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Supplementary Note

Network diffusion

We are interested in studying the the stationary distributions X. dependence on the altered
nodes that for each sample are summarized by the vector Xo where the i-th component is 1
if the i-th molecular entity is altered and 0 otherwise. We consider the network propagation
equation

Xt+1 = CkW'Xt+(170¢)X() (1)

In equation during each iteration each node receives the information from its neighbors,
and also retains its initial information and self-reinforcement is avoided. Moreover the infor-
mation is spread symmetrically since W is a symmetric matrix. The algorithm convergence
is demonstrated using the power extension method; we set Xo = X (0) and we apply some
iterations:

X, = aWXo—l—(l—a)Xo,

X aW X1+ (1 — CM)X()

= aW(@WXo+(1—-a)Xo)+ (1—-a)Xo

(@W)*Xo + (1 — a)(aW + I)Xo
= (aW)?Xo+ (1 — a)((aW) + (aW)") X,

Iterating this procedure at step t we get:

t

X =(@W)'Xo+ (1 —0a)) (aW)'Xo,
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Since 0 < a < 1 and the eigenvalues of W are in [—1; 1], when we take the limit for ¢ — co we
get:

X.=1-a)I—aW) "X, (2)

This method is successfully exploited by Hofree et al. |1] in their network based approach
applied to somatic mutation profiles. We now try to give a physical interpretation of such
a diffusive algorithm in order to be able to inherit some helpful concepts from an associated
physical model.

Physical model

The network propagation algorithm can be interpreted as the discrete implementation of a
continuous linear dynamical system; we define Lo, = I — aW the symmetrically normalized
Laplacian matrix with the perturbation parameter «; and consider the following system of
ODEs written in vector form:

X =-LoX+(1-a)Xo (3)
We can rewrite equation by defining a new sink parameter v > 0 so that v = 1?7[" so that,
after rescaling time by the parameter a:

X =—(L+~I)X +vXo (4)

where L = I —W is the symmetrically normalized Laplacian matrix. Equation is essentially
the physical model cited by Vandin [3| for defining a gene prioritization algorithm on the basis
of the work of Qi et al. [2]; Qi defines a continuous-time model for the distribution of a
hypothetical fluid in the network. All nodes contain no fluid initially. Query nodes are then
selected to serve as sources, where the fluid is pumped in at a constant rate. Fluid diffuses
from node to node through the network according to the edge connections. The source imput
is balanced by fluid loss out of each node at the constant first order rate . The stationary
solution of the dynamical system is of course equation and, expressed in terms of the
constant sink parameter ~:

X, =~(L+~1)""Xo (5)



The choice of o and 7~y

The choice of parameter a (or equivalently ) influences the behavior of the diffusive algorithm
since a controls how much information is retained in the nodes versus how much tends to
be spread in the network. From a physical point of view it is reasonable to assume that
a > 0.5, in order to make network topology relevant. Throughout the analysis of several real
or toy datasets we find that the importance of the choice of a specific value of 0.5 < o < 1
is somehow negligible, in the sense that the results are very similar for different choices of
a. However qualitatively it is a good trade off between diffusion rate and computational cost
(which increases as a« — 1) to take the parameter a = 0.7.

Discussion

The connection of the discrete model described by equation (1) to the continuous model allows
us to point out that we are dealing with an open system in which the amount of information
in each node depends on the constant rate of the sinks «v and on the query nodes distribution.
The system is open in the sense that the conservation of fluid amount from a macroscopic point
of view and the probability conservation from a microscopic point of view is not guaranteed.
The non conservative system shows that X. represents the quantity of fluid remaining after the
flow stabilizes; in each node the fluid pumped by the altered nodes is balanced by the constant
sinking of the fluid at the constant rate +. In principle also the amount of overall fluid on
the network could differentiate from cases to controls but we observe that on large networks
differences in this sense are not sensible; on the other hand the fact that we are dealing with
an open system implies that the final overall amount of fluid depends on both the distribution
and the number of initially altered species. Hofree et al [1] normalize each diffused profile so
that the sum of the fluid in each sample is constant therefore actually interpreting equation
(1) as a random walk with restart. In our work we chose not to normalize each profile in this
fashon, but we use the non-normalized profiles to define the S scores and the AS scores where
the actual amount of fluid on each node is taken into account. This allows to better highlight
the nodes that gain more fluid in one class versus the other even in patients in the same class
that have a different number of altered entities.

Network resampling procedure

The definition of network resampling p values (pn.) is performed by comparing the objective
function 2 with a sample of its local perturbations €2,. We first define, as in the main text,
the objective function Q:

Q(n) = AS*(n) - A, - AS(n) (6)

where A, is the adjacency matrix between the first n top scoring entities and AS(n) are the
first n scores decreasingly ordered. Equation @ can be seen as a scalar product between
the top highest AS , where the matrix A, makes sure that only the scores associated with
entities that have at least a connection to the remaining n — 1 ones positively contribute to
the calculation. The Q function is non-decreasing since only positive scores are considered. A
single perturbation of function @ is defined as follows:

Qo(ny = AS (n) - Ay(ny - AS(n) (7)

where o(n) is a random permutation between the first n molecular entities labels, so that
A, (n) is simply a random resampling of the existing connections between the top scoring genes.
We specify that the permutations are constructed as follows: we first randomly permute the
indexes of all the genes and then we use that random reassignment to define a single Q5 (n)
perturbation; in this fashion we construct perturbations that behave similarly to equation @,
with the advantage of a graphical feedback (for example, see Supplementary Fig. S3).

In order to define network resampling p-values we produce a set of k£ perturbations and for
each value n we compute the fraction of times in which the perturbations are above or equal to
the objective function . As log as for some of the k permutations it holds that Q,(n) > Q(n)
it means that the first n top scoring genes are connected enough that a resampling of the
connections among them do not alter too much the strength of the subnetwork, while it’s



reasonable to expect a sensible deviation of the permutations from the objective function when
top-scoring genes that are not connected to the previous n — 1 ones enter the top of the list.
Therefore for each value n we take k different permutations of the indexes {o1,02, -+ ,0%}
compute:
_Hie@ k) | Q(n) >Q(n)} +1

Pnr(n) = 1 (®)
where we add 1 both at the numerator and at the denominator so that the smallest p value is
never null. At this point, according to the model’s assumptions, in principle any local minimum
of equation could be an interesting choice for cutting the top of the AS list; however in our
applications we find reasonable to cut at the first local minimum p,, since it often represents
the value corresponding to the value 7 where the perturbations (equation @) start to sensibly
deviate from the objective function (equation @) See supplementary Fig. S3.




Supplementary Figure S1: Network resampling p value
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Supplementary Figure S2: The choice

of ¢ in PRAD SM data
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Scatter plot with A f values and AS calculated on PRAD SM data for different values
of the parameter €. The overlap is calculated over the top 500 genes of the two
quantities on STRING PPIs.



Supplementary Figure S3: The choice

of ¢

in PRAD GE data
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Scatter plot with [ fep values and Sp calculated on PRAD GE data for different values
of the parameter e. The overlap is calculated over the top 500 genes of the two
quantities on STRING PPIs.



Supplementary Figure S4: Comparison of network-based and
network-free quantities on FP60 PPIs.
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Comparison of network-based and network-free quantities calculated on
somatic mutation and gene expression data from PRAD samples associated
with two different prognostic groups. (a-b) Scatter plot with network-based
(y—axis) vs network-free (x—axis) gene scores calculated on PRAD SM (a) and GE
(b) data; colours indicate the top 500 genes ranked by network-free (red) or
network-based (yellow, blue) scores and the overlaps (brown, purple). (c-d) Number
of links (y—axis, left) and number of connected genes (y—axis, right) within the first
500 genes ordered by network (AS, Sp) and network-free (Af, [ fcp) gene scores,
calculated on PRAD SM (c¢) and PRAD GE (d) data. (a-d) AS and Sp were
calculated using FP60 PPIs and, respectively, ¢ = 0.25 and € = 1. (c-d) #: number of
links (vertical axis, left) or number of veritces (vertical axis, right).



Supplementary Figure S5: Comparison of network-based and
network-free quantities on GHIASSIAN PPIs.
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Comparison of network-based and network-free quantities calculated on
somatic mutation and gene expression data from PRAD samples associated
with two different prognostic groups. (a-b) Scatter plot with network-based
(y—axis) vs network-free (x—axis) gene scores calculated on PRAD SM (a) and GE
(b) data; colours indicate the top 500 genes ranked by network-free (red) or
network-based (yellow, blue) scores and the overlaps (brown, purple). (c-d) Number
of links (y—axis, left) and number of connected genes (y—axis, right) within the first
500 genes ordered by network (AS, Sp) and network-free (Af, [ fcp) gene scores,
calculated on PRAD SM (c¢) and PRAD GE (d) data. (a-d) AS and Sp were
calculated using GHIASSIAN PPIs and, respectively, e = 0.25 and e = 1. (c-d) #:
number of links (vertical axis, left) or number of veritces (vertical axis, right).



Supplementary Figure S6: Comparison of network-based and
network-free quantities on NCBI PPlIs.
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Comparison of network-based and network-free quantities calculated on
somatic mutation and gene expression data from PRAD samples associated
with two different prognostic groups. (a-b) Scatter plot with network-based
(y—axis) vs network-free (x—axis) gene scores calculated on PRAD SM (a) and GE
(b) data; colours indicate the top 500 genes ranked by network-free (red) or
network-based (yellow, blue) scores and the overlaps (brown, purple). (c-d) Number
of links (y—axis, left) and number of connected genes (y—axis, right) within the first
500 genes ordered by network (AS, Sp) and network-free (Af, [ fcp) gene scores,
calculated on PRAD SM (c¢) and PRAD GE (d) data. (a-d) AS and Sp were
calculated using NCBI PPIs and, respectively, e = 0.25 and ¢ = 1. (c-d) #: number of
links (vertical axis, left) or number of veritces (vertical axis, right).
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Supplementary Figure S7: Comparison of network-based and
network-free quantities on HI PPIs.
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Comparison of network-based and network-free quantities calculated on
somatic mutation and gene expression data from PRAD samples associated
with two different prognostic groups. (a-b) Scatter plot with network-based
(y—axis) vs network-free (x—axis) gene scores calculated on PRAD SM (a) and GE
(b) data; colours indicate the top 500 genes ranked by network-free (red) or
network-based (yellow, blue) scores and the overlaps (brown, purple). (c-d) Number
of links (y—axis, left) and number of connected genes (y—axis, right) within the first
500 genes ordered by network (AS, Sp) and network-free (Af, [ fcp) gene scores,
calculated on PRAD SM (c¢) and PRAD GE (d) data. (a-d) AS and Sp were
calculated using HI PPIs and, respectively, e = 0.25 and € = 1. (c-d) #: number of
links (vertical axis, left) or number of veritces (vertical axis, right).
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Supplementary Figure S8: Comparison with other diffusion-based

methods
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(a) Scatter plot with SAM ¢ values and AS calculated on PRAD SM data. (b)
Network of STRING PPIs formed by the top 300 genes order by SAM ¢ or AS; (c)
Percentage of st-SVM extracted genes recalled on top of the list (from 50 to 1000) of
Sp. (d) Network resampling applied to the Sp array suggests to cut around 55 top
scoring genes. (e) Overlap between st-SVM and our method on STRING PPIs.
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Supplementary Figure S9: Relationship between w and h
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