

Supplementary Figure 1: Characterization of DSB repair complexes by co-IP analysis

(a) Western blot analysis to estimate the level of γ H2AX (phosphorylated form) in NE from mock/Bleo-treated (left panel) and mock/IR-exposed (right panel) HEK293 cells. Lamin B was used as a loading control in each case. (b) The intensities of the IP'd protein bands were estimated from three independent experiments from separate batches of cells for Figure 1a. Error bars represent ± SD of the mean. NE (benzonase-treated) from HEK293 cells [either mock (-) or Bleo (+) treated] were IP'd with (c) anti-RNAP II (pSer2, H5 Ab); (d) anti-53BP1; (e) anti-Lig IV; (f) anti-PNKP antibodies (Abs, even lanes) or control IgG (odd lanes) and tested for the presence of associated proteins with specific Abs as indicated to the right of each row. Each experiment was repeated at least three times with separate batches of cells, and one representative figure is shown in each case.

Supplementary Figure 2: Partial characterization of ionizing radiation-induced DSB repair

complexes by co-IP analysis

NE (benzonase-treated) from HEK293 cells [either mock (-) or IR (+) exposed] were IP'd with (a) anti-RNAP II (pSer2, H5 Ab); (b) anti-53BP1; (c) anti-Lig IV; (d) anti-PNKP antibodies (Abs, even lanes) or control IgG (odd lanes) and tested for the presence of associated proteins with specific Abs as indicated to the right of each row. Each experiment was repeated at least three times with separate batches of cells with independent IR exposure, and one representative figure is shown in each case.

Supplementary Figure 3: Quantitative ChIP assay to determine the association of C-NHEJ/

HR proteins with transcribed vs non-transcribed genes

(a) Gene expression profile of selected genes used in the studies presented in Figs. 2 and 3.

The shown PCR fragments were obtained from cDNA generated by RT reaction with total RNA of HEK293 cells. As a control for DNA contamination, no RT enzyme was added in all "-RT" samples. All oligos used for amplification of the genes are listed in Supplementary Table 1. (b) HEK293 cells were mock- or Bleo-treated and ChIP was performed with anti-Histone H2A.XS 139ph (ser phos 139 residue) Ab. Binding to the exonic regions of transcribed (GAPDH and ß-Actin) vs non-transcribed (NANOG and NeuroD) genes was quantified by qPCR from IP'd DNA. The data are represented as fold increase in normalized percent input (over IgG) with mock samples considered as unity. Error bars represent \pm SD of the mean (n=3). ***=P<0.005 represents statistical significance between mock- and Bleo-treated samples. (c) HEK293 cells were mock- or IR-exposed and ChIP was performed with specific Abs as indicated. Binding to the exonic regions of transcribed (GAPDH and ß-Actin) vs non-transcribed (NANOG and NeuroD) genes was quantified by qPCR from IP'd DNA. The data are represented as fold enrichment of percent input of the sample over IgG. Error bars represent \pm SD of the mean (n=3). ***=P < 0.005 represents statistical significance within a treatment group between a particular transcribed gene with both non-transcribed genes (NANOG and NeuroD).

ChIP assays were performed with NE from mock/Bleo-treated (**d**) and mock/IR-exposed (**e**) HEK293 cells using anti-RAD51 or -RAD52 Abs and analyzed by qPCRs using specific primers for transcribed and non-transcribed genes. Error bars represent \pm SD of the mean calculated from three independent experiments.

Supplementary Figure 4: Depletion of C-NHEJ proteins and measurement of the DSB

removal rate

(a) Western blot analysis to estimate the level of 53BP1, Lig IV and PNKP in the NEs from HEK293 cells transfected with the specific or control siRNA. Lamin B was used as loading control in each case. qRT-PCR was performed using PNKP 3' UTR-specific oligos to confirm the depletion of endogenous PNKP by 3' UTR-specific siRNA. Normalization was performed with 18S, and data are represented as relative expression level (\pm SD) with the normalized value for control siRNA-treated samples considered as unity (n=2). (b) HEK293 cells were transfected with control siRNA and further mock- or Bleo- treated, kept for recovery for 0, 3, 6, 9 and 15 h after Bleo treatment, and harvested for genomic DNA isolation. Amplification of each large fragment (8-12 kb) was normalized to that of a small fragment (~200-400 bp) of the corresponding transcribed (HPRT1 and POLB) or non-transcribed (NANOG and OCT3/4) genes; the normalized data are represented (in the bar diagram) as the relative band intensity with the control siRNA/mock-treated sample arbitrarily set as 100 ($n\geq3$; one representative gel figure is shown). Error bars represent \pm SD of the mean.

Supplementary Figure 5: Association of pre-mRNA with the C-NHEJ complex

(a) RNA-ChIP assays with Bleo-treated cells using Abs as indicated and analyzed by RT-PCR with intron-specific primers for TUBB, HPRT1 and POLB. (b) Control minus RT (-RT) reactions for RNA-ChIP assays performed with NE from mock/Bleo/GO-treated HEK293 cells, using the indicated Abs. RT-PCRs were carried out for TUBB, HPRT1, POLB, USP5 and HSP90B genes using intron-specific primers. (c) Similarly, HEK293 cells were exposed with mock/IR and subjected to RNA-ChIP assays, using the indicated Abs, and RT-PCRs were performed with +RT and -RT reactions for 4 genes. DNA-ChIP assays with Bleo-treated HEK293 cells using specific Abs against IgG, Ku70, DNA-PK, XRCC4 (d) and IgG, PARP1 and Lig III α (e) followed by PCRs using intron-specific primers for TUBB, HPRT1 and POLB. (f), Upper panels, Western blot analysis to estimate the level of PNKP (left) and 53BP1 (right) in cell extracts from HEK293 cells transfected with control or specific target siRNAs. GAPDH was used as a loading control in

cell extracts from HEK293 cells transfected with control or specific target siRNAs. GAPDH was used as a loading control in each case. Lower panels, RNA-ChIP using anti-PNKP (left) and -53BP1 (right) Abs in respective control or depleted cells, followed by RT-PCR analysis using intron-specific primers for TUBB and HPRT1. (g) Control minus RT reactions for RNA-ChIP assays performed with NE from mock/Bleo/GO-treated cells, using anti-RAD51 and -RAD52 Abs. RT-PCRs were carried out for TUBB, HPRT1, POLB and HSP90B genes using intronspecific primers. (h) HEK293 cells were exposed to mock/IR and subjected to RNA-ChIP assay, using anti-RAD51 or -RAD52 Abs and RT-PCRs were performed for TUBB, HPRT1, POLB and HSP90B. (i) Bleo-treated HEK293 cells were mock- or RNase H-treated and subjected to DNA-ChIP assays using anti-PNKP or -53BP1 Abs. Real-time qPCRs were performed using intron-specific primers for TUBB and HPRT1. Ct values were used to calculate percent input and error bars represent ±SD of the mean. In each RNA-ChIP assay, 1% input was collected before IPs. All the experiments were repeated at least three times, and a representative image is shown; M represents a 1 kb DNA ladder.

Supplementary Figure 6: Estimation of LINE1 (L1TD1)

Western blot to estimate the level of LINE1 (Ab: GTX32026, GeneTex) in the whole-cell extracts from HEK293 and HCT116 cells. GAPDH was used as a loading control.

TetON_/+Dox $P_{cmv-/+}$ *lacZ* on Chromosome (Chr) lac R1 R2 P_{Ecoli} P_{SV40} 3'P 5'P DRB-lacZ on Plasmid (PS) 5'P 3°F TetON-*lacZ* +Dox on Chr DRB-lacZ on PS М in HEK293 (bp) 500 300 + $^{+}$ RT + R2 R1 R2 Primers used in RT F + R1Primers used in PCR

Supplementary Figure 7: Plasmid-based assay for RNA-templated DSBR

(a) Left panel, a uracil-containing duplex oligo (sequence in the right panel) was introduced within a *lacZ* gene (blue arrow) under the control of both *E. coli* and mammalian promoters using the unique *Bsa*BI/*Bcl*I sites. Plasmids were treated with *E. coli* Udg/Fpg to create DSBs with non-ligatable 3'-P termini⁴⁰, and several nucleotides were deleted in the process. Linearized plasmids were then transfected into HEK293 cells stably expressing *lacZ* (or corresponding control cells), and allowed to repair for 16h. Plasmids were then recovered from the transfected cells and introduced into *rec*⁻*lacZ E. coli*; blue colonies were selected and the WT *lacZ* genomic sequence was confirmed by sequencing. Right panel, a silent mutation was introduced into the proline codon (CCG was replaced with CCC, marked in red) within the *lacZ* gene of the

transfected plasmid to distinguish it from the endogenous WT *lacZ*. This figure also shows how the gapped mutant plasmid is repaired using endogenous lacZ RNA as a template (in red) to generate WT lacZ. (b) RT-PCR showing the generation of truncated lacZ transcript from the DSB-containing plasmid. A cartoon on the top shows the location and direction of the primers (green) with black arrows within *lacZ*, either to amplify *lacZ* transcribed from chromosomal DNA of HEK293-TetON-lacZ+Dox cells (as a positive control) or the DSB-containing plasmid transfected in WT HEK293 cells. Primers R1 (TV286-R) and R2 (TV205-R) were used to synthesize cDNA from total RNA isolated either 12 h post-transfection of the DSB-containing plasmid or from Dox-treated control HEK293-TetON-lacZ+ cells. Primers R1 and F (TV209-F) were used in the subsequent PCR. The agarose gel picture with all the PCR products is shown at the bottom. The sequences of the primers are given in Supplementary Table 1. (c) Plasmid-based repair assay data are represented as the ratio of the number of *E. coli* blue colonies harboring plasmid DNA that was recovered after 16 h of repair in HEK293-Pcmv⁺lacZ vs HEK293-Pcmv⁻ *lacZ* stable cell lines (after normalizing for the transfection efficiency and copy number variations of the *lacZ* gene in both cell lines). The number of *E. coli* blue colonies after transformation of the plasmids isolated from HEK293-Pcmv⁻lacZ was arbitrarily set as 1. The data in the graph are the average of at least 3 independent experiments with estimated ***=P<0.005. RT-PCR, using primer TV205-R to synthesize cDNA from total RNA, showed the expression of lacZ in HEK293 (-/+Pcmv) lacZ cells (bottom panel). The PCR after RT was done using TV200-F and TV201-R. All primer sequences are given in Supplementary Table 1. (d) Western blots showing the levels of PNKP, Lig IV and RAD51 proteins in control vs specific siRNA-treated HEK293-Pcmv⁺lacZ cells (see Methods). GAPDH protein was used as a loading control on the SDS-PAGE gel.

Figure 1a Cont.

Figure 1b

Figure 1c

Supplementary Table 1: Primers used in the study

Primers	Gene	Nucleotide sequence 5' - 3'	Purpose
TV001	n/a	GCTTAGCTTGGAATCGTATCATG	RNA/DNA
		TA(P)	templated total repair
			(3'P-25 mer oligo)
TV031	n/a	GGCACGGTCTACACGGCACACG	DNA templated total
		AGIGIACAIGATACGATICCAA	repair (DNA 51 mer
ТИ56 Б	MuaD		Oligo)
1 V 30-F	MyoD	CCCCGACGGCTCTCTCTGCT	(0.281 kb)
TV57-R	MyoD	GTGGTCTTGCGCTTGCACGC	(0.201 KO)
1 V 57-K	WIYOD	GIGGIEITGEGEITGEAEGE	(0.281 kb)
TV108-F	PNKP	CGGTCCAAGCTTGGCACCCAGG	Construction of
		ATGGGCGAGGTGGAGGCCCC	pTV54 and pTV61
TV109-R	PNKP	AGAATAGGATCCGCCCTCGGAG	Construction of
		AACTGGCAGTACA	pTV54
TV110-R	PNKP	AGAATATCTAGATTACTTGTCAT	Construction of
		CGTCGTCCTTGTAGTC	pTV61
TV140-F	POLB	AGTGGGCTGGATGTAACCTG	SA-PCR (0.192 kb)
TV141-R	POLB	CCAGTAGATGTGCTGCCAGA	SA-PCR (0.192 kb)
TV142-F	HPRT1	TGGGATTACACGTGTGAACCAACC	LA-qPCR (10.4 kb)
TV143-R	HPRT1	GCTCTACCCTCTCCTCTACCGTC	LA-qPCR (10.4 kb)
		С	
TV144-F	HPRT1	TGCTCGAGATGTGATGAAGG	SA-PCR (0.286 kb)
TV145-R	HPRT1	CTGCATTGTTTTGCCAGTGT	SA-PCR (0.286 kb)
TV161-F	POLB	CATGTCACCACTGGACTCTGCAC	LA-qPCR (12.2 kb)
TV162-R	POLB	CCTGGAGTAGGAACAAAATTG CT	LA-qPCR (12.2 kb)
TV199-F	E.coli lacZ	GGCGACTTCCAGTTCAACATCA	Sequencing
TV200-F	E.coli lacZ	CATTATCCGAACCATCCGCTGTG	PCR, qPCR from
			gDNA and
			Sequencing
TV201-R	E.coli lacZ	CTGGTCTTCATCCACGCGCGCG	PCR, qPCR from
			gDNA and
			Sequencing
TV205-R	E.coli lacZ		RT-PCR
TV206-R	E.coli lacZ	CCGCATCAGCAAGIGIAICI	PCR from gDNA and Sequencing
TV209-F	E.coli lacZ	GTGCCGGCTAGCTGGCTGGAGT	Sequencing; RT-PCR
	.	GCGATCTTCCT	
TV210-R	E.coli lacZ	TCCTGGGGGATCCAGACATGATA	Construction of
		AGATACATI	p1 V108 and PCR
TV213 F	E coli lac7	CGTAGCTAGCCAGGCTGGGACA	Construction of
1 V 213-1	L.con mcL	СТ	nTV108 and PCR
			from gDNA
TV214-F	NANOG	CTCCGGAATGGTAGTCTGAGAA	LA-qPCR (8.6 kb)
		GAA	1 - ()
TV215-R	NANOG	ATTTAGGGCAGGCACAAGATGG	LA-qPCR (8.6 kb)
TV218-F	HSP70	GTCAACATGGTGAAATCCCGTC	LA-qPCR (8.9 kb)
		TCTACTA	

TV219-R	HSP70	TAGGAAATGCAAAGTCTTGAAG	LA-qPCR (8.9 kb)
		CTCCAAA	
TV232-F	OCT3/4	TCTGTGGCCTCACCCTATGA	LA-qPCR (10.1 kb)
TV233-R	OCT3/4	CAGACCTGTGGCAGGTATTGAA	LA-qPCR (10.1 kb)
TV247-F	E.coli lacZ	CAGGCTGGGAGCGGCCGCATGA	Construction of
		GCGAAAAATACATCG	pTV119
TV248-R	E.coli lacZ	CCTGGATCCTTATTATTATTTT	Construction of
TV263 E	E coli lac7		DSBP plasmid accov
TV264 P	E.coli lacZ		DSDR plasmid assay
TV204-K			
I V 205-F	E.con lacz	(P)TAATCACCCAGIGT	pTV123
TV266-R	E.coli lacZ	(P)GATCACACTGGGGTGATTA	Construction of pTV123
TV267	n/a	(P)CGTGTGCCGTGTAGACCGTGC	RNA/DNA
		С	templated total repair $(5'P 22 \text{ mer oligo})$
TV286-R	E coli lacZ	GCCACATATCCTGATCTTCCAGA	Sequencing: RT-PCR
1 V 200 K	L.con mcL	Т	bequeneing, RT Tek
TV287-F	E.coli lacZ	CTCTGGATGTCGCTCCACCAGGT AAACAG	Sequencing
TV07 RPmix	NANOG	RealTimePrimers.com	SA-PCR (0.244 kb),
			ChIP qPCR and
			Checking
			transcription in
TV09 DDmix		PaulTimoPrimers com	HEK293
TV10 DDmix		PaalTimePrimers.com	SA - DCP (0.205 kb)
	0013/4	Real I liner liners.com	and Checking
			transcription in
			HEK293
TV17 RPmix	POLB	RealTimePrimers.com	Checking
			transcription in
TV10 DDmin	CADDII	DestTime Drive and a serie	HEK293
I V 19 KPIIIX	GAPDH	Real TimePrimers.com	transcription in
			HEK293 ChIP
			qPCR
TV21 RPmix	NeuroD	RealTimePrimers.com	Checking
			transcription in
			HEK293 and qChIP
			Assay
I V20 RPmix	β-Actin	Keal I imePrimers.com	
KNA oligo 51	n/a	GGCA rCrGrGrUrCrUrArCrArCrGrG	RNA templated total
Wier		UrGr & rUr & rCrGr & rUrUrCrCr & r & rG	(DNA bases are in
		rCrUAAGC	bold)
TUBB-In2-For	TUBB	TCCCTGTCTCCCACTTATCTG	(RNA/DNA)-ChIP
			PCR/qPCR
TUBB-In2-Rev	TUBB	TCTGGCAGAAGGGAAGGTTT	(RNA/DNA)-ChIP
			PCR/qPCR
HPRT1-In2-For	HPRT1	TGCCAGTATGGGTGGGAGAA	(KNA/DNA)-ChIP
HPRT1-In7. Rov	HPRT1		(RNA/DNA)
111 IX I 1-1112-IXUV		MODULINAAACCAUUCATUA	

			ChIPPCR/qPCR
PolB-int1-For	POLB	CCTGCCCTTAGCCCTCTTTT	(RNA/DNA)-ChIP
			PCR/qPCR
PolB-int1-Rev	POLB	AAGGAGGAGGAGCACAATCAGC	(RNA/DNA)-ChIP
			PCR/qPCR
USP5-In2-For	USP5	CCCTTTCCTACCAAGCCTGT	RNA-ChIP
			PCR/qPCR
USP5-In2-Rev	USP5	CCCTTGCACAGAAGGGACTT	RNA-ChIP
			PCR/qPCR
HSP90B-In2-For	HSP90B	ACAGAATGTGCCCACAGCTT	RNA-ChIP
			PCR/qPCR
HSP90B-In2-Rev	HSP90B	CGAAGGCAGGGGAAGGTAAA	RNA-ChIP
			PCR/qPCR
PNKP3UTR FP	PNKP	GAGATCCCGTTCCGGCTATG	PNKP 3UTR specific
	(endogenous)		qRT-PCR
PNKP3UTR RP	PNKP	CAGCGTTTATTGTGGAGGGG	PNKP 3'UTR
	(endogenous)		specific qRT-PCR
HSP 70 FP	HSP70	CTGTGCGGCTGCAGGCACCGGC	DNA ChIP qPCR
HSP 70 RP	HSP70	TGGTGCGGTTGCCCTGGTCGTT	DNA ChIP qPCR
HSP89 FP	HSP89	CCTCTGTAGACGTCCTGCAAGGT	DNA ChIP qPCR
HSP89 RP	HSP89	ATCCGATTCTGGGTTAATAAGTG	DNA ChIP qPCR
18S Primer mix	18S	RealTimePrimers.com	Endogenous control
			in aRT-PCR.

Supplementary Table 2: Number of blue colonies obtained in all *lacZ* plasmid-based assays

Mammalian cells from which the repaired containing plasmid was is	Number of blue colonies in <i>E.coli</i> *	
none**		0
HEK293		0
HEK293-TetONlacZ	- Dox + Dox	5 ±0.6 144 ±6.5
HEK293-lacZ	Pcmv ⁻ Pcmv ⁺	8 ±1 155 ±10.4
HEK293-Pcmv ⁺ lacZ Contr PNK Lig ⁺ RADS	rol siRNA P siRNA IV siRNA 51 siRNA	$241 \pm 13 \\ 9 \pm 2.5 \\ 23 \pm 5 \\ 218 \pm 9.8$

* Results represent the average number of colonies (\pm SD) obtained with plasmid DNA recovered from 3 independent mammalian cell transfections of the DSB-containing plasmid.

** Udg/Fpg digested DSB-containing plasmid was tested for colony formation in *E.coli* prior to transfection into mammalian cells.