0

Sc	MVLEATVLVIDNSEYSRNGDFPRTRFEAQIDSVEFIFQAKRNSNPENTVGLISGAGANPR	60
Sp	MVLEATMILIDNSEWMINGDYIPTRFEAQKDTVHMIFNQKINDNPENMCGLMTIGDNSPQ	60
Hs	MVLESTMVCVDNSEYMRNGDFLPTRLQAQQDAVNIVCHSKTRSNPENNVGLITLAN-DCE	59
Mm	MVLESTMVCVDNSEYMRNGDFLPTRLQAQQDAVNIVCHSKTRSNPENNVGLITLAN-DCE	59
Dr	MVLESIMVCVDNSEYMRNGDFLPIRLQAQQDAVNIICHSKIRSNPENNVGLIIMAN-NCE	59
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	** **	
Sc	VLSTFTAEFGKILAGLHDTQIEGKLHMATALQIAQLTLKHRQNKVQHQRIVAFVCSPISD	120
Sp	VLSTLTRDYGKFLSAMHDLPVRGNAKFGDGIQIAQLALKHRENKIQRQRIVAFVGSPIVE	120
Hs	VLTTLTPDTGRILSKLHTVQPKGKITFCTGIRVAHLALKHRQGKNHKMRIIAFVGSPVED	119
Mm	VLTILTPDIGRILSKLHIVQPKGKITFCTGTRVAHLALKHRQGKNHKMRTTAFVGSPVED	119
Dr	VLIILIPDIGKILSKLHAVQPKGVISFCIGIKVAHLALKHKQGKNHKMKIIAFVGSPVED	119
Sc	SRDELIRLAKTLKKNNVAVDIINFGEIEQNTELLDEFIAAVNNPQEETSHLLTVTPGP	178
Sp	DEKNLIRLAKRMKKNNVAIDIIHIGEL-QNESALQHFIDAANSSDSCHLVSIPPSP	175
Hs	NEKDLVKLAKRLKKEKVNVDIINFGEEEVNTEKLTAFVNTLNGKDGTGSHLVTVPPGP	177
Mm	NEKDLVKLAKRLKKEKVNVDIINFGEEEV NIEKLIAFVNILNGKDGIGSHLVIVPPGP	1//
Dr	VEKDLVKMAKKLKKEKVSVDIINFGEEEVNIEKLIVFVNILNGKEGVGSHLVIVPPGP ************************************	177
Sc	RLLYENIASSPIILEEGSSGMGAFGGSGGDSDANGTFMDFGVDPSMDPELAMALRLSMEE	238
Sp	QLLSDLVNQSPIGQGVVASQNQFEYGVDPNLDVELALALELSMAE	220
Hs	SLADALIS-SPILAGEGGAMLGLGASDFEFGVDPSADPELALALRVSMEE	226
Mm	SLADALIS-SPILAGEGGAMLGLGASDFEFGVDPSADPELALALRVSMEE	226
Dr	SLADALLS-SPIMAGEGGIIMGLGASDFEFGVDPSADPELALALKVSMEE	226
Sc	EQQRQERLRQQQQQQDQPEQSE	260
Sp	ERARQEVAAQKSSEETE	237
Hs	QRQRQEEEARRAAAASAAEAGIATTGTEGERDSDDALLKMTISQQEFGRTGLPDLSSMTE	286
Mm	QRQRQEEEARRAAAASAAEAGIATPGTEGERDSDDALLKMTINQQEFGRPGLPDLSSMTE	286
Dr	VKVKVEEEAKKAAVASAADAGVSSPIADESENALLKMSIAPALPDFSKMIE	277
Sc	QPEQHQDK	268
Sp	DKKMQE	243
Hs	EEQIAYAMQMSLQGAEFGQAESADIDASSAMDTSEPAKE-EDDYDVMQDPEFLQSVLENL	345
Mm	EEQIAYAMQMSLQGTEFSQ-ESADMDASSAMDTSDPVKE-EDDYDVMQDPEFLQSVLENL	344
Dr	DEQIAYALQMSMQGGEFGGSEAMDVDIAAAAAESEAPKEDEEDYDVMQDPEFLQSVLENL	337
Sc	268	
Sp	243	
Hs	PGVDPNNEAIRNAMGSLASQATKDGKKDKKEEDKK 380	
Mm	PGVDPNNAA1RSVMGALASQATKDGKNDKKEEEKK 379	
Dr	PGVDPNNEAIRNAMGSLASQNRIKPPEGKKEDEKK 3/2	

Supplementary Figure 1. Multiple alignment of Rpn10 proteins from common organism models. Conservation is shown at the bottom of the alignment: (*) Full conservation, (:) Strongly similar residues and (.) Weakly similar residues. Symbol codes: (★) Mutated residue at the Ub:VWA non- covalent binding patch; (•) Structurally possible compensatory residue in *S. pombe* at the Ub:VWA non-covalent binding patch; (•) Interacting residue at the Ub:VWA covalent bond area; (■) Interacting residue at the Ub:VWA non-covalent binding patch. Organism names: Sc, *Saccharomyces cerevisiae*; Sp, *Schizosaccharomyces pombe*; Hs, *Homo sapiens*; Mm, *Mus musculus*; Dr, *Danio rerio*.

Supplementary Figure 2. Assessment of model biased by simulated annealing omit map. A simulatedannealing refinement of partial structure in which the Ub C-terminus segment [(residues R72-G76) and the residue atoms of K84 (C β , C γ , C δ , C ϵ and N ζ) were omitted], was performed¹⁶. σ_A -weighted *mFo-DFc* electron density omit-map was calculated and presented in 3σ level. The last refined model is presented.

Supplementary Figure 3. Structure-based *in silico* procedure for identification of Ub-binding domains highlights the Ub binding patch on Rpn10-vWA domain. Using the structure of E2-25kDa complex with Ub (PDB 3K9P) as searching probe for Ub-binding sites on the vWA structure yielded a very similar binding mode to the one found in the non-covalent structure at the crystal lattice. a. shows the non-covalent structure of vWA:Ub. b. shows the non-covalent complex of E2-25k with Ub. c. Shows superimposition of the structures based on the *in silico* procedure (see Supplementary Fig. S3 for molecular details)

Rigid Transformation: -1.44662 -0.362251 0.387384 -2.43399 -20.2258 41.095									
Similarity	Score: 4187.6	2		rmsd: 0.692565			Match Size: 10		
Chain.ID	Amino Acid	Property	Source	Chain.ID	Amino Acid	Property	Source	Dist.	Conserved
A.19	Gly	ACC	b	A.168	Asn	ACC	b	2.6	
A.25	Arg	DON	S	A.194	Thr	DAC	b	1.1	
A.146	Glu	ACC	S	A.191	Glu	ACC	b	1.3	*
A.147	Ile	ALI	S	A.198	Leu	ALI	b	0.39	
A.148	Glu	ACC	S	A.195	Glu	ACC	b	1.7	*
A.148	Glu	ACC	s	A.195	Glu	ACC	b	1.1	*
A.149	Gln	ACC	S	A.198	Leu	ACC	b	1	
A.175	Thr	ACC	b	A.172	Met	ACC	b	1.4	
A.176	Pro	ALI	S	A.172	Met	ALI	b	1.4	
A.177	Gly	ACC	b	A.171	Ala	ACC	b	1.3	

AA

Supplementary Figure 4. Detailed *in silico* **analysis highlights the Ub binding patch on vWA**. Using the structure of E2-25kDa complex with Ub (PDB 3K9P) as searching probe for Ub binding sites on the Rpn10-vWA domain yielded a very similar binding mode to the one found in the non-covalent vWA:Ub crystal structure. Superimposition of the structures based on the *in silico* procedure highlights the aligned physico-chemical properties. The table provides an alphanumeric presentation of the aligned physico-chemical properties found in vWA with respect to the UBA domain of the E2-25kDa. ACC, acceptor; DON, donor; DAC, donor/acceptor; and ALI, aliphatic.

Supplementary Figure 5. The ubiquitin triple mutant at the hydrophobic patch is properly fold. Size Exclusion Chromatography (SEC) analyses of wild (red) type and L8E,I44E,V70D triple mutant (blue) of Ub proteins are shown. Purified proteins were concentrated to about 15 mg/ml in 150 mM NaCl 50 mM Tris-HCl pH 8.0. Five ml of each protein were loaded onto SEC column (Sephadex 16/75) and run at 1 ml/min using Akta Prim. The monitored optical density absorption at UV_{280 nm} is shown.

Ub-K84

Supplementary Figure 6. MS/MS analysis of Rpn10 peptides. (a) The MS/MS spectrum of Rpn10 peptides containing K84 with a di-glycine (KGG) tag. (b) The MS/MS spectrum of Rpn10 peptides containing K84 with di-glycine (KGG) tag and Oxy-Met. The precursor peptide ions were isolated and fragmented in an LTQ mass spectrometer. Fragmentation ions from both termini are shown (band y-ions, respectively), where the detected fragmentation ions are colored in red (y-ions) and blue (b-ions).

а

His₆-Ub-GST-Rpn10 WT

Ubiquitylation site	Peptide count
K71	1
K84	14
K99	1
K268	5
Total	21

His₆-Ub-GST-Rpn10 mutant

ubiquitylation site	Peptide count
K268	3
Total	3

Ub-Rpn10 WT

ubiquitylation site	Peptide count
K71	1
K84	20
K99	0
K268	5
Total	26

Ub-Rpn10 mutant

ubiquitylation site	Peptide count
K268	2
Total	2

Supplementary Figure 7. List of detected peptides in MS experiments. The number and location of GG-peptides corresponding to the ubiquitylation sites on Rpn10 WT and mutant protein that were detected in MS experiments is shown.

Supplementary Figure 8. Buried Surface Area (BSA) formed by the interactions of Rpn10 and Rpn9 with their neighbors. BSA were calculated using the PISA server at http://www.ebi.ac.uk/msd-srv/prot_int/cgi-bin/piserver

The coordinates of the proteasome EM structure 4CR2 were used as input for the PISA analysis. The surfaces of Rpn10, Rpn9 and their neighbors are presented with the indicated colors.

Supplementary Figure 9. The carboxyl terminus tail of the non-covalent bound Ub at the crystallographic symmetry can interacts with K84 to form an isopeptide bond

Supplementary Figure 10. Uncropped image of representative original Coomassie-blue stained SDS-PAGE. Red boxes indicate the cropped area displayed in the indicated figure.

Name ^a	Ori ^b	Resistance	Promoter	Construct	Source
pCOG6	ColE1	Amp ^c	Ptac	pGST-Rpn10-FL ^{Sc}	Lab collection
pCOG30	ColE1	Amp	Т7	pET43.1-NusA-Rsp5 ₍₁₀₉₋₈₀₉₎ Sc	Lab collection
pCOG31	CloDF13	Sm ^d	Т7	pCDF-MBP-Rpn10 ^{Sc}	Lab collection
pCOG33	CloDF13	Sm	Τ7	pCDF-His ₆ -MBP-Rsp5 ^{Sc}	Lab collection
pCOG34	ColE1	Amp	Ptac	pGST-par2-VWA ₁₋₁₈₉ ^{Sc}	This work
pCOG35	ColE1	Amp	Ptac	pGST-par2-VWA _{1-189, T173R,T175R} ^{Sc}	This work
pCOG36	ColE1	Amp	Ptac	pGST-par2-VWA _{1-189, I147A} Sc	This work
pCOG37	ColE1	Amp	Ptac	pGST-par2-VWA _{1-189, Q149A} Sc	This work
pCOG38	ColE1	Amp	Ptac	pGST-par2-VWA _{1-189, Q149R} ^{Sc}	This work
pCOG39	ColE1	Amp	Ptac	pGST-par2-Rpn10 ₁₉₀₋₂₆₈ Sc	This work
pCOG63	ColE1	Amp	Ptac	pGST-Rpn10-FL _{I147A,T175R,T173R} ^{Sc}	This work
pCOG70	ColE1	Kan ^e	Τ7	pHis ₆ -par2-Rpn9 ^{Sc}	This work
pCOG71	ColE1	Kan	Τ7	pHis ₆ -par2-Rpn12 ^{Sc}	This work
pCOG72	ColE1	Kan	Τ7	pHis ₆ -Dsk2-UbL ^{Sc}	Glickman lab
pGEN4	ColE1	Kan	Τ7	pHis ₆ -par2-Ub ^{Hs} /Ubc4 ^{Sc} /Uba1 ^{Ta}	Lab collection
pGEN24	ColE1	Tet ^f	Т7	pHis ₆ -par2-Ub ^{Hs} /Ubc4 ^{Sc} /Uba1 ^{Ta}	Lab collection
pGEN25	ColE1	Kan	Τ7	pHis ₆ -par2-Ub ^{Hs}	Lab collection
pGEN33	ColE1	Amp	Τ7	pHis ₆ -par1-Ub _{L8E,144E,V70D} ^{Hs}	Lab collection
pGEN35	ColE1	Kan	Τ7	par2-Ub ^{Hs}	Lab collection
pCD-Sub13	CloDF13	Sm	pLtetO1	pCDF- cDHFR-link2-His ₆ - Rpn10 ^{Sc}	This work
pCD-Sub19	CloDF13	Sm	pLtetO1	pCDF- cDHFR-link2-His ₆ -MBP- Rpn10 ₁₋₁₈₉ ^{Sc}	This work
pCD-Sub40	CloDF13	Sm	pLtetO1	pCDF- cDHFR-link1-His ₆ - Rpn10 ₁₉₀₋₂₆₈ ^{Sc}	This work
pCD-Sub72	CloDF13	Sm	pLtetO1	pCDF- cDHFR-link2-His ₆ -MBP- Rpn10 _{1-189,T173R T175R} ^{Sc}	This work
pCD-Sub73	CloDF13	Sm	pLtetO1	pCDF- cDHFR-link2-His ₆ -MBP- Rpn10 _{1-189,1147R} ^{Sc}	This work
pCD-Sub74	CloDF13	Sm	pLtetO1	pCDF- cDHFR-link2-His ₆ -MBP- Rpn10 _{1-189,Q149R} ^{Sc}	This work

Supplementary table 1: List of plasmids used in this study

Name ^a	Ori ^b	Resistance	Promoter	Construct	Source
pCD-Sub75	CloDF13	Sm	pLtetO1	pCDF- cDHFR-link2-His ₆ -MBP- Rpn10 _{1-189,Q149A} ^{Sc}	This work
pND-Ub04	ColE1	Kan	pLtetO1	pZE21-nDHFR-link2-His ₆ - Ub ^{Hs} /Ubc4 ^{Sc} /Uba1 ^{Ta}	This work
pND-Ub18	ColE1	Kan	pLtetO1	pZE21-nDHFR-link2-His ₆ -Ub ^{Hs}	This work
pND-Ub22	ColE1	Kan	pLtetO1	pZE21-nDHFR-link2- His ₆ Ub _{I44E,L8E,V70D} /UBC4 ^{Sc} /Uba1 ^{Ta}	This work
pND-Ub44	ColE1	Kan	pLtetO1	pZE21-nDHFR-link2-His ₆ - Ub _{144E} /UBC4 ^{Sc} /Uba1 ^{Ta}	This work
pND-Ub55	ColE1	Kan	pLtetO1	pZE21-nDHFR-link2-His ₆ - Ub _{H68L} /UBC4 ^{Sc} /Uba1 ^{Ta}	This work
pGST-DHFR	ColE1	Amp	Ptac	$pGST-DHFR^{Mm}$	This work
pCOG3	ColE1	Amp	Ptac	pMBP-par1-RSP5 ^{Sc}	Lab collection

^aOur laboratory collection identifier; ^bOrigin of replication; ^cAmp, ampicillin; ^dSm, streptomycin; ^eKan, kanamycin, ^fTet, tetracycline, *Hs-Homo sapiens, Mm-Mus musculus, Sc- Saccharomyces cerevisiae, Ta-Triticum aestivum.*