Supplementary Data

Genetic dissection of host immune response in pneumonia development and progression Tamara V. Smelaya, PhD, MD<sup>a</sup>, Olesya B. Belopolskaya, PhD<sup>b</sup>, Svetlana V. Smirnova<sup>b</sup>, Artem N. Kuzovlev PhD, MD<sup>a</sup>, Viktor V. Moroz, PhD, MD<sup>a</sup>, Arkadiy M. Golubev, PhD, MD<sup>a</sup>, Noel A. Pabalan (PhD)<sup>c</sup>, Lyubov E. Salnikova, PhD, Dr. Sci. (Biol.)<sup>a,b\*</sup> <sup>a</sup>V. A. Negovsky Research Institute of General Reanimatology, Russian Academy of Sciences, 25 Petrovka str., build.2, Moscow 107031, Russia; <sup>b</sup>N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkin street, Moscow 117971, Russia; <sup>c</sup>Center for Research and Development, Angeles University Foundation, Angeles City 2009, Philippines

Correspondence to: Lyubov E. Salnikova, Institute of General Genetics, Russian Academy of Sciences, 3 Gubkin Street, Moscow 117971, Russia, phone 74991328958, fax 4991328962 E-mail: <u>salnikovalyubov@gmail.com</u>

| Characteristics                  | Ċ                 | AP                | N                 | IP                |
|----------------------------------|-------------------|-------------------|-------------------|-------------------|
|                                  | Controls          | Cases             | Controls          | Cases             |
|                                  | n (po             | rtion)            | n (po             | rtion)            |
|                                  | Mean              | $\pm$ SD          | Mean              | $\pm$ SD          |
| Total number                     | 203               | 390               | 216               | 355               |
| Age (year)                       | $29.66 \pm 10.99$ | $28.41 \pm 16.27$ | $45.65 \pm 17.16$ | $44.44 \pm 18.43$ |
| Male sex (n, %)                  | 158 (0.78)        | 352 (0.90)        | 170 (0.79)        | 294 (0.83)        |
| Pre-existing conditions          |                   |                   |                   |                   |
| Cardiovascular                   | -                 | 0 (0.0)           | 14 (0.06)         | 31 (0.09)         |
| diseases                         |                   |                   |                   |                   |
| • Diabetes                       | -                 | 0 (0.0)           | 5 (0.02)          | 7 (0.02)          |
| Gastric/duodenal ulcer           | -                 | 1 (0.003)         | 15 (0.07)         | 12 (0.03)         |
| <ul> <li>Neurological</li> </ul> | -                 | 2 (0.005)         | 7 (0.03)          | 11 (0.03)         |
| pathology                        |                   |                   |                   |                   |
| Obesity                          | -                 | 0 (0.0)           | 10 (0.05)         | 18 (0.05)         |
| Solid tumors                     | -                 | 0 (0.0)           | 19 (0.09)         | 11 (0.03)         |
| (remission)                      |                   |                   |                   |                   |
| Infectious pathogens in BAL      |                   |                   |                   |                   |
| fluid <sup>a</sup>               |                   |                   |                   |                   |
| Gram-positive bacilli            | -                 | 121 (0.31)        | -                 | 20 (0.06)         |
| Gram-negative bacilli            | -                 | 42 (0.11)         | -                 | 80 (0.23)         |
| Mixed Gram-negative              | -                 | 70 (0.18)         | -                 | 29 (0.08)         |
| and Gram-positive bacteria       |                   |                   |                   |                   |
| ICU admission                    | -                 | 184 (0.47)        | -                 | 303 (0.85)        |
| ICU length of stay (days)        | -                 | $3.45 \pm 3.61$   | -                 | $17.46 \pm 17.67$ |
| Patients on mechanical           | -                 | 9 (0.02)          | 32 (0.15)         | 125 (0.35)        |
| ventilator                       |                   |                   |                   |                   |
| APACHE II score <sup>b</sup>     | -                 | $10.9 \pm 3.2$    | $14.94 \pm 3.95$  | $15.54 \pm 4.05$  |
| SOFA score <sup>c</sup>          | -                 | -                 | $5.54 \pm 2.43$   | $6.39 \pm 2.61$   |
| Diagnosis at admission           |                   |                   |                   |                   |
| • CAP                            | -                 | 390               | 0 (0.0)           | 0 (0.0)           |
| Severe combined                  | -                 | 0 (0.0)           | 121 (0.56)        | 186 (0.52)        |
| trauma/wounding                  |                   |                   |                   |                   |
| Bowel obstruction                | -                 | 0 (0.0)           | 17 (0.08)         | 23 (0.06)         |
| Inflammatory diseases            | -                 | 0 (0.0)           | 42 (0.19)         | 106 (0.30)        |
| of the abdominal cavity and      |                   |                   |                   |                   |
| retroperitoneal space            |                   |                   |                   |                   |
| complicated by destruction       |                   |                   |                   |                   |
| • Purulent-inflammatory          | -                 | 0 (0.0)           | 20 (0.09)         | 21 (0.06)         |
| diseases of the skin,            |                   |                   |                   |                   |
| subcutaneous tissue              |                   |                   |                   |                   |
| • Other                          | -                 | 0 (0.0)           | 16 (0.07)         | 19 (0.05)         |
| Critical conditions              | -                 |                   | ~ /               | × /               |
| • ARDS                           |                   | 11 (0.03)         | 8 (0.04)          | 76 (0.21)         |
| Severe sensis/sentic             | _                 | 3 (0.008)         | 27 (12.5)         | 49 (13.8)         |
| shock <sup>d</sup>               |                   | ()                |                   | - ( - / - /       |
| Hospital mortality               | -                 | 6 (0.015)         | 52 (0.24)         | 95 (0.27)         |

## Supplementary Table S1. Characteristics of the patients included in the study

<sup>a</sup>Microbiological data are specified in Supplementary Table S4.

<sup>b</sup>The severity of each patient was assessed with the use of the Acute Physiology and Chronic Health Evaluation (APACHE) II score within the first 24 h after ICU admission (Knaus et al. 1985).

<sup>c</sup>The Sequential Organ Failure Assessment (SOFA) score was evaluated as an indicator of organ dysfunction (Vincent et al. 1986).

<sup>d</sup>Sepsis, severe sepsis and septic shock were diagnosed according Surviving Sepsis Campaing 2012 (sccm.org>documents/SSC-Guidelines.pdf)

Abbreviations: ARDS, Acute respiratory distress syndrome; BAL, Bronchoalveolar lavage; CAP, Community-acquired pneumonia, ICU, Intensive care unit; NP, Nosocomial pneumonia; SD, Standard deviation

| Games and                            |                   | Controls                                                  | CAP cases                                                  | P-value crude                     | P-value adjusted <sup>a</sup>     | Controls                                                  | NP cases                                                   | P-value crude                     | P-value adjusted <sup>b</sup>     |
|--------------------------------------|-------------------|-----------------------------------------------------------|------------------------------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------------------------------|------------------------------------------------------------|-----------------------------------|-----------------------------------|
| genotypes                            |                   | Num                                                       | ber (%)                                                    | (genetic model),<br>OR (95% CI)   | (genetic model),<br>OR (95% CI)   | Num                                                       | ber (%)                                                    | (genetic model),<br>OR (95% CI)   | (genetic model),<br>OR (95% CI)   |
| <i>IL1B</i><br>rs16944               | G/G<br>G/A<br>A/A | n=199<br>HWE=0.77<br>82 (41.2)<br>90 (45.2)<br>27 (13.6)  | n=383<br>HWE=0.026<br>152 (39.7)<br>194 (50.6)<br>37 (9.7) | 0.16 (rec)<br>0.68 (0.40 – 1.16)  | 0.13 (rec)<br>0.65 (0.38 – 1.12)  | n=210<br>HWE=0.29<br>80 (38.1)<br>105 (50.0)<br>25 (11.9) | n=347<br>HWE=0.86<br>166 (47.8)<br>147 (42.4)<br>34 (9.8)  | 0.024 (dom)<br>0.67 (0.47 – 0.95) | 0.019 (dom)<br>0.64 (0.44 – 0.93) |
| <i>IL8</i><br>rs4073                 | T/T<br>T/A<br>A/A | n=202<br>HWE=0.45<br>67 (33.2)<br>94 (46.5)<br>41 (20.3)  | n=385<br>HWE=0.87<br>99 (25.7)<br>194 (50.4)<br>92 (23.9)  | 0.058 (dom)<br>1.43 (0.99 – 2.08) | 0.039 (add)<br>1.30 (1.01 – 1.67) | n=208<br>HWE=0.20<br>59 (28.4)<br>112 (53.9)<br>37 (17.8) | n=346<br>HWE=0.34<br>109 (31.5)<br>178 (51.5)<br>59 (17.1) | 0.44 (dom)<br>0.86 (0.59 – 1.26)  | 0.58 (dom)<br>0.89 (0.60 – 1.33)  |
| <i>IL6</i><br>rs1800795 <sup>c</sup> | G/G<br>G/C<br>C/C | n=203<br>HWE=0.46<br>57 (28.1)<br>106 (52.2)<br>40 (19.7) | n=389<br>HWE=0.28<br>127 (32.6)<br>186 (47.8)<br>76 (19.5) | 0.25 (dom)<br>0.81 (0.56 – 1.17)  | 0.32 (dom)<br>0.82 (0.56 – 1.21)  | n=206<br>HWE=0.59<br>68 (33.0)<br>104 (50.5)<br>34 (16.5) | n=344<br>HWE=0.74<br>104 (30.2)<br>173 (50.3)<br>67 (19.5) | 0.35 (add)<br>1.13 (0.88 – 1.45)  | 0.39 (add)<br>1.12 (0.86 – 1.46)  |
| <i>IL4</i><br>rs2243250              | C/C<br>C/T<br>T/T | n=200<br>HWE=0.26<br>108 (54.0)<br>82 (41.0)<br>10 (5.0)  | n=385<br>HWE=0.51<br>210 (54.5)<br>152 (39.5)<br>23 (6.0)  | 0.90 (dom)<br>0.98 (0.69 -1.38)   | 0.59 (dom)<br>0.91 (0.64 – 1.30)  | n=209<br>HWE=0.53<br>132 (63.2)<br>70 (33.5)<br>7 (3.4)   | n=347<br>HWE=0.011<br>186 (53.6)<br>148 (42.6)<br>13 (3.8) | 0.027 (dom)<br>1.48 (1.04 – 2.11) | 0.017 (dom)<br>1.57 (1.08 – 2.29) |
| <i>IL10</i><br>rs1800896             | G/G<br>G/A<br>A/A | n=199<br>HWE=0.35<br>50 (25.1)<br>106 (53.3)<br>43 (21.6) | n=384<br>HWE=0.011<br>71 (18.5)<br>216 (56.2)<br>97 (25.3) | 0.064 (rec)<br>1.47 (0.98 – 2.22) | 0.038 (add)<br>1.33 (1.01 – 1.75) | n=210<br>HWE=0.23<br>57 (27.1)<br>113 (53.8)<br>40 (19.1) | n=346<br>HWE=0.82<br>89 (25.7)<br>175 (50.6)<br>82 (23.7)  | 0.20 (rec)<br>1.32 (0.86 – 2.02)  | 0.26 (rec)<br>1.29 (0.82 – 2.01)  |
| <i>IL13</i><br>rs20541               | C/C<br>C/T<br>T/T | n=201<br>HWE=0.07<br>114 (56.7)<br>68 (33.8)<br>19 (9.4)  | n=386<br>HWE=0.95<br>207 (53.6)<br>151 (39.1)<br>28 (7.2)  | 0.36 (rec)<br>0.75 (0.41 – 1.38)  | 0.30 (rec)<br>0.72 (0.38 – 1.34)  | n=209<br>HWE=0.92<br>111 (53.1)<br>83 (39.7)<br>15 (7.2)  | n=347<br>HWE=0.76<br>193 (55.6)<br>133 (38.3)<br>21 (6.0)  | 0.50 (add)<br>0.91 (0.69 – 1.20)  | 0.44 (add)<br>0.89 (0.67 – 1.19)  |
| <i>TLR2</i><br>rs5743708             | G/G               | n=197<br>HWE=0.50<br>179 (90.9)                           | n=382<br>HWE=0.39<br>350 (91.6)                            | 0.76 (dom)<br>0.91 (0.50 – 1.66)  | 0.56 (dom)<br>0.83 (0.44 – 1.55)  | n=210<br>HWE=0.54<br>193 (91.9)                           | n=347<br>HWE=0.62<br>329 (94.8)                            | 0.18 (dom)<br>0.62 (0.31 – 1.23)  | 0.18 (dom)<br>0.60 (0.29 – 1.25)  |

Supplementary Table S2. The distribution of genotypes among CAP and NP patients and corresponding controls

| <i>TLR2</i><br>rs4696480 | G/A<br>A/A<br>T/T<br>T/A<br>A/A | 18 (9.1) 0 (0.0) n=196 HWE = 0.37 51 (26%) 104 (53.1) 41 (20.9) | 32 (8.4)0 (0.0)n=382HWE = 0.63106 (27.8)186 (48.7)90 (23.6) | 0.47 (rec)<br>1.17 (0.77 – 1.77) | 0.35 (rec)<br>1.23 (0.79 – 1.91) | 17 (8.1)<br>0 (0.0)<br>n=210<br>HWE=0.67<br>62 (29.5)<br>107 (51.0)<br>41 (19.5) | 18 (5.2)<br>0 (0.0)<br>n=345<br>HWE=0.23<br>101 (29.3)<br>161 (46.7)<br>83 (24.1) | 0.21 (rec)<br>1.31 (0.86 – 1.19)  | 0.12 (rec)<br>1.42 (0.91 – 2.23)   |
|--------------------------|---------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------|------------------------------------|
| <i>TLR4</i><br>rs4986791 | C/C<br>C/T<br>T/T               | n=191<br>HWE=0.002<br>162 (84.8)<br>24 (12.6)<br>5 (2.6)        | n=372<br>HWE=0.43<br>318 (85.5)<br>53 (14.2)<br>1 (0.3)     | 0.39 (add)<br>0.83 (0.54 – 1.28) | 0.54 (add)<br>0.87 (0.55 – 1.36) | n=209<br>HWE=0.36<br>167 (79.9)<br>41 (19.6)<br>1 (0.5)                          | n=343<br>HWE=0.22<br>300 (87.5)<br>43 (12.5)<br>0 (0.0)                           | 0.014 (add)<br>0.56 (0.36 – 0.89) | 0.0032 (add)<br>0.48 (0.30 – 0.79) |
| <i>TLR9</i><br>rs352139  | G/G<br>G/A<br>A/A               | n=196<br>HWE=0.066<br>59 (30.1)<br>85 (43.4)<br>52 (26.5)       | n=382<br>HWE=0.96<br>96 (25.2)<br>191 (50.1)<br>94 (24.7)   | 0.21 (dom)<br>1.28 (0.87 – 1.88) | 0.21 (dom)<br>1.29 (0.87 – 1.92) | n=210<br>HWE=0.78<br>64 (30.5)<br>102 (48.6)<br>44 (20.9)                        | n=347<br>HWE=0.49<br>107 (30.8)<br>177 (51.0)<br>63 (18.2)                        | 0.42 (rec)<br>0.84 (0.54 – 1.29)  | 0.59 (rec)<br>0.88 (0.55 – 1.40)   |
| <i>TLR9</i><br>rs5743836 | T/T<br>T/C<br>C/C               | n=196<br>HWE=0.64<br>164 (83.7)<br>30 (15.3)<br>2 (1.0)         | n=382<br>HWE=0.89<br>302 (79.1)<br>75 (19.6)<br>5 (1.3)     | 0.18 (dom)<br>1.36 (0.86 – 2.13) | 0.41 (dom)<br>1.21 (0.76 – 1.93) | n=208<br>HWE=0.55<br>161 (77.4)<br>45 (21.6)<br>2 (1.0)                          | n=343<br>HWE=0.72<br>264 (77.0)<br>73 (21.3)<br>6 (1.8)                           | 0.76 (add)<br>1.06 (0.73 – 1.54)  | 0.91 (dom)<br>0.97 (0.63 – 1.50)   |
| <i>TLR9</i><br>rs187084  | T/T<br>T/C<br>C/C               | n=194<br>HWE=0.79<br>65 (33.5)<br>93 (47.9)<br>36 (18.6)        | n=368<br>HWE=0.70<br>125 (34.0)<br>182 (49.5)<br>61 (16.6)  | 0.56 (rec)<br>0.87 (0.55 – 1.37) | 0.72 (rec)<br>0.92 (0.57 – 1.47) | n=207<br>HWE=0.68<br>57 (27.5)<br>106 (51.2)<br>44 (21.3)                        | n=340<br>HWE=0.72<br>104 (30.6)<br>171 (50.3)<br>65 (19.1)                        | 0.40 (add)<br>0.90 (0.70 – 1.15)  | 0.35 (add)<br>0.88 (0.68 – 1.15)   |

Significant *P*-values are in bold. The genetic model: add, additive; dom, dominant; rec, recessive. HWE, Hardy-Weinberg equilibrium P-value <sup>a</sup>Adjusted by sex and age

<sup>b</sup>Adjusted by sex, age, APACHE II score and the use of mechanical ventilation more than 24 hours

<sup>c</sup>In our CAP study a total of 593 patients were analyzed, and 475 out of them had been previously analyzed for the *IL6* rs1800795; in NP study, from a total of 571 subjects, 321 subjects had been previously analyzed for the *IL6* rs1800795 (Salnikova et al. 2013).

| Supplementary | Table S3 |
|---------------|----------|
|---------------|----------|

Characteristics of meta-analyzed studies

| First author       | Year   | Country     | Cases                                                                         | Controls <sup>a</sup>                                      | Sample<br>size<br>Controls/<br>Cases | Contr | ols |     | Cases |     |     | HWE in controls | Methods of genotyping | Quality <sup>b</sup> |
|--------------------|--------|-------------|-------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------|-------|-----|-----|-------|-----|-----|-----------------|-----------------------|----------------------|
| Il6 rs1800795 (-17 | /4C>G) |             |                                                                               |                                                            |                                      | GG    | GC  | CC  | GG    | GC  | CC  |                 |                       |                      |
| Schaaf             | 2005   | Germany     | Pneumococcal disease, adult                                                   | HB                                                         | 50/100                               | 17    | 25  | 8   | 29    | 51  | 20  | 0.81            | SSP-PCR               | CCB                  |
| Endeman            | 2011   | Netherlands | CAP, adult                                                                    | PB                                                         | 311/200                              | 113   | 150 | 48  | 83    | 92  | 25  | 0.88            | Taqman                | CCB                  |
| Martin-Loeches     | 2012   | Spain       | CAP, adult                                                                    | PB                                                         | 953/1246                             | 438   | 413 | 102 | 581   | 516 | 130 | 0.75            | Taqman                | CCA                  |
| Martinez-Ocana     | 2013   | Mexico      | Viral CAP, adult                                                              | PB                                                         | 46/65                                | 39    | 7   | 0   | 53    | 12  | 0   | 0.58            | PCR-dot blot          | CCB                  |
| Zidan              | 2014   | Egypt       | CAP, pediatric                                                                | PB                                                         | 110/100                              | 22    | 60  | 28  | 32    | 55  | 13  | 0.32            | PCR-RFLP              | CCC                  |
| This study         | 2016   | Russia      | CAP, adult                                                                    | PB                                                         | 203/389                              | 57    | 106 | 40  | 127   | 186 | 76  | 0.46            | PCR-CTPP              | CCA                  |
| This study         | 2016   | Russia      | HAP, adult                                                                    | HB                                                         | 206/344                              | 68    | 104 | 34  | 104   | 173 | 67  | 0.59            | PCR-CTPP              | CCB                  |
| IL8 rs4073 (-251A  | .>T)   |             |                                                                               |                                                            |                                      | TT    | TA  | AA  | TT    | TA  | AA  |                 |                       |                      |
| Endeman            | 2011   | Netherlands | CAP, adult                                                                    | PB                                                         | 313/199                              | 62    | 153 | 98  | 46    | 94  | 59  | 0.87            | Taqman                | CCB                  |
| Georgitsi          | 2016   | Greece      | CAP with sepsis, adult                                                        | NM                                                         | 104/109                              | 28    | 52  | 24  | 50    | 50  | 9   | 0.99            | PCR-RFLP              | CCB                  |
| This study         | 2016   | Russia      | CAP, adult                                                                    | PB                                                         | 202/385                              | 67    | 94  | 41  | 99    | 194 | 92  | 0.45            | PCR-CTPP              | CCA                  |
| This study         | 2016   | Russia      | HAP, adult                                                                    | HB                                                         | 208/346                              | 59    | 112 | 37  | 109   | 178 | 59  | 0.20            | PCR-CTPP              | CCB                  |
| IL1B rs16944 (-51  | 1T>C)  |             |                                                                               |                                                            |                                      | CC    | CT  | TT  | CC    | CT  | TT  |                 |                       |                      |
| Wan                | 2013   | China       | Pneumonia in<br>kidney transplant<br>recipients, adult                        | Kidney<br>transplant<br>recipients<br>without<br>pneumonia | 63/33                                | 14    | 30  | 19  | 7     | 16  | 10  | 0.74            | PCR-RFLP              | CCC                  |
| Sakamoto           | 2014   | Japan       | Postoperative<br>pneumonia in<br>patients with<br>esophageal cancer,<br>adult | Patients without<br>postoperative<br>pneumonia             | 86/34                                | 26    | 60  |     | 8     | 26  |     | NA              | ARMS-PCR              | CCC                  |
| This study         | 2016   | Russia      | CAP, adult                                                                    | PB                                                         | 199/383                              | 82    | 90  | 27  | 152   | 194 | 37  | 0.77            | PCR-CTPP              | CCA                  |
| This study         | 2016   | Russia      | HAP, adult                                                                    | HB                                                         | 210/347                              | 80    | 105 | 25  | 166   | 147 | 34  | 0.29            | PCR-CTPP              | CCB                  |

| <i>ll10</i> rs1800896 (-1 | 082A>G   | i)                  |                                                                               |                                                            |         | GG  | GA  | AA | GG  | GA  | AA |       |                        |     |
|---------------------------|----------|---------------------|-------------------------------------------------------------------------------|------------------------------------------------------------|---------|-----|-----|----|-----|-----|----|-------|------------------------|-----|
| Schaaf                    | 2003     | Germany             | Pneumococcal disease <sup>c</sup> , adult                                     | HB                                                         | 50/69   | 13  | 17  | 20 | 16  | 28  | 25 | 0.03  | ARMS-PCR               | CCC |
| Endeman                   | 2011     | Netherlands         | CAP, adult                                                                    | PB                                                         | 313/200 | 74  | 170 | 69 | 54  | 90  | 56 | 0.13  | Taqman                 | CCB |
| Martinez-Ocana            | 2013     | Mexico              | Viral CAP, adult                                                              | PB                                                         | 46/65   | 9   | 32  | 5  | 7   | 22  | 36 | 0.006 | PCR-dot blot           | CCC |
| Romanova                  | 2013     | Russia              | Viral pneumonia,<br>adult                                                     | NM                                                         | 67/103  | 29  | 30  | 8  | 78  | 17  | 8  | 0.96  | Allele-specific<br>PCR | CCC |
| This study                | 2016     | Russia              | CAP, adult                                                                    | PB                                                         | 199/384 | 50  | 106 | 43 | 71  | 216 | 97 | 0.35  | PCR-CTPP               | CCA |
| This study                | 2016     | Russia              | HAP, adult                                                                    | HB                                                         | 210/346 | 57  | 113 | 40 | 89  | 175 | 82 | 0.23  | PCR-CTPP               | CCB |
| <i>ll10</i> rs1800871 (-8 | 319T>C)  |                     |                                                                               |                                                            |         | TT  | TC  | CC | TT  | TC  | CC |       |                        |     |
| Martinez-Ocana            | 2013     | Mexico              | Viral CAP, adult                                                              | PB                                                         | 46/65   | 12  | 34  | 0  | 7   | 55  | 3  | 0.000 | PCR-dot blot           | CCC |
| Romanova                  | 2013     | Russia              | Viral pneumonia,<br>adult                                                     | NM                                                         | 62/89   | 13  | 9   | 40 | 8   | 19  | 62 | 0.000 | Allele-specific<br>PCR | CCC |
| Sakamoto                  | 2014     | Japan               | Postoperative<br>pneumonia in<br>patients with<br>esophageal cancer,<br>adult | Patients without<br>postoperative<br>pneumonia             | 86/34   | 37  | 49  |    | 22  | 12  |    | NA    | ARMS-PCR               | CCC |
| <i>IL10</i> rs1800872 (-: | 592A>C)  | )                   |                                                                               |                                                            |         | CC  | CA  | AA | CC  | CA  | AA |       |                        |     |
| Wattanathum               | 2005     | Columbia<br>(white) | Pneumonia<br>complicated with<br>sepsis, adult                                | Sepsis patients<br>without<br>pneumonia                    | 392/158 | 212 | 137 | 43 | 89  | 61  | 8  | 0.005 | Taqman                 | CCC |
| Endeman                   | 2011     | Netherlands         | CAP, adult                                                                    | PB                                                         | 315/200 | 175 | 126 | 14 | 115 | 70  | 15 | 0.14  | Taqman                 | CCB |
| Martinez-Ocana            | 2013     | Mexico              | Viral CAP, adult                                                              | PB                                                         | 46/65   | 0   | 23  | 23 | 26  | 22  | 17 | 0.024 | PCR-dot blot           | CCC |
| Romanova                  | 2013     | Russia              | Viral pneumonia,<br>adult                                                     | NM                                                         | 68/110  | 17  | 37  | 14 | 59  | 32  | 19 | 0.46  | Allele-specific<br>PCR | CCC |
| Wan                       | 2013     | China               | Pneumonia in<br>kidney transplant<br>recipients, adult                        | Kidney<br>transplant<br>recipients<br>without<br>pneumonia | 63/33   | 8   | 27  | 28 | 2   | 16  | 15 | 0.71  | PCR-RFLP               | CCC |
| TLR2 rs5743708 (2         | 2258 G>. | A, Arg753Gln)       |                                                                               |                                                            |         | GG  | GA  | AA | GG  | GA  | AA |       |                        |     |
| Moens                     | 2007     | Belgium             | Pneumococcal disease, adult <sup>d</sup>                                      | PB                                                         | 170/72  | 165 | 5   | 0  | 67  | 5   | 0  | 0.85  | PCR-RFLP               | CCB |
| Yuan                      | 2008     | Australia,          | Pneumococcal                                                                  | NM                                                         | 409/85  | 382 | 27  | 0  | 82  | 3   | 0  | 0.49  | PCR-RFLP               | CCC |

|                   |        | population<br>data N/A               | bacteraemia,<br>pediatric <sup>e</sup>                                                                                                   |                                                                                               |         |     |    |    |     |    |    |      |                        |     |
|-------------------|--------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------|-----|----|----|-----|----|----|------|------------------------|-----|
| Carvalho          | 2009   | Portugal                             | Viral pneumonia in<br>CMV- infected<br>patients after<br>allogeneic<br>hematopoietic stem<br>cell transplantation,<br>adult <sup>f</sup> | Non-infected<br>patients after<br>allogeneic<br>hematopoietic<br>stem cell<br>transplantation | 134/87  | 127 | 7  | 0  | 83  | 4  | 0  | 0.76 | Bi-PASA                | ССВ |
| Endeman           | 2009   | Netherlands                          | CAP, adult                                                                                                                               | PB                                                                                            | 313/183 | 287 | 26 | 0  | 144 | 38 | 1  | 0.44 | TaqMan                 | CCB |
| Esposito          | 2012   | Italy                                | Viral pneumonia, pediatric                                                                                                               | HB                                                                                            | 164/18  | 161 | 3  | 0  | 17  | 1  | 0  | 0.91 | TaqMan                 | CCA |
| Misch             | 2013   | Netherlands                          | Legionnaires'<br>disease, adult                                                                                                          | PB                                                                                            | 262/94  | 243 | 19 | 0  | 88  | 6  | 0  | 0.54 | MassARRAY<br>technique | CCB |
| Tellería-Orriols  | 2013   | Spain                                | Pneumococcal<br>disease, pediatric <sup>g</sup>                                                                                          | HB                                                                                            | 66/92   | 49  | 15 | 2  | 37  | 46 | 9  | 0.53 | PCR-RFLP               | CCB |
| Dubinskaya        | 2014   | Ukraine                              | Viral CAP, adult                                                                                                                         | Patients with<br>viral infection<br>without<br>pneumonia                                      | 90/49   | 87  | 3  | 0  | 46  | 3  | 0  | 0.87 | PCR                    | CCC |
| Schnetzke         | 2015   | Germany                              | Pneumonia in AML<br>patients after<br>induction<br>chemotherapy, adult                                                                   | Non-infected<br>AML patients<br>after induction<br>chemotherapy                               | 104/51  | 102 | 2  | 0  | 43  | 8  | 0  | 0.92 | Pyrosequencing         | ССВ |
| This study        | 2016   | Russia                               | CAP, adult                                                                                                                               | PB                                                                                            | 197/382 | 179 | 18 | 0  | 350 | 32 | 0  | 0.50 | PCR-CTPP               | CCA |
| This study        | 2016   | Russia                               | HAP, adult                                                                                                                               | HB                                                                                            | 210/347 | 193 | 17 | 0  | 329 | 18 | 0  | 0.54 | PCR-CTPP               | CCB |
| TLR4 rs4986790 (8 | 896A>G | , Asp299Gly)                         |                                                                                                                                          |                                                                                               |         | AA  | AG | GG | AA  | AG | GG |      |                        |     |
| Hawn              | 2005   | Netherlands                          | Legionnaires'<br>disease, adult                                                                                                          | PB (at high risk<br>for exposure<br>to <i>Legionella</i> )                                    | 102/495 | 97  | 5  | 0  | 431 | 64 | 0  | 0.80 | Sequenom<br>MassARRAY  | CCA |
| Moens             | 2007   | Belgium                              | Pneumonia in<br>invasive<br>pneumococcal<br>disease, adult <sup>d</sup>                                                                  | PB                                                                                            | 178/72  | 161 | 16 | 1  | 60  | 10 | 2  | 0.40 | PCR-RFLP               | CCB |
| Yuan              | 2008   | Australia,<br>population<br>data N/A | Pneumococcal<br>bacteraemia,<br>pediatric <sup>e</sup>                                                                                   | NM                                                                                            | 409/85  | 364 | 44 | 1  | 82  | 3  | 0  | 0.87 | PCR-RFLP               | CCC |

| Carvalho          | 2009    | Portugal                             | Viral pneumonia in<br>CMV- infected<br>patients after<br>allogeneic<br>hematopoietic stem<br>cell transplantation,<br>adult <sup>f</sup> | Non-infected<br>patients after<br>allogeneic<br>hematopoietic<br>stem cell<br>transplantation | 134/87  | 116 | 18 | 0  | 81  | 6  | 0  | 0.41  | Bi-PASA               | CCB |
|-------------------|---------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------|-----|----|----|-----|----|----|-------|-----------------------|-----|
| Endeman           | 2009    | Netherlands                          | CAP, adult                                                                                                                               | PB                                                                                            | 313/200 | 280 | 32 | 1  | 171 | 27 | 2  | 0.93  | TaqMan                | CCB |
| Esposito          | 2012    | Italy                                | Viral pneumonia, pediatric                                                                                                               | HB                                                                                            | 164/18  | 148 | 16 | 0  | 16  | 2  | 0  | 0.51  | TaqMan                | CCA |
| Tellería-Orriols  | 2013    | Spain                                | Pneumococcal<br>disease, pediatric <sup>g</sup>                                                                                          | HB                                                                                            | 66/92   | 49  | 15 | 2  | 76  | 13 | 3  | 0.53  | PCR-RFLP              | CCB |
| Dubinskaya        | 2014    | Ukraine                              | Viral CAP, adult                                                                                                                         | Patients with<br>viral infection<br>without<br>pneumonia                                      | 90/49   | 87  | 3  | 0  | 42  | 7  | 0  | 0.87  | PCR                   | CCC |
| Schnetzke         | 2015    | Germany                              | Pneumonia in AML<br>patients after<br>induction<br>chemotherapy, adult                                                                   | Non-infected<br>AML patients<br>after induction<br>chemotherapy                               | 104/51  | 96  | 8  | 0  | 40  | 11 | 0  | 0.68  | Pyrosequencing        | ССВ |
| TLR4 rs4986791    | (196C>T | , Thr399Ile)                         | ······································                                                                                                   | FJ                                                                                            |         | CC  | CT | TT | CC  | CT | TT |       |                       |     |
| Hawn              | 2005    | Netherlands                          | Legionnaires'<br>disease, adult                                                                                                          | PB (at high risk<br>for exposure<br>to <i>Legionella</i> )                                    | 102/495 | 97  | 5  | 0  | 431 | 64 | 0  | 0.80  | Sequenom<br>MassARRAY | CCA |
| Yuan              | 2008    | Australia,<br>population<br>data N/A | Pneumococcal<br>bacteraemia,<br>pediatric <sup>e</sup>                                                                                   | NM                                                                                            | 409/85  | 365 | 43 | 1  | 82  | 3  | 0  | 0.82  | PCR-RFLP              | CCC |
| Kumpf             | 2010    | Greece                               | VAP <sup>h</sup>                                                                                                                         | NM                                                                                            | 176/159 | 150 | 24 | 2  | 147 | 12 | 0  | 0.36  | PCR-RFLP              | CCA |
| Esposito          | 2012    | Italy                                | Viral pneumonia, pediatric                                                                                                               | HB                                                                                            | 164/18  | 148 | 16 | 0  | 17  | 1  | 0  | 0.51  | TaqMan                | CCA |
| Schnetzke         | 2015    | Germany                              | Pneumonia in AML<br>patients after<br>induction<br>chemotherapy, adult                                                                   | Non-infected<br>AML patients<br>after induction<br>chemotherapy                               | 104/51  | 96  | 8  | 0  | 40  | 11 | 0  | 0.68  | Pyrosequencing        | ССВ |
| This study        | 2016    | Russia                               | CAP, adult                                                                                                                               | PB                                                                                            | 191/372 | 162 | 24 | 5  | 318 | 53 | 1  | 0.002 | PCR-CTPP              | CCA |
| This study        | 2016    | Russia                               | HAP, adult                                                                                                                               | HB                                                                                            | 209/343 | 167 | 41 | 1  | 300 | 43 | 0  | 0.36  | PCR-CTPP              | CCB |
| TLR9 rs187084 (-1 | 1486T>C | C)                                   |                                                                                                                                          |                                                                                               |         | TT  | TC | CC | TT  | TC | CC |       |                       |     |

| Carvalho          | 2009   | Portugal | Viral pneumonia in<br>CMV- infected<br>patients after<br>allogeneic<br>hematopoietic stem<br>cell transplantation,<br>adult <sup>f</sup> | Non-infected<br>patients after<br>allogeneic<br>hematopoietic<br>stem cell<br>transplantation | 134/87  | 75  | 55  | 4  | 61  | 22  | 4  | 0.10 | Bi-PASA  | CCB |
|-------------------|--------|----------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------|-----|-----|----|-----|-----|----|------|----------|-----|
| This study        | 2016   | Russia   | CAP, adult                                                                                                                               | PB                                                                                            | 194/368 | 65  | 93  | 36 | 125 | 182 | 61 | 0.79 | PCR-CTPP | CCA |
| This study        | 2016   | Russia   | HAP, adult                                                                                                                               | HB                                                                                            | 207/340 | 57  | 106 | 44 | 104 | 171 | 65 | 0.68 | PCR-CTPP | CCB |
| TLR9 rs5743836 (- | 1237T> | C)       |                                                                                                                                          |                                                                                               |         | TT  | TC  | CC | TT  | TC  | CC |      |          |     |
| Carvalho          | 2009   | Portugal | Viral pneumonia in<br>CMV- infected<br>patients after<br>allogeneic<br>hematopoietic stem<br>cell transplantation,<br>adult <sup>f</sup> | Non-infected<br>patients after<br>allogeneic<br>hematopoietic<br>stem cell<br>transplantation | 134/87  | 103 | 29  | 2  | 57  | 26  | 4  | 0.98 | Bi-PASA  | CCB |
| This study        | 2016   | Russia   | CAP, adult                                                                                                                               | PB                                                                                            | 196/382 | 164 | 30  | 2  | 302 | 75  | 5  | 0.64 | PCR-CTPP | CCA |
| This study        | 2016   | Russia   | HAP, adult                                                                                                                               | HB                                                                                            | 208/343 | 161 | 45  | 2  | 264 | 73  | 6  | 0.55 | PCR-CTPP | CCB |

<sup>a</sup>Pediatric and adult cases and controls have been age-matched unless otherwise specified.

<sup>b</sup>Data are graded by the Venice criteria for studies of genetic associations. Venice guidelines grade (1) the amount of evidence, (2) whether replication was performed and (3) protection from bias (Ioannidis et al. 2007).

<sup>c</sup>Sixty-one patients with community-acquired pneumonia, 5 patients with meningitis, and 3 patients with pneumonia and meningitis

<sup>d</sup>Pneumonia in invasive pneumococcal disease (n= 72; 72.7% of infected patients)

<sup>e</sup>Number of patients with pneumonia is not available

<sup>f</sup>CMV (cytomegalovirus) infection complicated with pneumonia (n=76; 87% of infected patients)

<sup>g</sup>Pneumonia and sepsis in invasive pneumococcal disease (n=92; 80.7% of infected patients)

<sup>h</sup>Age is not specified.

Abbreviations: AML, acute myeloid leukemia; ARMS-PCR, amplification refractory mutation system-polymerase chain reaction; Bi-PASA, bidirectional polymerase chain reaction amplification of specific alleles; HP, hospital based; HWE, Hardy-Weinberg equilibrium; PB, population based; NM, no mention; PCR-CTPP, polymerase chain reaction with confronting two-pair primers; PCR-RFLP, polymerase chain reaction–restriction fragment length polymorphism; SSP-PCR, single strand polymorphism polymerase chain reaction; VAP, ventilator associated pneumonia

| Pathogen                               | Sample | %, whole | Disease                 | Reference              | Genes under study       |
|----------------------------------------|--------|----------|-------------------------|------------------------|-------------------------|
| _                                      | (n)    | sample   |                         |                        | -                       |
| Streptococcus pneumonia                | 201    | 29.9%    | CAP                     | Endeman, 2009, 2011    | Interleukins, TLR genes |
| Streptococcus pneumonia                | 1227   | 24.6%    | CAP                     | Martin-Loeches, 2012   | Interleukins            |
| Streptococcus pneumonia                | 390    | 36.6%    | CAP                     | This study             | Interleukins, TLR genes |
| Streptococcus pneumonia                | 355    | 5.4%     | HAP                     | This study             | Interleukins, TLR genes |
| Streptococcus pneumonia                | 69     | 100.0%   | Pneumococcal disease    | Schaaf, 2003           | Interleukins            |
| Streptococcus pneumonia                | 100    | 100.0%   | Pneumococcal disease    | Schaaf, 2005           | Interleukins            |
| Streptococcus pneumonia                | 99     | 100.0%   | Pneumonia in invasive   | Moens, 2007            | TLR genes               |
|                                        |        |          | pneumococcal disease    |                        |                         |
| Streptococcus pneumonia                | 85     | 100.0%   | Pneumococcal bacteremia | Yuan, 2008             | TLR genes               |
| Streptococcus pneumonia                | 114    | 100.0%   | Pneumonia and sepsis in | Tellería-Orriols. 2014 | TLR genes               |
|                                        |        |          | invasive pneumococcal   |                        |                         |
|                                        |        |          | disease                 |                        |                         |
| Staphylococcus aureus                  | 1227   | 1.7%     | CAP                     | Martin-Loeches, 2012   | Interleukins            |
| Staphylococcus aureus                  | 201    | 3.0%     | CAP                     | Endeman, 2009          | TLR genesgenes          |
| Staphylococcus aureus                  | 390    | 8.6%     | CAP                     | This study             | Interleukins, TLR genes |
| Staphylococcus aureus                  | 355    | 13.5%    | HAP                     | This study             | Interleukins, TLR genes |
| Haemophilus influenza                  | 201    | 7.0%     | CAP                     | Endeman, 2009, 2011    | Interleukins, TLR genes |
| Haemophilus influenza                  | 1227   | 1.5%     | CAP                     | Martin-Loeches, 2012   | Interleukins            |
| Haemophilus influenza                  | 390    | 11.4%    | CAP                     | This study             | Interleukins, TLR genes |
| Haemophilus influenza                  | 355    | 2.8%     | HAP                     | This study             | Interleukins, TLR genes |
| Legionella pneumophila                 | 201    | 4.5%     | CAP                     | Endeman, 2009, 2011    | Interleukins, TLR genes |
| Legionella pneumophila                 | 98     | 100.0%   | Legionnaires' disease   | Misch, 2013            | TLR genes               |
| Pseudomonas aeruginosa                 | 1227   | 2.1%     | CAP                     | Martin-Loeches, 2012   | Interleukins            |
| Pseudomonas aeruginosa                 | 355    | 15.8%    | HAP                     | This study             | Interleukins, TLR genes |
| Mycoplasma pneumonia                   | 201    | 4.5%     | CAP                     | Endeman, 2009, 2011    | Interleukins, TLR genes |
| Klebsiella pneumoniae                  | 201    | 2.0%     | CAP                     | Endeman, 2009, 2011    | TLR genesgenes          |
| Klebsiella pneumoniae                  | 355    | 13.8%    | HAP                     | This study             | Interleukins, TLR genes |
| Escherichia coli                       | 390    | 4.8%     | CAP                     | This study             | Interleukins, TLR genes |
| Escherichia coli                       | 355    | 2.0%     | HAP                     | This study             | Interleukins, TLR genes |
| Acinetobacter baumannii                | 355    | 4.2%     | HAP                     | This study             | Interleukins, TLR genes |
| Influenza A virus subtype H1N1         | 65     | 100.0%   | CAP                     | Martinez-Ocaña, 2013   | Interleukins            |
| Influenza A virus subtype H1N1         | 111    | 100.0%   | CAP                     | Romanova, 2013         | Interleukins            |
| Influenza A virus subtype<br>H1N1/H3N2 | 49     | 100.0%   | CAP                     | Dubinskaya, 2014       | TLR genes               |
| Influenza A virus subtype H1N1         | 18     | 100.0%   | CAP                     | Esposito, 2012         | TLR genes               |

Supplementary Table S4. Causative microorganisms in meta-analyzed studies

| 100.0% | Pneumonia in CMV infected<br>patients after allogeneic<br>hematopoietic stem cell<br>transplantation | Carvalho, 2009                                                                                              | TLR genes                                                                                                    |
|--------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
|        |                                                                                                      |                                                                                                             |                                                                                                              |
|        | 100.0%                                                                                               | 100.0% Pneumonia in CMV infected<br>patients after allogeneic<br>hematopoietic stem cell<br>transplantation | 100.0%Pneumonia in CMV infectedCarvalho, 2009patients after allogeneichematopoietic stem celltransplantation |

| uisease          |          |             |        |                    |           |
|------------------|----------|-------------|--------|--------------------|-----------|
| Study omitted    | Cases/   | $I^{2}(\%)$ | Effect | OR [95% CI]        | Р         |
|                  | Controls |             |        |                    |           |
|                  | (n)      |             |        |                    |           |
| Dubinskaya       | 841/1172 | 70          | Random | 1.98 [1.05 – 3.73] | 0.03      |
| Endeman          | 707/949  | 63          | Random | 1.78 [0.88 – 3.57] | 0.11      |
| Esposito         | 872/1098 | 70          | Random | 1.92 [1.04 – 3.55] | 0.04      |
| Misch            | 796/1000 | 62          | Random | 2.28 [1.24 – 4.19] | 0.008     |
| Moens            | 818/1092 | 70          | Random | 1.91 [1.00 – 3.67] | 0.05      |
| Tellería-Orriols | 798/1196 | 54          | Random | 1.64 [0.91 – 2.96] | 0.10      |
| This study (CAP) | 508/1065 | 33          | Fixed  | 2.64 [1.87 – 3.73] | < 0.00001 |

Supplementary Table S5. Summary outcomes of sensitivity analysis for the association between *TLR2* rs5743708 (dominant model) and CAP/ Legionnaires' disease/ pneumococcal disease.

| Reference         | Year | Country, ethnicity  | N Sample                               | Stimulation                                                    | Measure<br>ment   | SNPs                                                                             | Genotyping                            | Results                                                                                                                                                                                                                                 |
|-------------------|------|---------------------|----------------------------------------|----------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |      |                     |                                        |                                                                |                   | IL10                                                                             |                                       |                                                                                                                                                                                                                                         |
| Eskdale           | 1998 | Denmark<br>(Ca)     | 78 healthy                             | LPS-stimulated whole blood                                     | ELISA             | IL10.R,<br>IL10.G <sup>1</sup>                                                   | PCR<br>with<br>a radioactive<br>label | IL10.R2/G14 haplotype was associated with the highest IL10 secretion (vs. all others, $P = 0.024$ ); IL10.R3/G7 was associated with the lowest IL10 production (vs. all others, $P = 0.006$ )                                           |
| Crawley           | 1999 | UK (Ca)             | 45 healthy                             | LPS-stimulated<br>whole blood and<br>PBMC                      | ELISA             | -1082 G/A, -<br>819 C/T,<br>-592 C/A                                             | SSOP                                  | After LPS stimulation of the whole blood culture,<br>ATA/ATA genotype was associated with the lowest<br>IL10 production<br>(P< 0.02)                                                                                                    |
| Edwards-<br>Smith | 1999 | Australia<br>(Ca)   | 10 healthy                             | LPS-stimulated<br>PBMC                                         | ELISA             | -1082 G/A, -<br>819 C/T,<br>-592C/A                                              | PCR-RFLP                              | GCC haplotype was associated with higher IL10 production                                                                                                                                                                                |
| Huizinga          | 2000 | Netherlands<br>(Ca) | 158<br>healthy (61<br>families)        | LPS-stimulated whole blood                                     | ELISA,<br>RT- PCR | -1082 G/A, -<br>819 C/T,<br>-592 C/A                                             | PCR-dot blot                          | -1082 G was associated with lower IL10 production (P< $0.02$ ) and mRNA expression (11 donors)                                                                                                                                          |
| Koss              | 2000 | UK (Ca)             | 52 healthy                             | LPS-stimulated whole blood                                     | ELISA             | -1082 G/A, -<br>819 C/T,<br>-592 C/A                                             | PCR-RFLP                              | -1082A/A genotype and ATA haplotype were<br>associated with lower IL10 production ( $P = 0.015$ and $P = 0.015$ , respectively)                                                                                                         |
| Gibson            | 2001 | USA<br>(Ca and AA)  | 52 healthy<br>Ca and 64<br>healthy AA  | LPS-stimulated whole blood                                     | ELISA,<br>RT- PCR | Seven SNPs<br>within the -1.3<br>kb — -4 kb<br>promoter<br>region of <i>IL10</i> | Sequencing                            | -3575T/-2849G/-2763C haplotype was associated with higher IL10 production $(n=52)$ (P< 0.05) and mRNA production in CA                                                                                                                  |
| Reuss             | 2002 | Germany<br>(Ca)     | 57 DZ and<br>66 MZ adult<br>twin pairs | LPS-stimulated whole blood                                     | ELISA             | -1082 G/A,<br>-819 C/T,<br>-592 C/A                                              | PCR-RFLP                              | ns                                                                                                                                                                                                                                      |
| Suárez            | 2003 | Spain (Ca)          | 29 healthy                             | LPS-stimulated<br>PBMC                                         | ELISA             | -1082 G/A,<br>-819 C/T,<br>-592C/A                                               | RT-PCR                                | -1082 G/G genotype was associated with higher IL10 production ( $P = 0.008$ )                                                                                                                                                           |
| Temple            | 2003 | Australia<br>(Ca)   | 16 healthy                             | Stimulated PBMC<br>(LPS, heat-killed<br><i>S. pneumoniae</i> ) | RT- PCR           | -1082 G/A,<br>-819 C/T,<br>-592 C/A                                              | MassARRAY<br>technique                | LPS stimulated <i>IL10</i> levels, ns<br>After <i>S. pneumoniae</i> stimulation, ATA haplotype was<br>associated with higher <i>IL10</i> mRNA levels than those<br>with the GCC haplotype (P=0.024), or the ACC<br>haplotype (P<0.0001) |
| George            | 2004 | UK (Ca)             | 33 healthy                             | LPS-stimulated<br>PBMC                                         | ELISA,<br>RT- PCR | -1082 G/A,<br>-819 C/T,                                                          | PCR-SSP                               | -1082 G/G genotype was associated with higher mRNA expression ( $P < 0.05$ ) and IL10 production ( $P < 0.02$ )                                                                                                                         |

|                                 |                                             | 1 . 1 .                       | 1                                      |
|---------------------------------|---------------------------------------------|-------------------------------|----------------------------------------|
| Supplementary Lable S6 Summar   | v of genetic association studies of interly | Pilkin genes polymorphisms ar | d ex vivo response to bacterial toxins |
| Supplemental y 1 able 50. Summa | y of genetic association studies of men     | cukin zenes porymorphisms a   |                                        |
|                                 |                                             |                               |                                        |

| Mörmann    | 2004 | Germany,<br>mixed             | 107 healthy<br>(A, Ca, As)                                     | LPS-stimulated<br>PBMC and<br>LCL                              | ELISA | -592 C/A,<br>IL10.R,<br>IL10.G <sup>1</sup><br>-6752 A/T,<br>-6208 C/G,<br>-3538 A/T, -<br>2763 A/C,<br>-1354 A/G, -<br>1082 A/G,<br>-819 C/T,<br>-592 A/C,<br><i>IL10.R</i> , | Multiplex-<br>PCR       | -6752T/-6208C/-3538A haplotype and -1082 G allele<br>were associated with higher IL10 production (P = 0.03<br>and P < 0.017, respectively)<br>IL10.G microsatellite with 22, 24 or 26 dinucleotide<br>repeats (linked with the -1087G SNP) was associated<br>with the highest levels of IL10 expression |
|------------|------|-------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Moscovis   | 2004 | Australia<br>and UK,<br>mixed | 69 smokers<br>and 43 non-                                      | LPS- and TSST-<br>stimulated whole                             | ELISA | <i>IL10.G</i> <sup>1</sup><br>-1082 G/A                                                                                                                                        | RT-PCR                  | ns                                                                                                                                                                                                                                                                                                      |
| Schippers  | 2005 | Netherlands<br>(Ca)           | 125 patients<br>before<br>CTS with<br>CPB                      | LPS-stimulated<br>whole blood<br>(three LPS<br>concentrations) | ELISA | -3575 T/A, -<br>2849 G/A, -<br>2763 C/A, -<br>1330 A/G, -<br>1082G/A,<br>-819C/T,<br>-592C/A                                                                                   | PCR-dot blot            | -1330G/-1082A/-819T/-592A haplotype was associated<br>with lower IL10 levels under 10 ng/mL LPS (P = 0.041)<br>and 100ng/mL LPS (P=0.006)<br>1000 ng/mL LPS, ns                                                                                                                                         |
| Yılmaz     | 2005 | Turkey (Ca)                   | Healthy<br>(PCR,<br>n=152,<br>ELISA, NM)                       | Stimulated PBMC<br>(PPD, LPS, SAC)                             | ELISA | -3575 T/A, -<br>2763 C/A, -<br>1082 G/A,<br>-819 C/T,<br>-592 C/A                                                                                                              | PCR-RFLP<br>and PCR-SSP | After stimulation with PPD or SAC, -1082 A allele was associated with lower levels of IL10 ( $P = 0.006$ and $P = 0.04$ , respectively)<br>After LPS, ns                                                                                                                                                |
| Allen      | 2006 | UK (Ca)                       | 36 pediatric<br>patients<br>before and<br>after CS<br>with CPB | LPS-stimulated<br>whole<br>blood                               | ELISA | -1082 G/A, -<br>819 C/T,<br>-592 C/A                                                                                                                                           | PCR-RFLP                | ns                                                                                                                                                                                                                                                                                                      |
| Stanilova  | 2006 | Bulgaria<br>(Ca)              | 28 healthy<br>and 24<br>sepsis<br>patients                     | LPS-stimulated<br>PBMC                                         | ELISA | -1082 G/A                                                                                                                                                                      | ARMS-PCR                | AG/GG genotype was associated with higher levels of IL10 in patients and in controls                                                                                                                                                                                                                    |
| Aborsangay | 2007 | Canada,                       | 53 healthy                                                     | $\beta$ -gal-stimulated                                        | ELISA | -1082 G/A, -                                                                                                                                                                   | PCR with                | -819/-592 C/C alleles were associated with lower IL10                                                                                                                                                                                                                                                   |

| a         |      | mixed                 | (29 Ca and 24 NA)                        | РВМС                                                                        |                   | 819 C/T,<br>-592 C/A                                                                   | sequence-<br>specific<br>primers | production in CA (P<0.005) and FN (P < 0.005)<br>-1082 G allele was associated with lower $\beta$ -gal-<br>stimulated II 10 production in CA (P < 0.005)                                   |
|-----------|------|-----------------------|------------------------------------------|-----------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Steinke   | 2007 | USA (NM)              | 17 healthy                               | LPS-stimulated<br>monocytes/T<br>cells/B cells                              | ELISA,<br>RT- PCR | -592 C/A                                                                               | EMSA                             | C/C genotype was associated with higher IL10 production in monocytes and B-cells.                                                                                                          |
| Rosado    | 2008 | Spain (Ca,<br>mixed ) | 17 healthy                               | LPS-stimulated monocytes                                                    | ELISA             | <i>IL10.R,</i><br><i>IL10.G</i> , <sup>1</sup><br>-1082 G/A, -<br>819 C/T,<br>-592 C/A | PCR-RFLP                         | ns                                                                                                                                                                                         |
| Salhi     | 2008 | Brazil (NM)           | 28 healthy                               | Stimulated PBMC<br>(LPS, HA)                                                | ELISA             | -819 C/T                                                                               | PCR-RFLP                         | C/C genotype was associated with higher IL10 production after LPS stimulation ( $P = 0.03$ ) and hyaluronic acid stimulation ( $P = 0.05$ )                                                |
| Zeng      | 2009 | China (As)            | 308 major<br>trauma<br>patients          | LPS-stimulated<br>whole<br>blood                                            | ELISA             | -1082 G/A, -<br>819 C/T,<br>-592 C/A                                                   | PCR-RFLP                         | -1082A and -592A alleles were significantly associated<br>with lower LPS induced IL-10 production in an allele-<br>dose dependent fashion ( $P = 0.003$ and $P = 0.037$ ,<br>respectively) |
| Pereira   | 2009 | Brazil (NM)           | Healthy<br>(PCR,<br>n=380,<br>ELISA, NM) | Stimulated PBMC<br>(LPS,<br><i>Mycobacterium</i><br><i>leprae</i> antigens) | ELISA             | -3575 T/A, -<br>2849 G/A,<br>-2763 C/A,<br>-819 C/T                                    | PCR-RFLP                         | LPS, ns<br>-819T carriers produced lower levels of IL-10 after<br><i>Mycobacterium leprae</i> stimulation (P <0.05)                                                                        |
| Yan       | 2009 | China (As)            | 26 healthy                               | LPS-stimulated<br>PBMC                                                      | ELISA,<br>RT- PCR | -1082 G/A, -<br>819 C/T,<br>-592 C/A                                                   | PCR-RFLP                         | -592 C/C-C/A genotype was associated with higher mRNA expression ( $P = 0.001$ )                                                                                                           |
| Bos       | 2010 | Netherlands<br>(Ca)   | 563<br>participants<br>over 85<br>years  | LPS-stimulated<br>whole-blood<br>sample                                     | ELISA             | The genome-w analysis                                                                  | ide linkage                      | No evidence for linkage was observed at the locus encoding IL10 (1q32.1)                                                                                                                   |
| Huebinger | 2010 | USA,<br>mixed         | 31 healthy                               | LPS-stimulated                                                              | ELISA             | -819 C/T,                                                                              | RT-PCR                           | ns                                                                                                                                                                                         |
| Remmers   | 2010 | Turkey<br>(NM)        | 38 healthy                               | LPS-stimulated<br>PBMC                                                      | ELISA             | GWAS                                                                                   | (1 aqiviaii)                     | <i>IL10</i> rs1518111 G/G genotype was associated with higher IL10 production (vs. A/A genotype, $P = 0.0001$ )                                                                            |
| Boonnak   | 2011 | USA (NM)              | 9<br>healthy                             | LPS-stimulated monocytes                                                    | ELISA,<br>RT- PCR | -1082 G/A, -<br>819 C/T,<br>-592 C/A                                                   | PCR-RFLP                         | High-level (GCC), intermediate (ACC), and low-level (ATA) haplotypes were associated with IL10 protein and corresponding RNA levels                                                        |

| Boef              | 2012 | Netherlands<br>(A)  | 111 subjects<br>in an<br>environment<br>with high<br>infectious<br>pressure<br>(Ghana) | Repeated<br>measurements<br>(2006 and 2008<br>years) in<br>stimulated whole<br>blood (LPS +<br>zymosan) | ELISA                            | 20 SNPs in the <i>IL10</i> gene region | NM                       | -819T/ -592A/504T/1548T haplotype was associated with lower IL10 production (P< $0.05$ )                                                                   |
|-------------------|------|---------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nur               | 2012 | Turkey (Ca)         | $32$ healthy $(\leq 6 \text{ y})$                                                      | LPS-stimulated<br>PBMC                                                                                  | ELISA                            | -1082 G/A                              | ARMS-PCR                 | ns                                                                                                                                                         |
| Larsen            | 2013 | Denmark<br>(Ca)     | 130<br>(discovery<br>set)                                                              | LPS-stimulated whole blood                                                                              | Fluoroki<br>ne®<br>MAP-<br>assay | GWAS                                   |                          | ns                                                                                                                                                         |
| Stappers          | 2014 | Netherlands<br>(Ca) | 66 healthy                                                                             | Stimulated PBMC<br>(heat-killed<br>Staphylococcus<br>aureus and E.<br>coli)                             | ELIŠA                            | -819T>C                                | RT-PCR<br>(TaqMan)       | ns                                                                                                                                                         |
|                   |      |                     |                                                                                        |                                                                                                         |                                  | IL6                                    |                          |                                                                                                                                                            |
| Kilpinen          | 2001 | Finland (Ca)        | 50 healthy<br>newborns,<br>healthy<br>adults (PCR,<br>n=450,<br>ELISA, NM)             | LPS-stimulation<br>in cord blood                                                                        | ELISA                            | -174G>C                                | PCR-RFLP                 | Higher IL6 production in the carriers of C/C genotypes<br>than in the individuals with the G/C-G/G genotypes;<br>in adults, ns                             |
| Heesen            | 2002 | Germany<br>(Ca)     | 89 trauma patients                                                                     | LPS-stimulated whole blood                                                                              | ELISA                            | -174G>C                                | RT-PCR                   | ns                                                                                                                                                         |
| Rivera-<br>Chavez | 2003 | USA (Ca)            | 49 healthy                                                                             | LPS-stimulated whole blood                                                                              | EMSA                             | -597G>A,<br>-572 G>C,<br>-174G>C       | Pyrosequencin<br>g, EMSA | Haplotype -597G/-174G was associated with the highest level of IL6 production; haplotype -597A/-174C was associated with the lowest level of IL6 secretion |
| Kim               | 2005 | Korea (As)          | 110<br>postmenopa<br>usal women                                                        | LPS-stimulated whole blood                                                                              | ELISA                            | -572 G>C                               | PCR-RFLP                 | ns                                                                                                                                                         |
| Kiszel            | 2007 | Hungary<br>(Ca)     | 33 umbilical<br>cords from<br>healthy<br>pregnancies                                   | Stimulated<br>HUVEC (IL-1β,<br>LPS)                                                                     | ELISA                            | -174G>C                                | PCR-RFLP                 | ns                                                                                                                                                         |
| Gu                | 2010 | China (As)          | 308 major<br>trauma                                                                    | LPS-stimulated whole                                                                                    | ELISA                            | -572 G>C                               | PCR-RFLP                 | ns                                                                                                                                                         |

|                   |      |                     | patients                          | blood                                                                                                         |         |                                 |                                |                                                                                                                                                                                |
|-------------------|------|---------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------|---------|---------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Patel             | 2010 | USA (NM)            | 31 healthy                        | Stimulated PBMC<br>(RSV, LPS)                                                                                 | NM      | -174G>C                         | PCR-RFLP                       | Higher IL6 production in the carriers of $G/C$ - $C/C$                                                                                                                         |
| Noss              | 2015 | USA (NM)            | 10 healthy                        | Stimulated skin,<br>synovial<br>fibroblasts,<br>$CD14^+$ monocytes<br>(TNF- $\alpha$ , IL-1 $\beta$ ,<br>LPS) | RT- PCR | -174G>C                         | PCR-RFLP                       | <i>IL6</i> expression was significantly associated with the minor allele (CC) genotype in fibroblasts but not CD14 <sup>+</sup> monocytes                                      |
|                   |      |                     |                                   |                                                                                                               |         | IL8                             |                                |                                                                                                                                                                                |
| Hull              | 2000 | UK (Ca)             | 50 healthy                        | LPS-stimulated<br>whole<br>blood                                                                              | ELISA   | -251A>T                         | Sequencing<br>and ARMS-<br>PCR | ns                                                                                                                                                                             |
| Gu                | 2010 | China (As)          | 308 major<br>trauma<br>patients   | LPS-stimulated<br>whole<br>blood                                                                              | ELISA   | -251A>T                         | PCR-RFLP                       | IL8 expression was higher in the carriers of T allele (P<0.001)                                                                                                                |
|                   |      |                     |                                   |                                                                                                               |         | IL1B                            |                                |                                                                                                                                                                                |
| Pociot            | 1992 | Denmark<br>(Ca)     | 29 healthy                        | Stimulated PBMC<br>(LPS, PPD, PHA)                                                                            | ELISA   | +3953 C>T                       | PCR-RFLP                       | IL1B LPS-stimulated expression was higher in the carriers of T allele;<br>PPD and PHA, ns                                                                                      |
| Vamvakopo<br>ulos | 2002 | UK (Ca)             | 55 healthy                        | LPS-stimulated<br>PBMC                                                                                        | ELISA   | -31C>T,<br>+3953 C>T            | ARMS-PCR                       | ns                                                                                                                                                                             |
| Hernandez-        | 2003 | Mexico<br>(NM)      | 22<br>amniochorio<br>ns (healthy) | LPS- stimulated membranes                                                                                     | ELISA   | +3953 C>T                       | PCR-RFLP                       | Secretion of IL1B by membranes carrying a T allele was higher than for those with C allele; significant differences were found at 5.0, 10.0 and 50.0 ng/ml LPS ( $P < 0.05$ ). |
| Schrijver         | 2003 | Netherlands<br>(Ca) | 18 healthy                        | LPS + ATP<br>stimulated whole<br>blood                                                                        | NM      | +3953 C>T                       | PCR-RFLP                       | ns                                                                                                                                                                             |
| Hall              | 2004 | Netherlands<br>(Ca) | 31 healthy<br>(30 Ca +<br>1A)     | LPS-stimulated whole blood                                                                                    | ELISA   | -511C/T,<br>-31C/T,<br>+3953C/T | PCR-RFLP                       | Haplotype -511T/-31C was associated with an increase<br>in LPS-induced IL1B protein secretion ( $P = 0.0084$ )                                                                 |
| Awomoyi           | 2005 | Gambia (A)          | 250 healthy                       | Stimulated whole<br>blood (LPS alone<br>or LPS + IFN-γ)                                                       | ELISA   | -511 C>T,<br>+3953 C>T          | PCR-RFLP                       | Secretion of IL1B stimulated by LPS + IFN- $\gamma$ was higher in the carriers of -511T/C-C/C genotypes and 3953 T/T-T/C genotypes                                             |

| Iacoviello | 2005 | Italy (Ca)     | 145 healthy                     | LPS-stimulated<br>PBMC                       | ELISA                                                                  | -511C/T,<br>-31C/T,<br>+3953C/T                 | PCR-RFLP           | -511C allele was associated with higher IL1B concentrations in an allele-dose dependent fashion                                                                                                                                                                                        |
|------------|------|----------------|---------------------------------|----------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chen       | 2006 | USA<br>(mixed) | 25 healthy                      | LPS-stimulated<br>transfected THP-1<br>cells | Transient<br>transfecti<br>on<br>reporter<br>gene<br>assay and<br>EMSA | -3737 C>T,<br>-1464 G>C,<br>-511 C>T,<br>-31C>T | Sequencing         | -1464C and -31C alleles were associated with decreased transcriptional activity (TA), while -511T allele was associated with increased TA. Nuclear protein binding was lower for -3737T allele, higher for -1464C allele and varied for -31C allele in relation to different complexes |
| Wen        | 2006 | China (As)     | 105 healthy                     | LPS-stimulated whole blood                   | ELISA                                                                  | -1470G>C,<br>-511 C>T,<br>-31C>T                | PCR-RFLP           | Haplotype -1470G/-511C/-31T was associated with higher IL1B concentration than haplotype -1470C/-511T/-31C                                                                                                                                                                             |
| Latella    | 2009 | Italy (Ca)     | 64 healthy                      | LPS-stimulated<br>PBMC                       | ELISA                                                                  | -3737 C>T,<br>-1464 G>C,<br>-511 C>T,           | RT-PCR<br>(TaqMan) | Haplotypes -3737C/-1464C/-511T and -3737C/-1464G/-<br>511T were associated with lower IL1B concentations                                                                                                                                                                               |
| Gu         | 2010 | China (As)     | 308 major<br>trauma<br>patients | LPS-stimulated<br>whole<br>blood             | ELISA                                                                  | -1470G>C,<br>-511 C>T,<br>-31C>T                | PCR-RFLP           | IL1B expression was lower in the carriers of-1470 CC genotype (P=0.01); IL1B expression was higher in the carriers of-31TT genotype (P<0.010)                                                                                                                                          |
| IL4        |      |                | -                               |                                              |                                                                        |                                                 |                    |                                                                                                                                                                                                                                                                                        |
| Gu         | 2010 | China (As)     | 308 major<br>trauma<br>patients | LPS-stimulated<br>whole<br>blood             | ELISA                                                                  | -589T>C                                         | PCR-RFLP           | IL4 expression was higher in the carriers of-589C allele (P<0.001)                                                                                                                                                                                                                     |

Abbreviations: A, Africans; AA, African Americans; ARMS-PCR, amplification refractory mutation system; As, Asians; ATP, Adenosine triphosphate; Ca, Caucasians; ConA, concanavalin A; CPB, cardiopulmonary bypass; CS, cardiac surgery; CTS, cardiothoracic surgery; DZ, dizygotic; EMSA, electrophoretic mobility shift assay; GWAS, genome-wide association study; HA, hyaluronic acid; HUVEC, human umbilical cord vein endothelial cells; LCL, lymphoblastoid cell line; LPS, lipopolysaccharide; MZ, monozygotic; NA, native Americans; NM, no mention; PHA, phytohemagglutinin; PPD, purified protein derivative (from *E. coli*); RSV, respiratory syncytial virus; RT, realtime; SAC, *Staphylococcus aureus* Cowan strain I;  $\beta$ -gal,  $\beta$ -galactosidase; TSST, toxic shock syndrome toxin-1, secreted by *Staphylococcus aureus*; PBL, peripheral blood lymphocytes; PBMC, peripheral blood mononuclear cells; PCR-SSP, polymerase chain reaction-sequence-specific primer; SSOP, sequence-specific oligonucleotide probing; y; years

*IL10* SNPs: -6752 A/T (rs6676671), -6208 C/G (rs10494879), - 3575 A/T (rs1800890), -3538 A/T (rs1800890), - 2763 C/A (rs6693899), - 2849 G/A (rs6703630), -1330 A/G (rs1800893), -1082 A/G (rs1800896), - 819 C/T (rs1800871), -592 A/C (rs1800872), 504 G/T (rs3024490), 1548 C/T (rs1554286); *IL6* SNPs: -597G>A (rs1800797), -572 G>C (rs1800796), -174G>C (rs1800795); *IL8* SNP: -251A>T (rs4073); *IL-1b* SNPs: -3737 C>T (rs4848306); -1470G>C/-1464G>C (rs1143623); -511 C>T (rs16944); - 31C>T (rs1143627); 3953C>T (rs1143634); *IL4* SNP: -589C>T (rs2243250) <sup>1</sup>CA-repeat microsatellites, IL-10.R (-4 kb) and IL-10.G (-1.1 kb)

| Gene, SNP             | Genotypes       | Counts   | Mean          | SD     | P-value |
|-----------------------|-----------------|----------|---------------|--------|---------|
|                       |                 |          |               |        |         |
| <i>IL1B</i> rs1143633 | T/T             | 9        | 7.4           | 0.9109 | 0.07589 |
|                       | T/C             | 28       | 7.397         | 0.7164 |         |
|                       | C/C             | 21       | 6.992         | 0.6146 |         |
| IL6 rs1800795         | G/G             | 14       | 6.143         | 0.1828 | 0.02085 |
|                       | G/C             | 28       | 6.338         | 0.37   |         |
|                       | C/C             | 18       | 6.417         | 0.3662 |         |
| IL6 rs2069832         | G/G             | 14       | 6.143         | 0.1828 | 0.02085 |
|                       | G/A             | 28       | 6.346         | 0.37   |         |
|                       | A/A             | 17       | 6.433         | 0.3662 |         |
| IL6 rs1474347         | A/A             | 14       | 6.143         | 0.1828 | 0.02055 |
|                       | A/C             | 29       | 6.332         | 0.3712 |         |
|                       | C/C             | 17       | 6.433         | 0.3662 |         |
| IL6 rs1554606         | G/G             | 13       | 6.148         | 0.1891 | 0.03606 |
|                       | G/T             | 29       | 6.329         | 0.3727 |         |
|                       | T/T             | 18       | 6.417         | 0.3619 |         |
| <i>IL4</i> rs2227284  | T/T             | 3        | 6.75          | 0.2789 | 0.05973 |
|                       | T/G             | 26       | 6.55          | 0.1599 |         |
|                       | G/G             | 30       | 6.514         | 0.1617 |         |
| <i>IL4</i> rs2227282  | C/C             | 3        | 6.75          | 0.2789 | 0.05973 |
|                       | C/G             | 26       | 6.55          | 0.1599 |         |
|                       | G/G             | 30       | 6.514         | 0.1617 |         |
| IIA rs2243270         | G/G             | 2        | 6.827         | 0.3463 | 0.08717 |
|                       | G/A             | 16       | 6 543         | 0.1852 | 0100717 |
|                       | A/A             | 42       | 6.523         | 0.1503 |         |
| IL13 rs1295686        | T/T             | 3        | 6 762         | 0 5989 | 0.06592 |
| 1210 1012/0000        | T/C             | 22       | 6.235         | 0.2745 | 0.00072 |
|                       | C/C             | 35       | 6 209         | 0 3279 |         |
| 11.13 rs20541         |                 | 3        | 6 762         | 0.5989 | 0.06592 |
|                       | A/G             | 22       | 6.235         | 0.2745 | 0.000/2 |
|                       | G/G             | 35       | 6 209         | 0.3279 |         |
| IL10 rs3024496        |                 | 12       | 7 767         | 0.354  | 0.03898 |
| 1210 135021190        | A/G             | 29       | 7 735         | 0.3835 | 0.05070 |
|                       | G/G             | 17       | 7 508         | 0.2707 |         |
| IL10 rs1878672        | G/G             | 13       | 7 742         | 0.3504 | 0.04519 |
| 1210 1310/00/2        | G/C             | 31       | 7 742         | 0.3723 | 0.01517 |
|                       | C/C             | 16       | 7 492         | 0.2706 |         |
| II 10 rs1554286       | $\Delta/\Delta$ | 10       | 7.998         | 0      | 0.05955 |
| 1210 13133 1200       | A/G             | 18       | 7 789         | 0 3878 | 0.05755 |
|                       | G/G             | 40       | 7.621         | 0.337  |         |
| II 10 rs1518111       | С/С<br>Т/Т      | 2        | 7.021         | 0.2896 | 0.09132 |
| 1210 131310111        | T/C             | 20       | 7 78          | 0.2090 | 0.07132 |
|                       | C/C             | 36       | 7.61          | 0 3448 |         |
| II.10 rs2222202       | G/G             | 13       | 7 742         | 0.3504 | 0.07856 |
| 1210 13222202         | G/A             | 30       | 7.742         | 0.3784 | 0.07050 |
|                       | $\Delta/\Delta$ | 14       | 7 503         | 0.3764 |         |
| II 10 rs 1800872      | T/T             | 2        | 8 306         | 0.9292 | 0.09034 |
| 1210 131000072        | T/T             | 2        | 0.500         | 0.5252 | 0.07051 |
|                       |                 | 19       | ð.202<br>7.04 | 0.089/ |         |
| II 10 - 1000007       | G/G             | 30<br>12 | /.94          | 0.4896 | 0.05402 |
| 1L10 rs1800896        |                 | 13       | 1.142         | 0.3504 | 0.05492 |
|                       | 1/C             | 30<br>17 | /./41         | 0.3786 |         |
| H 10 100000           | 0/0             | 1/       | /.508         | 0.2707 | 0.05557 |
| <i>1L10</i> rs1800893 | C/C             | 13       | 1.142         | 0.3504 | 0.05557 |
|                       | C/T             | 28       | 1.152         | 0.3828 |         |
| <b>TTD ( 5000515</b>  | 1/1             | 17       | 7.508         | 0.2707 | 0.0415  |
| TLR4 rs5030717        | G/G             | 1        | 6.243         | 0      | 0.06445 |

Supplementary Table S7. Interleukin and toll-like receptor genes mRNA expression data for the available probes by the genotypes of SNPs representing corresponding haplotypes<sup>a</sup>

| G/A | 14 | 6.212 | 0.07696 |  |
|-----|----|-------|---------|--|
| A/A | 45 | 6.271 | 0.09725 |  |

<sup>a</sup>Genotyping data and mRNA expression levels by genotypes were obtained from the HapMap phase II release 23 data from EBV-transformed lymphoblastoid cell lines from 60 CEU parents. Data are given for the results with significance level P<0.10 under additive model. SNPs considered in this

Data are given for the results with significance level P<0.10 under additive model. SNPs considered in thi study are in bold. Probes: *IL1B*, GI\_27894305-S; *IL6*, GI\_10834983-S; *IL4*, GI\_27477091-A; *IL13*, GI\_26787977-S; *IL10*, GI\_24430213-S and GI\_24430216-S; *TLR4*, GI\_19924152-A

| Gene | SNP       | Chromosome: | RegPotential <sup>a</sup> | Regulome              | The NHGRI        |
|------|-----------|-------------|---------------------------|-----------------------|------------------|
|      |           | position    |                           | DB Score <sup>b</sup> | GWAS             |
|      |           | (GRCh38.p2) |                           |                       | Catalog          |
|      |           |             |                           |                       | associations     |
| L10  | rs3024500 | 1:206767486 | 0.193179                  | 6                     | No               |
| IL10 | rs3024498 | 1:206768184 | 0.157078                  | 4                     | No               |
| IL10 | rs3024496 | 1:206768519 | 0.151515                  | 5                     | No               |
| IL10 | rs3024495 | 1:206769068 | N/A                       | 4                     | No               |
| IL10 | rs3024509 | 1:206769952 | 0.060395                  | 3a                    | No               |
| IL10 | rs1878672 | 1:206770368 | 0.0                       | 4                     | No               |
| IL10 | rs3024493 | 1:206770623 | 0.041557                  | 2b                    | Yes <sup>a</sup> |
| IL10 | rs3024492 | 1:206770767 | 0.057937                  | 4                     | No               |
| IL10 | rs1554286 | 1:206770888 | 0.155715                  | 1f                    | No               |
| IL10 | rs1518111 | 1:206771300 | 0.241228                  | 3a                    | Yes <sup>e</sup> |
| IL10 | rs1518110 | 1:206771516 | 0.0                       | 3a                    | No               |
| IL10 | rs3021094 | 1:206771607 | 0.255299                  | 4                     | No               |
| IL10 | rs3024490 | 1:206771966 | 0.0                       | 6                     | No               |
| IL10 | rs2222202 | 1:206772036 | 0.0                       | 5                     | No               |
| IL10 | rs1800872 | 1:206773062 | 0.078963                  | 5                     | No               |
| IL10 | rs1800871 | 1:206773289 | 0.0                       | 3a                    | Yes <sup>f</sup> |
| IL10 | rs1800896 | 1:206773552 | 0.0                       | 6                     | No               |
| IL10 | rs1800893 | 1:206773822 | 0.0                       | 5                     | No               |
| IL1B | rs1071676 | 2:112829856 | 0.026017                  | 6                     | No               |
| IL1B | rs1143643 | 2:112830725 | 0.0                       | 6                     | No               |
| IL1B | rs1143639 | 2:112831216 | 0.074026                  | 5                     | No               |
| IL1B | rs1143637 | 2:112831756 | 0.055559                  | 3a                    | No               |
| IL1B | rs1143634 | 2:112832813 | 0.183937                  | 5                     | No               |
| IL1B | rs1143633 | 2:112832890 | 0.0                       | 4                     | No               |
| IL1B | rs3136558 | 2:112833698 | N/A                       | 5                     | No               |
| IL1B | rs3136557 | 2:112833765 | N/A                       | 5                     | No               |
| IL1B | rs3917356 | 2:112834786 | 0.104633                  | 2b                    | No               |
| IL1B | rs1143629 | 2:112835941 | 0.095585                  | 4                     | No               |
| IL1B | rs1143627 | 2:112836810 | 0.138647                  | 1b                    | No               |
| IL1B | rs16944   | 2:112837290 | 0.202817                  | 1f                    | No               |
| IL1B | rs1143625 | 2:112837782 | 0.0                       | 5                     | No               |
| IL1B | rs1143623 | 2:112838252 | 0.08717                   | 7                     | No               |
| TLR9 | rs5743846 | 3:52221672  | 0.378665                  | 5                     | No               |
| TLR9 | rs352140  | 3:52222681  | 0.26582                   | 5                     | No               |
| TLR9 | rs352139  | 3:52224356  | 0.196359                  | 5                     | No               |
| TLR9 | rs5743836 | 3:52226766  | 0.0                       | 5                     | No               |
| TLR9 | rs187084  | 3:52227015  | 0.0                       | 1f                    | No               |
| TLR2 | rs4696480 | 4:153685974 | N/A                       | 5                     | No               |
| TLR2 | rs5743687 | 4:153686215 | N/A                       | 6                     | No               |
| TLR2 | rs1898830 | 4:153687301 | N/A                       | 7                     | No               |
| TLR2 | rs4696483 | 4:153698103 | N/A                       | 5                     | No               |
|      |           |             |                           |                       |                  |

Supplementary Table S9. Functional characteristics of the SNPs in the genes under study

| TLR2 | rs11938228 | 4:153700794 | N/A      | 7  | No               |
|------|------------|-------------|----------|----|------------------|
| TLR2 | rs3804099  | 4:153703504 | 0.152475 | 7  | No               |
| TLR2 | rs3804100  | 4:153704257 | 0.10659  | 7  | No               |
| TLR2 | rs5743704  | 4:153704799 | 0.353217 | 5  | No               |
| TLR2 | rs5743708  | 4:153705165 | 0.323433 | 7  | No               |
| TLR2 | rs7656411  | 4:153706503 | 0.0      | 6  | No               |
| IL8  | rs4073     | 4:73740307  | 0.0      | 2b | No               |
| IL8  | rs2227307  | 4:73740952  | 0.0      | 4  | No               |
| IL8  | rs2227306  | 4:73741338  | 0.0      | 3a | No               |
| IL8  | rs2227543  | 4:73742193  | 0.0      | 1f | No               |
| IL8  | rs1126647  | 4:73743328  | 0.0      | 6  | No               |
| IL13 | rs1881457  | 5:132656717 | 0.0      | 3a | No               |
| IL13 | rs1800925  | 5:132657117 | 0.150674 | 2b | No               |
| IL13 | rs2066960  | 5:132658743 | 0.0      | 4  | No               |
| IL13 | rs1295686  | 5:132660151 | 0.108821 | 3a | Yes <sup>g</sup> |
| IL13 | rs20541    | 5:132660272 | 0.021634 | 3a | Yes <sup>h</sup> |
| IL13 | rs1295685  | 5:132660753 | 0.043141 | 4  | No               |
| IL13 | rs848      | 5:132660808 | 0.082331 | 4  | No               |
| IL13 | rs847      | 5:132660977 | 0.118299 | 6  | No               |
| IL4  | rs2243238  | 5:132671728 | N/A      | 7  | No               |
| IL4  | rs2243243  | 5:132672565 | N/A      | 5  | No               |
| IL4  | rs2243307  | 5:132672580 | N/A      | 5  | No               |
| IL4  | rs2243248  | 5:132672952 | 0.068851 | 5  | No               |
| IL4  | rs2243250  | 5:132673462 | 0.0      | 5  | No               |
| IL4  | rs2070874  | 5:132674018 | 0.097197 | 2b | No               |
| IL4  | rs734244   | 5:132675034 | 0.190309 | 4  | No               |
| IL4  | rs2227284  | 5:132677033 | 0.0      | 2b | No               |
| IL4  | rs2227282  | 5:132677487 | 0.0      | 3a | No               |
| IL4  | rs2243263  | 5:132677607 | 0.0      | 2b | No               |
| IL4  | rs2243266  | 5:132678097 | 0.0      | 4  | No               |
| IL4  | rs2243267  | 5:132678194 | 0.0      | 3a | No               |
| IL4  | rs2243268  | 5:132678271 | 0.0      | 4  | No               |
| IL4  | rs2243270  | 5:132678417 | 0.0      | 7  | No               |
| IL4  | rs2243274  | 5:132679140 | 0.060255 | 5  | No               |
| IL4  | rs2243281  | 5:132680703 | N/A      | 5  | No               |
| IL4  | rs2243282  | 5:132680862 | 0.0      | 3a | No               |
| IL4  | rs2243284  | 5:132681300 | 0.0      | 3a | No               |
| IL4  | rs2243285  | 5:132681301 | 0.0      | 3a | No               |
| IL4  | rs2243288  | 5:132682252 | 0.182399 | 3a | No               |
| IL4  | rs2243289  | 5:132682440 | 0.0      | 5  | No               |
| IL4  | rs2243290  | 5:132682477 | 0.0      | 6  | No               |
| IL6  | rs2069827  | 7:22725837  | 0.019139 | 4  | No               |
| IL6  | rs1800797  | 7:22726602  | 0.226647 | 4  | No               |
| IL6  | rs1800795  | 7:22727026  | 0.136017 | 4  | No               |
| IL6  | rs2069832  | 7:22727814  | 0.182766 | 1d | No               |
| IL6  | rs2069833  | 7:22728045  | 0.0      | 5  | No               |

| IL6  | rs1474348  | 7:22728289  | 0.10498  | 5  | No               |
|------|------------|-------------|----------|----|------------------|
| IL6  | rs2069837  | 7:22728408  | 0.031117 | 2b | No               |
| IL6  | rs1474347  | 7:22728505  | 0.0      | 1f | No               |
| IL6  | rs2069840  | 7:22728953  | 0.0      | 5  | No               |
| IL6  | rs1554606  | 7:22729088  | 0.139902 | 5  | No               |
| IL6  | rs2069845  | 7:22730530  | 0.0      | 5  | No               |
| IL6  | rs2069848  | 7:22731118  | 0.0      | 3a | No               |
| IL6  | rs2069861  | 7:22732035  | 0.0      | 5  | No               |
| TLR4 | rs1927914  | 9:117702447 | 0.0      | 6  | No               |
| TLR4 | rs10759932 | 9:117702866 | N/A      | 7  | No               |
| TLR4 | rs1927911  | 9:117707776 | 0.0      | 5  | No               |
| TLR4 | rs11536878 | 9:117709275 | 0.0      | 6  | No               |
| TLR4 | rs12377632 | 9:117710452 | 0.0      | 6  | No               |
| TLR4 | rs1927907  | 9:117710486 | 0.0      | 7  | No               |
| TLR4 | rs2770146  | 9:117711060 | 0.0      | 7  | No               |
| TLR4 | rs5030717  | 9:117711556 | 0.0      | 7  | Yes <sup>i</sup> |
| TLR4 | rs2149356  | 9:117711921 | 0.0      | 6  | No               |
| TLR4 | rs5030728  | 9:117712004 | 0.010763 | 7  | No               |
| TLR4 | rs4986790  | 9:117713024 | 0.04955  | 6  | No               |
| TLR4 | rs4986791  | 9:117713324 | 0.101936 | 7  | No               |
| TLR4 | rs5030719  | 9:117713658 | 0.195137 | 7  | No               |
| TLR4 | rs11536889 | 9:117715853 | 0.0      | 4  | No               |
| TLR4 | rs7873784  | 9:117716658 | N/A      | 7  | No               |
| TLR4 | rs11536891 | 9:117717059 | 0.0      | 5  | No               |
| TLR4 | rs11536896 | 9:117717456 | N/A      | 6  | No               |
| TLR4 | rs11536897 | 9:117717732 | 0.0      | 5  | No               |
| TLR4 | rs1927906  | 9:117717837 | 0.0      | 7  | No               |
| TLR4 | rs11536898 | 9:117717932 | 0.0      | 5  | No               |

SNPs under study are signed in red.

<sup>a</sup> In this series, RegPotential from the SNPinfo resource

(<u>https://snpinfo.niehs.nih.gov/snpinfo/snpfunc.htm</u>) varies in the range of 0.0 to the maximum value of 0.379.

<sup>b</sup>Regulome DB Score from RegulomeDB web server (<u>http://regulomedb.org/</u>) RegulomeDB presents a scoring system, with categories ranging from 1 to 7, where category 7 variants lack evidence of regulatory function, while category 1 variants are assumed to affect

binding and expression of a gene target. Categories 1-3 are further divided into subcategories. A variant scored as 1a has the highest confidence on functionality.

<sup>c</sup>Associations from the NHGRI GWAS Catalog (<u>http://www.ebi.ac.uk/gwas/</u>):

<sup>d</sup>Ulcerative colitis; <sup>e</sup>Behcet's disease; <sup>f</sup>Behcet's disease; <sup>g</sup>Atopic dermatitis, Asthma (childhood onset), <sup>h</sup>Asthma; Psoriasis, Self-reported allergy, Hodgkin's lymphoma, IgE levels; <sup>i</sup>Plasma omega-6 polyunsaturated fatty acid levels (dihomo-gamma-linolenic acid) N/A, not available

**Supplementary Figure S1.** Flow diagram of study selection. Literature search was performed in compliance with MOOSE (Meta-analysis Of Observational Studies in Epidemiology) (Stroup et al. 2000) and PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) (Moher et al. 2009).



**Supplementary Figure S2.** Flow diagram of literature search for the studies of induced allele-specific cytokine expression profile



**Supplementary Figure S3.** Linkage disequilibrium plots of the *IL1B*, *IL8*, *IL4*, *IL13*, *TLR4* and *TLR9* gene regions generated with the LD tag SNP selection tool within SNPinfo resource. Pair-wise LD values are indicated by different color, which changes from red to white as the D' value decreases. SNP name is colored with genomic context: black, intron region; red: coding region; blue, UTR (untranslated) region, green, non-genic region. Minor allele frequency for each SNP in the European population is denoted by the height of green bar.

Functional annotations from the SNP info web server are shown with red arrows: one arrow, regulatory potential is in the range of 0.10-0.20; two arrows, regulatory potential is in the range of 0.20-0.30; three arrows, regulatory potential is higher than 0.30.

Functional annotations from the RegulomeDB info web server are represented with dark blue arrows: one arrow, score 2a–2f; two arrows, score 1a–1f. Scores 3–7 are not provided. SNPs with category 7 score lack evidence of regulatory function, while category 1 variants are assumed to affect binding and expression of a gene target. Within subcategories a–f, variant scored as 1a has the highest confidence on functionality.

Functional annotations from the NHGRI GWAS Catalog are marked by green arrows. The number of arrows corresponds to the number of associations in the Catalog.



## **Supplementary References**

1. Aborsangaya, K. B. et al. Impact of aboriginal ethnicity on HCV core-induced IL-10 synthesis: interaction with IL-10 gene polymorphisms. *Hepatology*. **45**, 623–630.

2. Allen, M. L. et al. Interleukin-10 and its role in clinical immunoparalysis following pediatric cardiac surgery. *Crit Care Med.* **34**, 2658–2665 (2006).

3. Awomoyi, A. A. et al. Polymorphism in IL1B: IL1B-511 association with tuberculosis and decreased lipopolysaccharide-induced IL-1beta in IFN-gamma primed exvivo whole blood assay. *J Endotoxin Res.* **11**, 281–286 (2005).

4. Boef, A. G. et al. The influence of genetic variation on innate immune activation in an environment with high infectious pressure. *Genes Immun.* **13**, 103–108 (2012).

5. Boonnak, K., Dambach, K. M., Donofrio, G. C., Tassaneetrithep, B. & Marovich, M. A. Cell type specificity and host genetic polymorphisms influence antibody-dependent enhancement of dengue virus infection. *J Virol.* **85**, 1671–1683 (2011).

6. Bos, S. D. et al. A genome-wide linkage scan reveals CD53 as an important regulator of innate TNF-alpha levels. *Eur J Hum Genet*. **18**, 953–959 (2010).

7. Carvalho, A. et al. Polymorphisms in Toll-like receptor genes and susceptibility to infections in allogeneic stem cell transplantation. *Exp. Hematol.* **37**, 1022–1029 (2009).

8. Chen, H. et al. Single nucleotide polymorphisms in the human interleukin-1B gene affect transcription according to haplotype context. Hum Mol Genet. **15**, 519–529 (2006).

9. Crawley, E. et al. Polymorphic haplotypes of the interleukin-10 5' flanking region determine variable interleukin-10 transcription and are associated with particular phenotypes of juvenile rheumatoid arthritis. *Arthritis Rheum.* **42**, 1101–1108 (1999).

10. Dubinskaya, G., Pryimenko, N., Kaidashev, L., Pokhylko V. and Chub K. The role of TLR-2, TLR-3, TLR-4 genes polymorphism of grippe. *Georgian Med News*. **232–233**, 51–55 (2014).

11. Edwards-Smith, C. J. et al. Interleukin-10 promoter polymorphism predicts initial response of chronic hepatitis C to interferon alfa. *Hepatology*. **30**, 526–530 (1999).

12. Endeman, H. et al. Systemic cytokine response in patients with community-acquired pneumonia. *Eur Respir J.* **37**, 1431–1438. (2011).

13. Endeman H. *Clinical characteristics and innate immunity in patients with community-acquired pneumonia*. (2009) Utrecht University Repository (Dissertation) Supervisor(s): Biesma, D.H.; Bosch, J.M.M. van den; Grutters, J.C.; Voorn, G.P.

14. Eskdale, J. et al. Interleukin 10 secretion in relation to IL-10 locus haplotypes. *Proc Natl Acad Sci U S A*. **95**, 9465–9470 (1998).

15. Esposito, S. et al. Toll-like receptor 3 gene polymorphisms and severity of pandemic A/H1N1/2009 influenza in otherwise healthy children. *Virol. J.* **9**, 270 (2012).

16. George, S. et al. Renovascular disease is associated with low producer genotypes of the anti-inflammatory cytokine interleukin-10. *Tissue Antigens*. **63**, 470–475 (2004).

17. Georgitsi, M. D. et al. Individualized significance of the -251 A/T single nucleotide polymorphism of interleukin-8 in severe infections. *Eur J Clin Microbiol Infect Dis.* **35**, 563–570 (2016).

18. Gibson, A. W. et al. Novel single nucleotide polymorphisms in the distal IL-10 promoter affect IL-10 production and enhance the risk of systemic lupus erythematosus. *J Immunol.* **166**, 3915–3922 (2001).

19. Gu, W. et al. Clinical relevance of 13 cytokine gene polymorphisms in Chinese major trauma patients. *Intensive Care Med.* **36**, 1261–1265 (2010).

20. Hall, S. K. et al. Correlation of polymorphic variation in the promoter region of the interleukin-1 beta gene with secretion of interleukin-1 beta protein. *Arthritis Rheum.* **50**, 1976–1983 (2004).

21. Hawn, T. R. et al. Toll-like receptor 4 polymorphisms are associated with resistance to Legionnaires' disease. *Proc Natl Acad Sci U S A*. **102**, 2487-2489 (2005).

22. Heesen, M., Bloemeke, B., Heussen, N., & Kunz D. Can the interleukin-6 response to endotoxin be predicted? Studies of the influence of a promoter polymorphism of the interleukin-6 gene, gender, the density of the endotoxin receptor CD14, and inflammatory cytokines. *Crit Care Med.* **30**, 664–669 (2002).

23. Hernandez-Guerrero, C. et al. In-vitro secretion of proinflammatory cytokines by human amniochorion carrying hyper-responsive gene polymorphisms of tumour necrosis factor-alpha and interleukin-1beta. *Mol Hum Reprod.* **9**, 625–629 (2003).

24. Huebinger, R. M. et al. IL-10 polymorphism associated with decreased risk for mortality after burn injury. *J Surg Res. 164*, e141–e145 (2010).

25. Huizinga, T. W. et al. Are differences in interleukin 10 production associated with joint damage? *Rheumatology (Oxford)*. **39**, 1180–1188 (2000).

26. Hull, J., Thomson, A. & Kwiatkowski, D. Association of respiratory syncytial virus bronchiolitis with the interleukin 8 gene region in UK families. *Thorax.* **5**, 1023–1027 (2000).

27. Iacoviello, L. et al. Polymorphisms of the interleukin-1beta gene affect the risk of myocardial infarction and ischemic stroke at young age and the response of mononuclear cells to stimulation in vitro. *Arterioscler Thromb Vasc Biol.* **25**, 222–227 (2005).

28. Ioannidis, J. P. et al. Assessment of cumulative evidence on genetic associations: interim guidelines. *Int J Epidemiol.* **37**, 120–132 (2008).

29. Kilpinen, S., Hulkkonen, J., Wang, X. Y. & Hurme, M. The promoter polymorphism of the interleukin-6 gene regulates interleukin-6 production in neonates but not in adults. *Eur Cytokine Netw.* **12**, 62–68 (2001).

30. Kim, J. G. et al. Cytokine production by whole blood cells: relationship to interleukin gene polymorphism and bone mass. *J Korean Med Sci.* **20**, 1017–1022 (2005).

31. Kiszel, P., Makó, V., Prohászka, Z. and Cervenak, L. Interleukin-6 -174 promoter polymorphism does not influence IL-6 production after LPS and IL-1 beta stimulation in human umbilical cord vein endothelial cells. *Cytokine*. **40**, 17–22 (2007).

32. Knaus, W. A, Draper, E. A., Wagner, D. P. & Zimmerman, J. E. APACHE II: a severity of disease classification system. *Crit Care Med.* **13**, 818–829 (1985).

33. Koss, K., Satsangi, J., Fanning, G. C., Welsh, K. I. & Jewell, D. P. Cytokine (TNF alpha, LT alpha and IL-10) polymorphisms in inflammatory bowel diseases and normal controls: differential effects on production and allele frequencies. *Genes Immun.* **1**, 185–190 (2000).

34. Kumpf, O. et al. Influence of genetic variations in TLR4 and TIRAP/Mal on the course of sepsis and pneumonia and cytokine release: an observational study in three cohorts. *Crit. Care.* **14**, R103 (2010).

35. Larsen, M. H. et al. Genome-Wide Association Study of Genetic Variants in LPS-Stimulated IL-6, IL-8, IL-10, IL-1ra and TNF- $\alpha$  Cytokine Response in a Danish Cohort. *PLoS One.* **8**, e66262 (2013).

36. Latella, M. C., et al. Interleukin 1 gene cluster, myocardial infarction at young age and inflammatory response of human mononuclear cells. *Immunol Invest.* **38**, 203–219 (2009).

37. Martinez-Ocaña, J. et al. Plasma cytokine levels and cytokine gene polymorphisms in Mexican patients during the influenza pandemicA(H1N1)pdm09. *J Clin Virol.* **58**, 108–113 (2013).

38. Martin-Loeches, I. et al. Variants at the promoter of the interleukin-6 gene are associated with severity and outcome of pneumococcal community-acquired pneumonia. *Intensive Care Med.* **38**, 256–262 (2012).

39. Misch, E. A., Verbon, A., Prins, J. M., Skerrett, S. J. & Hawn, T. R. A TLR6 polymorphism is associated with increased risk of Legionnaires' disease. *Genes Immun.* **14**, 420–426 (2013).

40. Moens, L. et al. Toll-like receptor 2 and Toll-like receptor 4 polymorphisms in invasive pneumococcal disease. *Microbes Infect.* **9**, 15–20 (2007).

41. Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med.* **6**, e1000097 (2009).

42. Mörmann, M. et al. Mosaics of gene variations in the Interleukin-10 gene promoter affect interleukin-10 production depending on the stimulation used. *Genes Immun.* **5**, 246–255 (2004).

43. Moscovis, S. M. et al. Interleukin-10 and sudden infant death syndrome. *FEMS Immunol Med Microbiol.* **42**, 130–138 (2004).

44. Noss, E. H., Nguyen, H. N., Chang, S. K., Watts, G. F., & Brenner, M. B. Genetic polymorphism directs IL-6 expression in fibroblasts but not selected other cell types. *Proc Natl Acad Sci U S A.* **112**, 14948–14953 (2015).

45. Nur, B. G. et al. Single nucleotide polymorphism and production of IL-1 $\beta$  and IL-10 cytokines in febrile seizures. *Neuropediatrics*. **43**, 194–200 (2012).

46. Patel, J. A. et al. Interleukin-6–174 and tumor necrosis factor  $\alpha$ –308 polymorphisms enhance cytokine production by human macrophages exposed to respiratory viruses. *J Interferon Cytokine Res.* **30**, 917–921 (2010).

47. Pereira, A. C. et al. Genetic, epidemiological and biological analysis of interleukin-10 promoter single-nucleotide polymorphisms suggests a definitive role for -819C/T in leprosy susceptibility. *Genes Immun.* 10, 174–180 (2009).

48. Pociot, F., Mølvig, J., Wogensen, L., Worsaae, H. & Nerup, J. A TaqI polymorphism in the human interleukin-1 beta (IL-1 beta) gene correlates with IL-1 beta secretion in vitro. *Eur J Clin Invest.* **22**, 396–402 (1992).

49. Remmers, E. F. et al. Genome-wide association study identifies variants in the MHC class I, IL10, and IL23R-IL12RB2 regions associated with Behçet's disease. *Nat Genet.* **42**, 698–702 (2010).

50. Reuss, E. et al. Differential regulation of interleukin-10 production by genetic and environmental factors--a twin study. *Genes Immun.* **3**, 407–413 (2002).

51. Rivera-Chavez, F. A., Peters-Hybki, D. L., Barber, R. C. & O' Keefe, G. E. Interleukin-6 promotor haplotypes and interleukin-6 cytokine response. *Shock.* **20**, 218–223 (2003).

52. Romanova, E. N. & Govorin, A. V. TNF-alpha, IL-10, and eNOS gene polymorphisms in patients with influenza A/H1N1 complicated by pneumonia. *Ter Arkh.* **85**, 58–62 (2013).

53. Rosado, S. et al. Interleukin-10 promoter polymorphisms in patients with systemic lupus erythematosus from the Canary Islands. *Int J Immunogenet*. **35**, 235–242 (2008).

54. Sakamoto, K. et al. Relationship between cytokine gene polymorphisms and risk of postoperative pneumonia with esophageal cancer. *J Gastrointest Surg.* **18**, 1247–1253 (2014).

55. Salhi, A. et al. Immunological and genetic evidence for a crucial role of IL-10 in cutaneous lesions in humansinfected with Leishmania braziliensis. *J Immunol.* **180**, 6139–6148 (2008).

56. Salnikova, L. E., Smelaya, T. V., Moroz, V. V., Golubev, A. M. & Rubanovich, A. V. Functional polymorphisms in the CYP1A1, ACE, and IL-6 genes contribute to susceptibility to community-acquired and nosocomial pneumonia. *Int J Infect Dis.* **17**, e433–e442 (2013).

57. Schaaf, B. et al. The interleukin-6 -174 promoter polymorphism is associated with extrapulmonary bacterial dissemination in Streptococcus pneumoniae infection. *Cytokine*. **31**, 324–328 (2005).

58. Schaaf, B. M. et al. Pneumococcal septic shock is associated with the interleukin-10-1082 gene promoter polymorphism. *Am J Respir Crit Care Med.* **168**, 476–480 (2003).

59. Schippers, E. F. et al. IL-10 and toll-like receptor-4 polymorphisms and the in vivo and ex vivo response to endotoxin. *Cytokine*. **29**, 215–228 (2005).

60. Schnetzke, U. et al. Polymorphisms of Toll-like receptors (TLR2 and TLR4) are associated with the risk of infectious complications in acute myeloid leukemia. *Genes Immun.* **16**, 83–88 (2015).

61. Schrijver, H. M., van As, J., Crusius, J. B., Dijkstra, C. D. & Uitdehaag, B. M. Interleukin (IL)-1 gene polymorphisms: relevance of disease severity associated alleles with IL-1beta and IL-1raproduction in multiple sclerosis. *Mediators Inflamm.* **12**, 89–94 (2003).

62. Stanilova, S. A., Miteva, L. D., Karakolev, Z. T. & Stefanov, C. S. Interleukin-10-1082 promoter polymorphism in association with cytokine production and sepsis susceptibility. *Intensive Care Med.* 32, 260–266 (2006).

63. Stappers, M. H. et al. Polymorphisms in cytokine genes IL6, TNF, IL10, IL17A and IFNG influence susceptibility to complicated skin and skin structure infections. *Eur J Clin Microbiol Infect Dis.* **33**, 2267–2274 (2014).

64. Steinke, J. W., Barekzi, E., Huyett, P. & Borish, L. Differential interleukin-10 production stratified by -571 promoter polymorphism in purified human immunecells. *Cell Immunol.* **249**, 101–107 (2007).

65. Stroup, D. F. et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. *JAMA*. **283**, 2008–2012 (2000).

66. Suárez, A., Castro, P., Alonso, R., Mozo, L. & Gutiérrez, C. Interindividual variations in constitutive interleukin-10 messenger RNA and protein levels and their association with genetic polymorphisms. *Transplantation*. **75**, 711–717 (2003).

67. Tellería-Orriols J.J., García-Salido A., Varillas D., Serrano-González A., Casado-Flores J. TLR2-TLR4/CD14 polymorphisms and predisposition to severe invasive infections by Neisseria meningitidis and Streptococcus pneumoniae. Med. Intensiva. 2014;38(6):356– 62. doi:10.1016/j.medin.2013.08.006.

68. Temple, S. E. et al. Alleles carried at positions -819 and -592 of the IL10 promoter affect transcription following stimulation of peripheral blood cells with Streptococcus pneumoniae. *Immunogenetics.* **55**, 629–632 (2003).

69. Vamvakopoulos, J., Green, C. & Metcalfe, S. Genetic control of IL-1beta bioactivity through differential regulation of the IL-1 receptor antagonist. *Eur J Immunol.* **32**, 2988–2996 (2002).

70. Vincent, J. L. et al. The SOFA (sepsis-related organ failure assessment) score to describe organ dysfunction/failure. *Intensive Care Med.* **22**, 707–710 (1996).

71. Wan, Q. Q., Li, J. L., Ye, Q. F., Zhou, J. D. Genetic association of tumor necrosis factor-beta, interleukin-10, and interleukin-1 gene cluster polymorphism with susceptibility to pneumonia in kidney transplant recipients. *Transplant Proc.* **45**, 2211–2214 (2013).

72. Wattanathum, A., Manocha, S., Groshaus, H., Russell, J. A. & Walley, K. R. Interleukin-10 haplotype associated with increased mortality in critically ill patients with sepsis from pneumonia but not in patients with extrapulmonary sepsis. *Chest.* **128**, 1690–1698 (2005).

73. Wen, A. Q. et al. Effects of haplotypes in the interleukin 1beta promoter on lipopolysaccharide-induced interleukin 1beta expression. *Shock.* **26**, 25–30 (2006).

74. Yan, Z. et al. Regulatory polymorphisms in the IL-10 gene promoter and HBV-related acute liver failure in the Chinese population. *J Viral Hepat.* **16**, 775–783 (2009).

75. Yilmaz, V., Yentür, S. P. & Saruhan-Direskeneli, G. IL-12 and IL-10 polymorphisms and their effects on cytokine production. *Cytokine*. **30**, 188–194 (2005).

76. Yuan, F. F. et al. Clinical relevance of TLR2, TLR4, CD14 and FcgammaRIIA gene polymorphisms in Streptococcus pneumonia infection. *Immunol Cell Biol.* **86**, 268–270 (2008).

77. Zeng, L. et al. Clinical relevance of the interleukin 10 promoter polymorphisms in Chinese Han patients with major trauma: genetic association studies. *Crit Care.* **13**, R188 (2009).

78. Zidan, H. E., Elbehedy, R. M. & Azab, S. F. II6-174 g/c gene polymorphism and its relation to serum il6 in egyptian children with community-acquired pneumonia. *Cytokine*. **67**, 60–64 (2014).