes more coarse (the 4th and 5th columns), which means that when the 

resolution is fine, one of the reconstructions is not appropriate. When we 

compare the two reconstructions using the same method, the two 

reconstructions by MBO show lower correlations than those by RPR (see the 3rd 

and 2nd columns). Thus, these correlations imply that the reconstructions by 

MBO become worse if we try to use the finer resolution. 

Resolution RPR1-RPR2 MBO1-MBO2 RPR1-MBO1 RPR2-MBO2 

50kbp 0.8289 0.1537 0.3219 0.2314 

100kbp 0.7777 0.1867 0.4051 0.3295 

250kbp 0.6855 0.1979 0.5580 0.3066 

500kbp 0.5970 0.1935 0.6627 0.3898 

1Mbp 0.5373 0.1823 0.7843 0.5058 

2Mbp 0.5737 0.2248 0.7795 0.5880 

  



Supplementary Codes 

function [y3,dists] = reproduce3dstructure(rp1,ns) 

 

% 

%  rp1: contact map (binary sparse matrix showing 1 when a pair of segments has a contact or 0 otherwise) 

%  ns: The number of segments for each chromosomes  

%      The sum sum(ns) should be equal to size(rp1,1) and size(rp1,2). 

%  y3: three dimensional reconstruction 

% 

 

n = size(rp1,1); 

 

for ii = 1:size(ns,2) 

   for jj = (sum(ns(1:(ii-1)))+1):(sum(ns(1:(ii-1)))+ns(ii)) 

        rp1(jj,jj) = 1; % Each segment is close to itself. 

    end 

 

    for jj = (sum(ns(1:(ii-1)))+1):(sum(ns(1:(ii-1)))+ns(ii)-1) 

        rp1(jj,jj+1) = 1; % Consecutive segments are also close to each other. 

        rp1(jj+1,jj) = 1; 

    end 

end 

 

dists = calculatedistanceongraph2c3b(rp1); % Apply the proposed method using recurrence plot 

 

[y,e] = cmdscale(dists); % Apply the multidimensional scaling 

 

y3 = y(:,1:3); % Extract the three most major components 

 

 

function [dists,D] = calculatedistanceongraph(T) 

 

n = size(T); 

n1 = n(1); 

n2 = n(2); 



 

D = sparse(n1,n1); 

 

for i = 1:n1 

    i 

    temp = find(T(i,:) == 1); % Find a set of time indices 

    D(i,i) = 0; 

    for j = (i+1):n1 

        if sum(temp == j) > 0 

            temp2 = find(T(j,:) == 1); % Find another set of time indices 

            temp3 = intersect(temp,temp2); % Find their intersection. 

            temp4 = unique([temp temp2]); % Find their union. 

            temp5 = 1-(size(temp3,2)/size(temp4,2)); % Calculate the local distance defined by Eq. (2). 

            D(i,j) = temp5; % Assign the local distance so that 

            D(j,i) = temp5; % the distance matrix becomes symmetric. 

        end 

    end 

end 

 

dists = graphallshortestpaths(D,'directed',false); % Find all of the shortest distances on the graph 


