Supplementary Information

Doxorubicin and resveratrol co-delivery nanoparticle to overcome doxorubicin resistance

Yuan Zhao¹, Meng-lei Huan^{1#}, Miao Liu^{1#}, Ying Cheng¹, Yang Sun², Han Cui¹,

Dao-zhou Liu¹, Qi-bing Mei², Si-yuan Zhou^{1, 2}*

¹Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.

²Key laboratory of gastrointestinal pharmacology of Chinese medicine, Fourth Military Medical University, Xi'an, 710032, China.

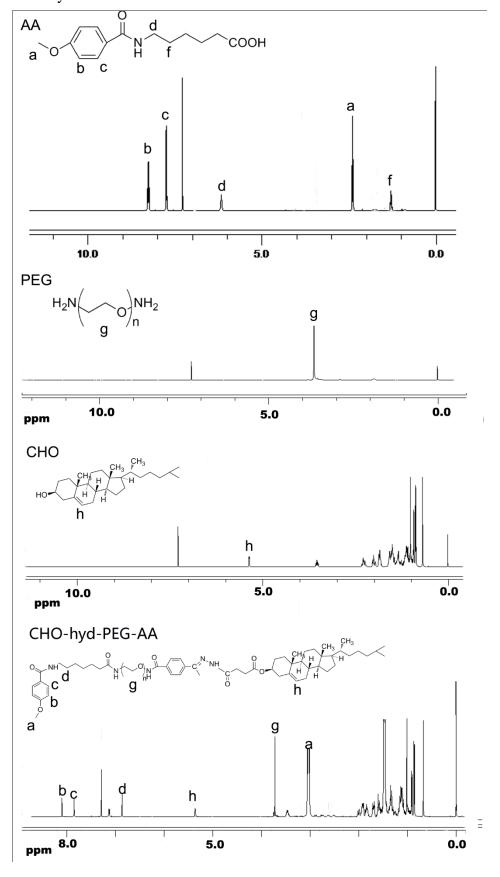
*Corresponding author; *The author contributed equally to this work.

Running title: co-delivery of doxorubicin and resveratrol.

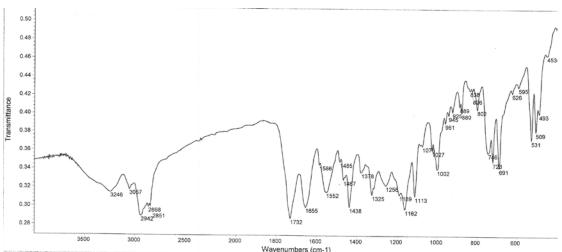
Corresponding author: Si-yuan Zhou.

Tel: 86 29 84776783.

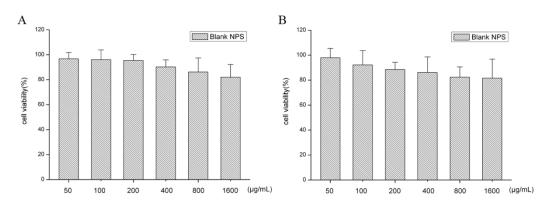
Fax: +86 29 84779212.

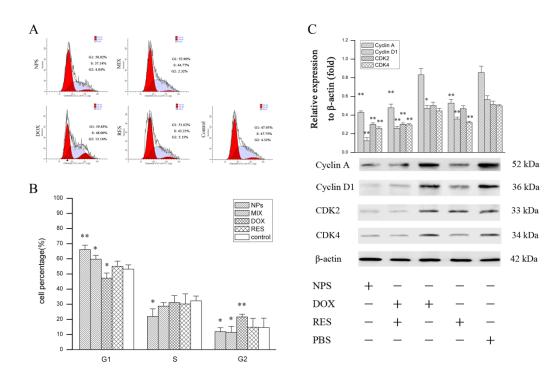

E-mail: zhousy@fmmu.edu.cn

Mail address: Changle West Road 17, Shaanxi province, Xi'an, 710032, China.


Conflicts of Interest/Disclosures: None

Supplementary figure 1. Synthetic route of CHO-hyd-PEG-AA.


Supplementary figure 2. The ¹H NMR spectrum (dissolved in CHCl₃) of CHO-hyd-PEG-AA.


Supplementary figure 3. The FTIR spectrum of CHO-hyd-PEG-AA.

Supplementary figure 4. Cytotoxicity of blank nanoparticle on MDA-MB-231/ADR cells (A) and MCF-7/ADR cells (B).

Supplementary figure 5. Cell cycle analysis after MCF-7/ADR cells were cultured with free DOX, free RES, MIX and DOX/RES-loaded NPS for 24 h. Panel A is the typical pictures of flow cytometry in MCF-7/ADR cells. Panel B is the statistic results of cell cycle. Panel C is the western blot analysis of cell cycle-related proteins expression. Data are mean±SD, n=3, *p<0.05, **p<0.01, vs control or PBS.

