Faraday 2016 - SI

## **Supplementary Information**

## Template-Assisted Colloidal Self-Assembly of Macroscopic Magnetic Metasurfaces

Martin Mayer<sup>a</sup>, Moritz Tebbe<sup>b</sup>, Christian Kuttner<sup>a,c</sup>, Max J. Schnepf<sup>a</sup>, Tobias A.F. König<sup>\*,a,c</sup>, Andreas Fery<sup>\*,a,c,d</sup>

<sup>a</sup>Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany

<sup>b</sup>Department of Physical Chemistry II, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany

<sup>c</sup>Cluster of Excellence Centre for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062 Dresden, Germany

<sup>d</sup>Department of Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Hohe Str. 6, 01069 Dresden, Germany

\*Corresponding e-mail: koenig@ipfdd.de and fery@ipfdd.de



**Figure S1.** Surface charge plots of the isolated dipolar mode (**EM**) and the two emerging modes in the contact region. Contrary to the quadrupolar-mirrored mode at higher energies, the dipolar-mirrored mode (**MM**) induces a confinement of the charges in the contact area.





**Figure S2.** TEM image of the as-synthesized (**A**) and of the purified (**B**) penta-twinned gold nanorod solution. (**C**) Respective UV-vis-NIR spectra. Histogram plot of the evaluatuon of the width (**D**) and length (**E**) (N > 250): 161.0±14.8 nm in  $\langle$  length $\rangle$  and 30.2±3.7 nm in  $\langle$  width $\rangle$ . (**F**) Calibration plot for the required CTAC concentration to purify gold nanorods depending on their longitudinal plasmon resonance. The empirical fit (**blue**) can be used to assign an appropriate surfactant concentration without the need of TEM study or concentration screening. For in detail explanations of the purification process please see Reference 1.<sup>1</sup>



**Figure S3.** To match the template dimensions to the nanorod dimension for the template-assisted self-assembly process, the amplitude of the wrinkled substrate needs to be reduced by an additional plasma treatment. The amplitude (**red**) is reduced linearly with plasma dose, while the wavelength (**blue**) remains constant.



**Figure S4**. (**A**) Schematic depiction of the evaluated angle of deviation and gap size. The evaluation of over 360 individual nanorods reveals a standard deviation of the angle of  $2.69^{\circ}$ , resulting in a 2D order parameter of 0.987. The mean gap size in line is  $15.6\pm5.8$  nm. Histogram plots of the angle of deviation (**B**) and gap size (**C**).



**Figure S5**. Calculated effective electric permittivity (**A**) and effective magnetic permeability (**B**) for a gold nanorod monomer (infinite separation from gold film, **black**), gold film only (**grey**) and film coupled nanorod at a distance of 1.1 nm (**red**).



**Figure S6.** Variable angle spectroscopic ellipsometric data for a template-stripped gold substrate at incident angles of 45° to 85° in 5° steps. Psi (**green**) and Delta (**red**) measured in the wavelength range from 193 nm to 1690 nm. The data was fitted using a layered isotropic model of air, gold film (Cauchy), and glass substrate (Cauchy). See fit parameters in **Table S1**.

**Table S1** Fitting parameter of the spectroscopic ellipsometric data measurement of the gold film on a glass substrate.

| Parameter                          | Value   | Error Bar  |
|------------------------------------|---------|------------|
| MSE                                | 2.459   | -          |
| Gold Film                          |         |            |
| Roughness / nm                     | 0.48    | 0.005      |
| Thickness / nm                     | 34.19   | 0.019      |
| Cauchy Substrate / Glass Substrate |         |            |
| n @ 632 nm                         | 1.48292 | -          |
| A                                  | 1.136   | 0.0049     |
| В                                  | 0.13879 | 0.001510   |
| С                                  | 0.00000 | 0.00011245 |
| k Amplitude                        | 0.32224 | 0.006351   |
| Exponent                           | 0.784   | 0.0064     |

## Reference

1. M. Mayer, L. Scarabelli, K. March, T. Altantzis, M. Tebbe, M. Kociak, S. Bals, F. J. García de Abajo, A. Fery and L. M. Liz-Marzán, *Nano Lett.*, 2015, **15**, 5427-5437.