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Supplementary Figure 1: Genotype-based strain representation. We characterized the 65 strains
and 112 media with 154 and 120 features, respectively. Blue, gene deletion; grey, gene mutation;
yellow, wild-type genotype.
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Supplementary Figure 2: Medium representation. We characterized the 65 strains and 112 media
with 154 and 120 features, respectively. The blue table (top) groups together the chemical features
by their major chemical sources.
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Supplementary Figure 3: The genome-scale model is composed of multiple layers with interdepen-
dencies. The input layer (612 features) is grouped into four categories: strain genotype (154), medium
composition (120), stress (52), and genetic perturbation (GP, 286). To predict expression and growth
dynamics in a novel condition, a recurrent neural network first predicts the genome-scale transcrip-
tional expression (4096 transcripts) that it is then used together with information from gene ontology,
co-expressed protein network (CPN), protein-protein interaction network (PPI), and other pathways
to predict protein expression (1001 proteins). Concentrations of 356 metabolites are predicted from
the transcriptome and proteome layers. Fluxes of 2382 reactions are predicted using Flux Balance
Analysis (FBA) with constraints from the input, transcriptome and proteome layer. The growth rate
is then inferred by consensus of predictions made from all five layers (including the input layer). KO;
knock-out, OE; over-expression, SF; sigma factor, TF; transcription factor
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Supplementary Figure 6: Profile distribution for all media in Ecomics.
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Supplementary Figure 7: Profile distribution for stresses present in Ecomics. (A) 75 conditions
(65 single stressors) ordered by the number of their profiles. (B) 65 stresses are grouped into 16
categories (top pie chart), two groups of nutrient shift (middle pie chart) and antibiotics (bottom pie
chart). Nx, norfloxacin; Am, ampicillin; Ab, arabinose; RP, recombinant protein; FA, free fatty acid;
Cfs, cefsulodin; Mcn, mecillinam; Bm, biocyclomycin; PG, penicillin-G.

9



0 200 400 600 800 1000 1200

20
40

60
80

10
0

Index of unrepresented gene

0
10

30
50

70

KEGG Pathway

 # of unrepresented functional term
s

GO (Biological Process)
GO (Molecular Function)

A

Molecular
Function

Biological
Process

KEGG
Pathway

0.0 0.2 0.4 0.6 0.8

Coverage of represented term (%)

Coverage in Ecomics Coverage increase after 16 KO experiments

B

C
ov

er
ag

e 
(%

)

Supplementary Figure 8: Targeted experimentation for enriched GO and KEGG coverage. (A)
Increase in GO and KEGG coverage by adding genes having most unrepresented terms in the com-
pendium. (B) The coverage increase from 16 genes selected in an adaptive way. A gene that has
most unrepresented terms is selected. Then the set of represented terms are updated and next gene
is selected based on it. This procedure repeats until 16 genes are selected.

10



14
R

52
5

K
S

L2
00

9
K

S
L2

00
0

JM
10

9
D

H
5a

lp
ha

D
H
5a
lp
ha
−F

N
C

M
37

22
TG

1
B

W
25

11
3

P
C

05
W

31
10

LJ
11

0
de

lta
6

T1
77 T7
5

T1
75

E
M

14
53

C
F1
51
98

M
G

16
55

M
G
16
55
−F

M
W

30
JO

20
81

JO
30

20
JO

20
57

JO
20
83

JC
B

57
0

M
C

10
00

D
31

AG
10

2
A

B
11

57
G

M
55

55
G
M
38
19

G
M

55
56

M
C

10
00

JC
B

57
0

K
S

L2
00

9
K

S
L2

00
0

D
31

TG
1

de
lta

6
JM

10
9

M
G
16
55
−F

D
H

5a
lp

ha
D
H
5a
lp
ha
−F

P
C

05
LJ

11
0

JO
20

57
JO

20
83

M
W

30
JO

20
81

JO
30

20
T1

77 T7
5

T1
75

14
R

52
5

W
31

10
B

W
25

11
3

C
F1
51
98

E
M

14
53

M
G

16
55

N
C

M
37

22
AG

10
2

A
B

11
57

G
M

55
56

G
M
38
19

G
M

55
55

A B

AB1157 and its derivatives JO2057 and its derivatives S3974 derivatives

N3433 derivatives MG1655 and its derivatives

MC1000 and its derivatives

DH5alpha and its derivatives

K-12 strain

Supplementary Figure 9: Strain ontology in Ecomics. (A) Strain ontology based on genetic fea-
tures. (B) Merged ontology based on both genotypic features and expression profiles (equal weight).

11



M9+Ala
MOPS+Glu(0.2%)+Nit

MOPS+Glu(0.2%)+Fum
LB+minimal salt+Gly+TMAO+SF+KNO3

LB+minimal salt+Gly+TMAO+SF+NaNO2
M9+Glu(0.2%)

LB+minimal salt+Gly+TMAO+SF
MOPS+Glu(0.2%)+NaCl

LB+MgSO4
defined mineral medium+Glu(0.1%)

GMM+Glu
minimal medium+Glu(0.2%)

modified M63+Glu
M9+Glu(0.4%)+Adenine

M63+Glu(22mM)
EZ+Glu(0.2%)

LB+Nitrite
modified M63+Glu+His

M9+Glu(0.1%)+18AA
M9+Glu(0.4%)+MnCl2

M9+Gly(0.4%)
minimal salt+Glu(0.4%)+TMAO+NaNO2

LB+Nit
minimal salt+Glu(0.4%)

MOPS+Glu(0.1%)+KH2PO4
minimial medium+Glu(0.88%)

MOPS+Glu(0.4%)+NH4Cl
LB

defined medium+Gly(54mM)
phosphate minimal+Glu+Ace

minimal salt medium+Glu(20mM)
Davis+Glu

Evans
BHI+Glu(0.2%)+Suc+MgSO4

M9+Glu(0.4%)+CaCl2
mineral salt medium+Glu(0.4%)

MOPS+Glu(0.4%)+20AA
modified MOPS+Glu(0.2%)

DMA+Glu(0.4%)+copper(0.75mM)
M9+Glu(0.4%)

MOPS+Glu(0.4%)
K(A)+Glu(1.2%)

M9+Ab(0.4%)
LB+Gly(0.4%)

M9C+Glu(0.4%)+FeSO4
phosphate minimal+Glu+Pyr

LB+KCl
EZ+Glu

minimal medium+Glu(0.5%)+Arg
minimal medium+Glu(0.795%)

LB+Glu(0.4%)
M63+Glu(0.2%)

TSB+Glu(0.25%)
MOPS+Mucus

MOPS+Glu(0.2%)+CA
TB+Gly(0.4%)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

minimal medium
M9

MOPS
M63

LB

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Coefficient of variation Coefficient of variation A B

M9+Gly(0.4%)
M9+Thymine

M9+Glu(0.4%)
M9+Glu(0.2%)
M9+Lac(0.4%)

M9+Gal
minimal salt medium+Glu(20mM)

MOPS+Glu(0.2%)+CA
M9+Glu(0.4%)+Adenine

minimal medium+Glu(0.795%)
M9+Ab(0.4%)

M9+Glu(0.4%)+MnCl2
defined mineral medium+Glu(0.1%)

MOPS+Ser
Evans

modified MOPS+Glu(0.2%)
GMM+Glu

EZ+Glu
DMA+Glu(0.4%)+copper(0.75mM)

M9C+Glu(0.4%)+FeSO4
MOPS+Glu(0.4%)+20AA

M63+Glu(22mM)
M63+Glu(0.2%)

GGM+Gly(5mM)
defined medium+Gly(54mM)

MOPS+Glu(0.4%)
MOPS+Mucus

MOPS+Man(0.2%)
M9+Glu(0.4%)+CaCl2

MOPS+Glu(0.1%)+KH2PO4
MOPS+Ala(0.1%)
MOPS+Ace(0.1%)

MOPS+Pro
MOPS+Glu(0.1%)
MOPS+Gly(0.1%)

MOPS+Succ(0.1%)
M9+Glu+Gal+Gly+Lac+Mal

M9+Ala
M9+PPG(0.2%)

LB+Gly(0.1%)
LB+Gly(0.4%)

LB
TSB+Glu(0.25%)

C

Supplementary Figure 10: (A) Media expression variability using all profiles. (B) Media expression
variability using MG1655 strain without stress or genetic perturbation. (C) Media ontology based on
gene expression profiles.
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Supplementary Figure 11: Stress ontology in Ecomics. (A) Stress ontology using all profiles. (B)
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Supplementary Figure 12: Variance of expression profiles for stresses used in Ecomics.
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Supplementary Figure 13: Transcriptome prediction through a Recurrent Neural Network ar-
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pression and growth rate. The network uses sigmoid activation functions and Lasso regression on
the Ecomics compendium. (B) An unfolded RNN, where memory depth is 4. The node in red shows
how the state of g1 at time step 1 propagates and finally results in feed-back loop in its original node
at time step 4.

15



(4096 genes)

Proteome

Transcriptome ...

(1001 proteins)

prediction of expression level of protin e
from expression levels of transcripts a, b, and e
by LASSO

a b c d e f g h

18 profiles

1001 proteins 4096 genes

d e f g

1 2 3

DatasetA B

TRN PPI

CPNPathway

metabolite

Consensus (mean)
of 4 predictions

... ...e

TRN PPI Pathway CPN
e e e e

e

e
d

f

d
f

h

e
a

b

3809 interactions
(178 TFs and 1538 genes) 

823,098 interactions
(4250 genes) 

70710 interactions
(3163 genes) 

121 pathways
(1358 genes) 

a h

e

a b e

Supplementary Figure 14: (A) The dataset and four sources to predict proteome layer. (B) Prediction
of protein expression levels from transcriptional expression levels. Protein expression level of e is
predicted from consensus (mean) of four predictions where each is constructed from either of four
network sources. For example, e is related with a and b and thus, its protein expression is predicted
from transcriptional expression levels of a, b, and e by LASSO.
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metabolite 3), each of them is predicted from all genes by LASSO.
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Supplementary Figure 17: Comparison of prediction performance between two different types of
datasets. We have performed comparative analysis of prediction performance between two different
training datasets; One is based on fold-change and another one is based on absolute normalization.
Fold-change data was collected from the compendium COLOMBOS v3 whereas absolute-normalized
data was from the compendium Ecomics (this work). We extracted the overlapping conditions be-
tween two sources. Absolute-normalized data utilizes expression levels of reference conditions (con-
ditions used for base of perturbation) and perturbation conditions separately unlike the fold-change
data that collects only differences in expression levels between perturbation condition and corre-
sponding reference condition. Expression data for reference conditions used for each of the pertur-
bations are added in absolute-scale dataset unlike fold-change dataset. Then the cross-validation
experiments of Recurrent Neural Network (RNN) we designed (Supplementary Text; Section 3.3)
were performed based on each of two different sources separately. As for fold-change dataset, by
definition of fold-change, it does not have any wild-type expression levels. Thus, unlike the absolute
level-based RNN that uses average of expression levels in wild-type conditions (MG1655 with no
stresses and no genetic perturbations) as background values of internal nodes, background values
of RNN trained on fold-change data were computed by taking average of fold-changes across all
perturbations.
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Supplementary Figure 22: Increase in prediction performance for growth rate as each layer
is added. The model first uses input features only to predict growth rate and gradually adds the
transcriptome, proteome, metabolome, and fluxome layers. PCC was measured between predicted
growth rates and measured growth rates from leave-one-condition-out cross validation. 120 condi-
tions were tested for validating prediction of the integrated model. Among them, 101 were cases with
wild-type conditions in training set (denoted as WT presence), 60 were novel wild-type conditions (in
green).
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Supplementary Figure 24: Ecomics platform bias correction methodology. (A) Genome-wide
profiles are first quantile-normalized within their respective platform. Loess regression is then used to
predict missing values. Finally z-score normalization corrects platform bias. (B) Principal Component
Analysis depict the distribution of transcriptional profiles in Ecomics before (left) and after (right)
platform normalization. Blue, two-channel array; Green, one-channel array; Orange, RNA-Seq. (C)
Comparison of normalized expressions between genes with short half-life (0.573 ± 0.004) and genes
with long half-life (0.572± 0.003). The mean difference was statistically insignificant (P = 0.41).
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Supplementary Figure 25: ROC curves for prediction of growth phase based on iterative learning.
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Supplementary Figure 26: Cycles in transcriptional regulatory network in E. coli
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Supplementary Figure 28: Types of testable conditions in the transcriptome data.
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2 Supplementary Tables

Phase Gene
0 cysG
0 dcd
0 fadR
0 ppk
0 cysH
0 wzc
0 yghD
0 fepA
0 lacA
1 mgtA
1 gabT
1 sdhC
1 putP
1 rfbA
1 entF
1 kefB
1 cysA
1 trpD
1 galE
1 mhpD
1 fliY
1 lplA
1 kch
1 aspC
1 ugpC

Supplementary Table 1: Genes selected for knock-out experiments. Phase 0 includes 9 genes that
were identified as likely candidates in a previous work [1], which we now transcriptionally profiled and
added in the compendium. Phase 1 represents the 16 genes that were adaptively selected in this
work to maximize GO coverage and their profiles were subsequently added to the compendium.
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Prediction performance
WT baseline

Same conditions All conditions
10% 0.56±0.12 0.47±0.15 0.34±0.18
25% 0.63±0.07 0.49±0.13 0.34±0.22
50% 0.64±0.10 0.52±0.16 0.36±0.20
75% 0.67±0.07 0.53±0.13 0.36±0.20
90% 0.68±0.06 0.535±0.14 0.35±0.19

100% 0.69±0.06 0.54±0.15 0.36±0.22

Supplementary Table 2: Prediction performance and data size. We randomly select 10 times the
profiles at the amount of x percentage of the total profiles in the original Ecomics compendium. We
run the cross-validation experiments for each dataset. We measure prediction performance for all
conditions in the cross-validation experiments as well as one for the same conditions present in all
reduced datasets.

Condition Max growth rate for KO Max growth rate for WT % decrease in growth rate
∆wcaF 0.263±0.032 0.279±0.013 5.73%
∆mreB no growth 0.279±0.013 100%
∆yfiP 0.240±0.029 0.279±0.013 13.97%
∆tyrP 0.249±0.077 0.279±0.013 10.75%
∆ycbT 0.223±0.007 0.279±0.013 20.07%
∆gfcC 0.278±0.025 0.279±0.013 0.35%
∆solA 0.226±0.026 0.279±0.013 18.99%
∆fecA 0.280±0.004 0.279±0.013 0.35% (increase)
∆ynfB 0.238±0.016 0.279±0.013 14.69%

Supplementary Table 3: Validation results of most informative genes for predicting growth rate.
We did growth experiments of knockout strains using Keio library for each of informative genes with
respect to growth rate prediction (see Section 4.3 for the experimental details). LB medium was
selected not to impose any stresses in nutrients.
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Source # of interactions # of target genes Ref
EcoCyc 809 774 [12]

RegulonDB (v8.6) 4,021 3,043 [41]
Cho et al. 2014 6,325 3,134 [69]

Total 8,381 3,948

Supplementary Table 4: The reconstructed sigma factor network for E. coli.

3 Supplementary Methods

3.1 Ecomics: The multi-omics compendium of Escherichia coli

3.1.1 Overview

The Ecomics compendium is divided into two major parts, the multi-omics genome-scale profiles and
the experimental meta-data (Section 3.1.2). In addition to the Ecomics compendium, we have cu-
rated genome-scale interaction data for signal transduction, transcriptional, protein and metabolic layers
(Section 3.1.3). The genome-scale profiles are classified in five groups, based on their omics layer:

• transcriptional (RNA): 3579 profiles of 4096 transcripts from GEO [2], ArrayExpress [3], and SRA [4]
• proteomic: 71 profiles of 1001 proteins from PRIDE [5], ProteomeXchange [6] and various literature

sources [7–15]
• metabolic: 696 profiles of 356 unique metabolites from various literature sources. Different synonyms

of 356 metabolites profiled in the compendium are consolidated by interrogating from ChemSpider
[16], HMDB [17], and PubChem [18]. [11,19–22,22–25]
• fluxomics: 43 profiles of 120 fluxes from various literature sources [7,23,26–28]
• phenomics: we experimentally measured the growth characteristics (lag, slope, final OD) of 2187

profiles in our lab. In cases where the growth rate is also reported in the published work, that value
is also added and annotated accordingly (767 profiles).

For environmental and molecular characterization, we have used several sources in addition to literature
curation. We created a chemical composition matrix of 120 attributes to characterize all 112 media used
in the Ecomics compendium. Stress definitions were surveyed from the corresponding literature [22,26,
29–58, 58–77]. For strain characterization, we collected the genetic data from CGSC [78], ecoliwiki
[79], EcoCyc [80], and literature, resulting in information for 65 strains with 154 genotypic features.
Interaction and network data were also aggregated and used in conjunction with the compendium.
The metabolic reaction network of 2,382 reactions of 1,668 metabolites and 1261 genes (iAF1260) was
derived from the BiGG [81] database. A protein-protein interaction (PPI) network of 823,098 interactions
of 4,250 proteins was constructed by integrating data from bacteriome.org [82], STRING [83], and
literature [84–87]. From RegulonDB [88], EcoCyc [80], and other sources [89], we constructed the
current state of the E. coli transcriptional regulatory network, which consists of three sub-networks: (a)
a Sigma factor binding network with 8,381 binding interactions for 7 sigma factors and 3,948 genes,
(b) a small RNA regulatory network of 216 binding interactions for 44 sRNAs and 178 genes, and (c) a
transcription-factor network of 3809 regulatory interactions for 181 TFs and 1,538 genes. For the signal
transduction network, we used our previous work reported in [1], which characterizes 191 events for
105 TFs and 129 metabolites.
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3.1.2 Meta-data collection

Each profile in Ecomics is described by several attributes that characterize the environmental and ge-
netic background (Supplementary Data 6). These attributes can be grouped in the following cate-
gories.

• Genotype: We matched strain information from Yale’s Coli Genetic Stock Center (CGSC) [78] and
Ecoliwiki [79], as well as information that was present in each publication to assemble the genetic
background of each strain used. Mutations at different loci are treated as different alterations for any
given gene.
• Medium: Similarly, we used information from the respective papers to reconstruct the chemical com-

position of all media used. Whenever a standard medium was used but no further information is
given, we referred to EcoCyc [80] to estimate its formulation. In rare occasions, we had to generalize
on media compositions (for example for media with casamino acids we assume that all 20 amino
acids are present).
• Growth dynamics: Growth rate is reported from the curated publication for 767 out of the 4,345

profiles. For filling missing phenotypes in the compendium, we independently measured growth for
another 1992 profiles (out of 3,579; 55.6% of all profiles) with transcriptional information, correspond-
ing to 179 conditions (out of 596; 30.0% of all conditions). Similarly, we measured the growth dynam-
ics and covered 80.2%, 82.9% of profiles with proteomics and metabolomics/fluxomics information,
respectively. In all cases, measurements include lag time, slope and final OD, as defined in Section
3.4.3.
• Stress: Stress is defined as any experimental condition that is known to (or is expected to) induce

stress-response mechanisms. There is not a clear ontology of stresses, with a notable effort by the
Plant Stress Ontology (PSO) project that is currently under development [90]. Here, we introduce a
organism-centric approach to draft an ontology in Section 3.2.4.
• Time: Elapsed time after the strain was exposed to a perturbation and the collection of samples for

profiling.
• Genetic perturbation: The type of genetic perturbation, if one is present. Values include Wild-type

(WT), knock-out (KO), over-expression (OE), mutation (defined as changing one or more nucleotides
in the CDS), insertion (an insertion of one or more genes), large-scale deletion (that affects more
than one gene).
• Number of perturbed genes: Genes involved in perturbations.
• Temperature: Temperature in which the experiment was conducted. In cases where temperature is

not reported, 37◦C is assumed.
• pH level: The pH level in which the experiment was conducted. In cases where pH level is not

reported, a pH 7.0 is assumed.
• Compounds: Any compounds that were added beyond what is expected to be in the respective

media. Usually includes chemicals that induce stress (e.g. mutagens).
• Compound concentrations: Defined in g/L, Moles or percentages.

3.1.3 Molecular interaction data

Transcription Factor network Transcription Factor (TF) binding information was provided by RegulonDB
(v8.6) [88]. All interactions with strong or weak experimental evidence (defined as having at least one
independent sources of validation) were used, which results in 3,489 interactions of 179 TFs and 1,478
genes. In addition, we added recent datasets to this set [91], resulting to 3,809 TF-gene bindings of
181 TFs and 1,538 genes (Supplementary Data 5).
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Small RNA network Small RNAs (sRNAs) are non-coding RNAs having 50-250 nucleotides in bac-
teria. sRNAs can bind either to a protein to modify the function of the protein or to mRNA to regulate
its expression level. Numerous studies report that many sRNAs are involved in stress response regula-
tion [92–100]. To reconstruct the global map of sRNA-mediated regulation for E. coli. we downloaded
known regulations from RegulonDB (v8.6) [88] and EcoCyc [80], which results in 216 experimentally
validated sRNAs interactions of 44 sRNAs and 178 genes (Supplementary Data 5).

Sigma factor network Sigma factors are transcription initiation factors that enable a specific binding
of RNA polymerase to gene promoters. Cell utilizes different sigma factors that bind to a gene promoter,
which in turn modulates transcriptional activity of the target gene in order to react to different environ-
mental signals [101–103]. We built a global map between 7 sigma factors and target genes by compiling
known information from multiple sources [80, 88, 89]. The consolidated network is composed of 8,381
interactions between seven sigma factors and 3948 genes (Supplementary Table 1, Supplementary
Data 5).

Signal transduction network For the signal transduction network, we used our previous work re-
ported in [1], which consists of 191 interactions for 105 TFs and 129 metabolites.

Protein-protein interaction (PPI) network A protein-protein interaction (PPI) network maps physical
interactions between proteins [84]. We compiled the interaction data from four distinctive sources.
We collected data from (a) affinity purification approaches followed by mass spectrometry (AP/MS), a
total 11,496 interactions among 1,631 proteins [85, 86], (b) binary-Y2H experiments, a total of 3,936
interactions among 2,045 proteins [87], (c) the STRING public database, a total of 817,650 interactions
among 4,147 proteins [83], (d) the EcoCyc database, a total of 701 interactions [80]. Ultimately, this
led to a reconstructed E. coli PPI network of 823,098 interactions for 4,250 proteins, which is the most
comprehensive PPI network for the organism until now [104] (Supplementary Data 5).

3.1.4 Strain and Medium representation

Strains are characterized with 154 genotypic features that correspond to DNA variations (i.e. deletions,
insertions, polymorphisms) with respect to the ancestral K-12 strain (Supplementary Fig. 1). Similarly,
the media are characterized by 120 chemical features (Supplementary Fig. 2). There are 65 strains
and 112 media in Ecomics.
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3.2 Analysis of the Ecomics compendium

3.2.1 Overview

Ecomics includes information for 65 strains, 112 media, 52 stressors and 286 genetic perturbations. Its
4,346 genome-wide profiles span the transcriptional (3,579 profiles), protein (71 profiles) and metabolic
(696 profiles) layers. A "condition" is defined a combination of the genetic background (strain, genetic
perturbations) and the environmental setting (medium, stress). The compendium retains 649 different
conditions (596, 36 and 53 conditions with transcriptome, proteome and metabolome profiles, respec-
tively, with 68.2% of them with 3 or more profiles (replicates from one or more studies). 65.6% of all
profiles in the compendium include either a stressor or a genetic perturbation and among them 517
profiles have them both (Supplementary Fig. 4A). As in Supplementary Fig. 4B, the condition with
most profiles (187 profiles; 4.2% of Ecomics) is the MG1655 strain in MOPS medium with carbon-shift
from glucose to lactose.

3.2.2 Strain

The strains with the most profiles in Ecomics is MG1655 (64.4%), BW25113 (9.6%) and W3110 (7.8%),
with profile distribution depicted in Supplementary Fig. 5). Only the MG1655 and BW25113 strains
had profiles in all four layers. Genotypic map of the strains used (Supplementary Fig. 1) are charac-
terized with 154 genotypic features show sparsity in shared features, where the number of genotypes
for each strain ranges from 1 to 11. Although there are no genotypic features that are prevalent in all
strains, many of them are locally shared between 3 or 5 strains (e.g. knockouts in the crl genes are
shared in 5 out of the 65 strains).

Expression-based strain ontology. We used average linkage hierarchical clustering (UPGMA)
[105] to construct both genotype-based and expression-based ontologies for Ecomics strains. Profiles
of MG1655 strains in LB medium with no stress or genetic perturbations were used. Expression pro-
files in a given condition were averaged for each gene to have a representative expression profile for
the condition. Then the expression level of each gene was scaled between 0 and 1 by min-max normal-
ization [106], which is also discussed in Section 3.3.3. The distance between a pair of vectors, both
in the case of expression levels and phenotype features was measured by PCC. Supplementary Fig.
9A depicts the ontology that is generated based on the phenotypic characteristics. Supplementary
Fig. 9B illustrates the ontology that results from the integration of these two sources of information by
using linear superposition with equal weights. Interestingly, the cophentic correlation of the genetic and
expression-based ontology is 0.21. The same distance between the integrated ontology and either of
the two sources (genetic, expression-based) is 0.52. Thus, relying solely on genetic characteristics to
infer genome-scale expression and phenotypic traits can clearly be misleading.

Correlation between expression profiles and genetic features. To investigate the correlation of
shared genotypic characteristics to the resulting expression profiles, we identified the conditions where
two or more strains had expression profiles and calculated the strain pairwise correlation, thus creating
a expression-based covariance matrix, where row/columns are the 65 strains. We then constructed a
genotype-based covariance matrix and compare the two based on Pearson’s correlation between two
vectorized lists of matrices (0.58).
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3.2.3 Medium

In the 112 media in Ecomics, glucose and glycerol are the most popular carbon source. M9 [107],
LB [108], and MOPS [109] are the three most abundant media (Supplementary Fig. 10. the number
of chemicals used for each medium ranges from 4 to 45 (15.3±9.0) (Supplementary Fig. 2. Simi-
larly to the strain ontology, we created media ontologies based on the genome-scale expression levels
(Supplementary Fig. 10B). We applied the same method as described in strain ontology analysis
(Section 3.2.2). All profiles of the MG1655 strain (largest number of profiles) with no stress and genetic
perturbations were used for this test.

3.2.4 Stress

Conditions in Ecomics include 52 stressors (Supplementary Fig. 7A) and some of their combinations,
divided in 16 groups (Supplementary Fig. 7B). The most abundant stressors were nutrient-shift (359
profiles), followed by oxygen starvation (280 profiles). Among the 5 different types of nutrient-shift, glu-
cose to lactose shift was the most dominant diauxie, followed by glucose to acetate shift. There were
15 different antibiotics in the compendium, with Norfloxacin having the most profiles (200 profiles). We
created an expression-based stress ontology which provides an insight on what conditions result to
similar genome-scale expression in the bacteria that are exposed to them (Supplementary Fig. 11).

3.2.5 Genetic Perturbations

The 286 genetic perturbations (e.g. 183 knockouts, 63.9%; 91 over-expressions 31.8%) cover 27% of
KEGG pathways, 44% of GO Biological Processes (BP), 7% of GO Molecular Functions (MF). A path-
way, process or molecular function is covered if the compendium has one or more profiles for at least
one of its genes.

3.2.6 Targeted experimentation to increase GO coverage.

To increase the GO coverage of Ecomics, we investigated which new conditions would lead to the
most informative transcriptional profiles. We first transcriptionally profiled and included in Ecomics 9
KO experiments that we had identified before [1] as being highly informative for both GO coverage and
model performance (Supplementary Table 1). We assumed that a GO term is represented in the
compendium if the compendium has profiles where one or more genes that include that GO term have
been perturbed. With that assumption, Supplementary Fig. 8A depicts the increase in coverage after
the inclusion of transcriptional profiles that correspond to novel gene perturbations in the compendium.
We identified the gene rank iteratively under the assumption that all genes of higher rank have been
perturbed. Based on the resulting ranked list, we performed transcriptional profiling for the top 16
genetic perturbations (in triplicate; 48 profiles total, Section 3.4.1), which led to an increase in coverage
by 19.8% for KEGG, 24.3% for BP and 63.9% for MF (Supplementary Fig. 8B, Supplementary Data
1). The list of 16 genes for knock-out experiments are in Supplementary Table 1 (phase 1). We also
performed differential expression analysis between pre-processed gene expression profiles for each
KO gene of BW25113 strain using DESeq2 [110] to find novel genes that are affected by genes we
perturbed.

33



3.2.7 Variability analysis.

We identified secD, galE, mcrB, phoR, ∆(ara-leu)7697, ∆(codB-lacI)3 mutations as the key factors in
strain-dependent variability (Supplementary Fig. 5). For galE, it has been known that when a galE
mutant is grown in the presence of D-galactose, growth is arrested due to low availability of CTP and
UTP, which results in reduced RNA synthesis [111]. Moreover, PhoR has been known to indirectly
sense and to respond to variations in the level of extracellular inorganic phosphate, which is one of
essential macronutrients for biological growth [112]. Hence, dysfunction of the phosphate regulatory
mechanism by mutating phoR is expected to impact global changes in the cell, which is on a par with
the medium variability analysis results, where phosphate-containing compounds are a key correlate to
expression variability.

Focusing on media (Supplementary Fig. 6B), our analysis revealed that Na2H(PO4), H3BO4,
KH(PO4), Fe(III)citrate, yeast extract, MgSO4, NH4Cl, sodium citrate, H3BO3, biotin and FeSO4 are
key factors of expression variability. Na2H(PO4) and KH(PO4) are the sole source of phosphate in most
defined media and any perturbation in the phosphate availability will evoke a global response [113,114].
MgSO4 and NH4Cl are sources of magnesium and nitrogen that are critical for key enzymes [113] and
synthesis of amino acids [114]. Yeast extract is an undefined media so the observed high variance in
expression is expected.

Similarly, transcriptional responses within replicates exhibited stress-dependent variability (Supplementary
Fig. 12). Expression variability is measured as the coefficient of variation for genome-scale gene ex-
pression, normalized for the same strain and medium (MG1655 and M9 medium, respectively). We
found that environmental conditions that trigger targeted specific biological processes have lower vari-
ance in expression within replicates than environments that target multiple/global biological processes.
We confirmed that the observed expression variability is not an artefact of laboratory biases or sam-
ple size: the Pearson Correlation Coefficient (PCC) between the expression variability and the number
experimental laboratories or publications is -0.09; similarly, the PCC between the expression variability
and the number of replicates per strain is -0.11. Antibiotics such as norfloxacin (Nx), ampicillin (Am),
and Polymyxin B that act on specific biological processes including inhibition of cell division and al-
tering cell wall, lead to profiles with lower variability among replicates, compared to heat and acidic
stress that are associated with a global transcriptional response (0.18±0.07 vs. 0.34±0.15 coefficient
of variation, respectively; Supplementary Fig. 10). In addition, acidic stress led to higher variance
than heat stress (0.46±0.11 vs. 0.22±0.08 coefficient of variation, respectively). This result argues
that E. coli ’s heat response program is more robust than acid homeostasis. Indeed, E. coli has a well
established system to up-regulate heat responsive genes through σ32, and to protect protein aggrega-
tion and misfolding by expressing several chaperons [115]. In contrast, to cope with acidic stress, E.
coli has three response systems: a σ38-dependent, a glutamate-dependent and an arginine-dependent
response [116]. However, none of these systems induces the expression of chaperones as it is evident
from our transcriptional profiling analysis and reported in literature [117], which is expected to lead in
higher protein instability. Similarly, the high expression of chaperon proteins in hypoxic conditions [118]
may also play a role on the low expression variance within hypoxic replicates. The observed variance
in our profiles also holds for combinations of stresses. For instance, in the case of simultaneous treat-
ment with acidic and hypoxic stress, the transcriptional variability is the mean of that of the respective
stresses. High variability in recombinant protein stress is expected, as different recombinant proteins
and expression systems impose different metabolic burden to the cells [119].
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3.3 Data-driven, genome-scale predictive model

3.3.1 Overview

We built a genome-scale model that aims to predict an output vector y that contains the expression
levels of mRNAs, proteins, metabolites, metabolic fluxes and growth dynamics, for a given experimen-
tal condition. The experimental condition is represented as an input vector x with features that contain
information about the genetic (strain, genetic perturbation) and environmental (medium, stress) back-
ground. The model was designed to be modular, in order to allow for a better representation of biological
organization, an easier manipulation of individual modules and to avoid dimensionality issues. We eval-
uated various statistical techniques in their ability to capture biological structure and make accurate
predictions. The final model includes Recurrent Neural Networks (RNN; [120]) with regularization of
sigmoid activation functions [121] for the transcriptome layer and LASSO constraint regression [122] for
the other layers (using R package glmnet [123]). The model is trained on the Ecomics compendium
and all the network resources that are summarized in Section 3.1.1. Our analysis is focused on profiles
for samples in the exponential phase, as the amount of data is sufficient for a rigorous assessment of
the model.

The input features (x) are directly used into transcriptome layer to predict genome-wide expression
levels of genes. Then the rest of layers are predicted from the transcriptome layer. The motivation of
this approach is that the profiles from a wide spectrum of environmental conditions are mostly enriched
in transcriptome layer in the compendium. The responses in the proteome are predicted from the
transcriptome layer. The metabolome layers are predicted from the transcriptome layer as well as
the proteome layer. Once complete, the genome-scale fluxes are predicted based on the constraint-
based model by imposing the constraints of fluxes from the three layers of input, transcriptome, and
proteome. Finally, growth rate is predicted by consensus of predictions made from all five layers (input,
transcriptome, proteome, metabolome, fluxome).

3.3.2 Sample representation

A sample i is defined as the pair of multi-dimensional vectors (x(i),y(i)), where x can be thought as the
input or the independent variables of the model and y can be thought as the output , or the depen-
dent (response) variables of the model. The superscript denotes the index of the sample and here a
sample is a profile from the Ecomics database. The 612-by-1 vector x contains features that encode
information about the environmental condition and genetic background, hence we will refer to them as
the conditions of the sample. The y vector consists of two parts: a 7,835-by-1 vector of variables
that encode for the organism’s biomolecular abundances and metabolic fluxes and a vector of variables
that correspond to specific phenotypic traits. In our formulation, we assume that we have only one
phenotype that we want to predict, namely the growth rate. As such, the size of the output vector y is
7,836-by-1.

More specifically, the input vector x consists of four types of features:

• Strain information: the strain information is represented as 154 genotypic features {xi}154i=1 where
each feature xi is a discrete random variable and it denotes a DNA-level status of a gene (e.g.
x2 = {0, 1} where x2 can represent the rfb gene, the values 0 and 1 denote wild-type and rfb knock-
out, respectively).
• Medium: the medium composition is expressed as 120 chemical features {xi}274i=155 where each fea-

ture xi is a ordinary random variable and it denotes the availability of either a defined chemical feature
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(e.g. x122 = {0, 1} represents K2HPO4, 0 and 1 denotes absence and presence of the chemical, re-
spectively) or an undefined chemical feature (e.g. yeast extract).
• Environmental abiotic stress: the environmental cues are expressed as a 52-by-1 vector {xi}326i=275

where each is a binary random variable and represents a stress (e.g. x276 = {0, 1} represents heat-
shock stress, 0 and 1 denotes absence and presence of the stress, respectively).
• Genetic perturbations: Genetic perturbations are a 286-by-1 vector {xi}612i=327 where each xi is a

binary variable denoting the presence or absence of a genetic perturbation (a perturbation includes
knock-out, mutation, over-expression, and insertion). For example x342 = {0, 1} corresponds to the
rpoS gene having an original copy (0) of the gene or being knocked-out (1).

The output vector y consists of five types of features:

• Transcriptome: represented with a 4,096 element vector {yi}4096i=1 where each feature yi is a continu-
ous variable and it denotes the absolute mRNA expression level of a gene.
• Proteome: represented with a 1001 element vector {yi}5097i=4097 where each feature yi is a continuous

variable and it denotes an absolute expression level of a protein.
• Metabolome: represented as a 356 element vector {yi}5453i=5098 where each feature yi is a continuous

variable and it denotes an absolute expression level of a metabolite.
• Fluxome:represented as a 2382 element vector {yi}7835i=5454 where each feature yi is a continuous

variable and it denotes a relative flux of a reaction.
• Cellular phenotype: The growth rate is represented by a scalar in the last position of the y-vector,

(y7836), as a continuous variable with (h−1), which is a continuous random variable.

3.3.3 Transcriptome module

For predicting transcriptomic response from input x, we employ a Recurrent Neural Network (RNN)
framework. A RNN is a special type of an Artificial Neural Network that allows feedback and hence it is
capable to encode for memory or past internal states [124–127]. This enables it to model biologically
relevant dynamic behaviors such as feedback-loop of molecular interactions in a cell.

To simulate interactions of extracellular factors and biomolecules in a cell (e.g signal transduction
pathways) as well as interactions between intracellular biomolecules (e.g. transcriptional regulation),
the architecture of RNN directly connects input nodes into output nodes and allows connections be-
tween output nodes. In other words, we avoid to use hidden nodes in the RNN architecture. The
representation allows better interpretation of the constructed model as well as integration of known
biological evidences, which potentially helps to avoid over-fitting. The schematic diagram of RNN rep-
resentation that predicts transcriptomic response from input features is depicted in Supplementary
Fig. 13.

Data preparation We focused our analysis for profiles in the exponential phase, where adequate data
exist for model evaluation. We first extracted the transcriptome profiles that correspond to samples in
the exponential phase from the compendium (2610 profiles). We then used min-max standardization
on the absolute scale values for each gene, to be able to compare and make the training process easier
to initialize and converge [106]. The standardization process was applied for each entry i of the first
4,096 entries in the output variable y, which correspond to the transcriptome layer. The variable values
were then updated after standardization:

ystandardizedi =
yi −min(yi)

max(yi)−min(yi)
(1)
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Parameters and activation function Connection weights. Each connection ci,j between a node i

and a node j has a weight wi,j associated with it (Supplementary Fig. 13). We represent the weights
for connections between input nodes x (612 nodes) and output nodes y (4096 nodes) as wx and the
weights for connection among output nodes y as wy, so that the setW = {wx, wy} includes all weights of
the RNN. Weights are initialized based on a normal distribution N (0, 0.052), which provides a balanced
weight range and lead to fast convergence for the Ecomics dataset.

Activation function. The sigmoid function (h(x) = 1
1+e−x ) was used as the activation function for each

node of the RNN, as it sufficiently approximates the Hill function dynamics of regulatory interactions and
restricts the output between 0 and 1. In addition, we performed n iterations (updates) on calculating the
output, where n is the memory depth and capture cycles and feedback loops that might be present in
the RNN. The initial state of the output nodes y(0) (i.e. gene expression value) was set to the average
gene expression levels in the training data under WT conditions (MG1655 with LB or M9 medium with
no stresses and no genetic perturbations). As such, given input x and weights {wx, wy}, the output
vector y is iteratively computed by:

y(i) = h(wxx+ wyy
(i−1)) (2)

for 1 ≤ i ≤ n, where y(i) is the state of the output vector y at iteration time i.

Training weights

Objective. During the training phase, the goal is to find the RNN connection weights so that the
RNN has the best representation of the training data, i.e. its output y(n) approximates well the target
output ŷ (gene expression for all genes in the training dataset D). This objective can be represented as
minimization of the residual sum of squares, or cost function Co(w) between y(n) and ŷ for D:

C0(w) =
1

2|D|
1

M

Y∑
y

M∑
i=1

(ŷi − y(n)i )2 (3)

where |D| is the number of conditions in the training dataset (262 conditions) and M is the number of
genes in a single profile/condition (4,096 genes).

Back-propagation through time (BPTT). We use BPTT [128] to train the weights W in our RNN
model. In BPTT, the RNN is unfolded to interconnected feed-forward neural networks (FFNN), with the
node values at each FFNN representing the state of the output at a given time (iteration), as shown in
Supplementary Fig. 13. Once the RNN is unfolded to a chain of FFNNs, standard back-propagation
is used to train the weights of the network [129]. Stochastic gradient descent [130] is used to update
the weights through this procedure, with the following update rule:

wi,j ← wi,j − α
δCy

0

δwi,j

for all yεD (4)

With α being the update or learning rate (set at 0.01). Note that the update is performed for several
iterations, or epochs, which are determined empirically (see next section).
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Parameter optimization We evaluated the effect of various hyper-parameter in the performance of
RNN and selected the optimal values for the number of epochs, memory depth, type of relations be-
tween features, dimensionality reduction methods and the regularization techniques. More specifically:

Number of epochs. An epoch is defined as one training iteration over all samples in the training
dataset. We performed a Leave-one-condition-out (LOCO) cross-validation (Section 3.3.3) on Ecomics
for the transcriptional profiles of 178 transcription factors in the exponential phase. We opted on using
only this dataset instead of all genes in Ecomics due to computational constraints. Since TFs are the
most representative genes for the enacted regulatory programs in any given conditions, this set encap-
sulates well the genome-wide changes for each condition. From the 493 conditions with transcriptome
profiles available (exponential phase) in Ecomics, 262 of them can be used as part of a LOCO cross-
validation, as when excluded from the training dataset, there is at least one condition that has the
same value for one of more features of the genetic background or environmental setting. In this set
of 262 conditions, we evaluated the effect of the number of epochs, as shown in Supplementary Fig.
16A. We found that in 63% of the conditions, 50 epochs were sufficient to achieve convergence (i.e.
∆PCC ≤ 0.01), while in all cases, convergence is achieved within 100 epochs. Therefore, we set the
number of epochs to 100.

Regularization. To avoid over-fitting and create a sparse representation of the transcriptional organi-
zation, we used L1 regularization (weight decay) [131] to the original cost function:

C = C0 +
λ

n

∑
i,j

|wi,j|

where C0 is the original cost (the equation 3), n is the size of the training set and λ is the parameter
for adjusting the relative importance of the regularization term compared to C0. Then taking the partial
derivatives of the cost function with respect to w yields

θC

δwi,j

=
δC0

δwi,j

if wi,j is bias

θC

δwi,j

=
δC0

δwi,j

+
λ

n
sign(wi,j) otherwise

The biases in w don’t change from the regularization term and thus only non bias weights are updated
from the equation (6) as 

wi,j ← wi,j − α
δC0

δwi,j

if wi,j is bias

wi,j ← wi,j − α
δC0

δwi,j

− αλ

n
sign(w) otherwise

λ is chosen based on RNN performance observed from LOCO cross-validation of the data set of 178
transcription factors (Supplementary Fig. 16B). Our results show that the optimal performance (PCC=
0.76±0.12) is achieved when λ approximates the value of 0.005, which was selected for all subsequent
experiments.
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Fixed or time-variant weights. We have considered the case where weights are changing through
time unfolding, to capture different correlations that might be present in feedback loops. We performed
LOCO cross-validation (described in Section 3.3.3) from the transcriptome data of 2,610 profiles of
178 transcription factors for two RNN models: one where weights are variable through time/iteration
and another with fixed weights (Supplementary Fig. 16D). Weights are fixed by averaging weights
through time for any given connection. Our analysis shows that fixed weights are faster to train and
lead to equal or better ANN predictors (PCC=0.68±0.14) than variable weights (PCC=0.64±0.17).

Integration of biological knowledge to network topology. We have evaluated whether the network
interaction data that has been experimentally validated confer extra information to the predictive model.
We compared the performance of RNNs with and without prior knowledge of the transcriptional regu-
latory network (Sections 3.1.3, 3.1.3, 3.1.3). Performance comparison was conducted as described in
Section 3.3.3. Our results show that the RNN with a priori connections (PCC 0.68±0.14) is better to
the one without it (PCC=0.63±0.20).

Memory depth. To get a sense on what memory size (n) will capture the majority of feedback loops
in E. coli, we first investigated the transcriptional regulatory network (TRN) compiled from public repos-
itories (e.g. RegulonDB) and literature for E. coli (Section 3.1.3). In total, 173 cycles were detected,
ranging from one cycle (self-loop) to length of 8 (Supplementary Fig. 26). 65% of cycles were self-
loops and 85% of all cycles are below a cycle length of 4. Next, we trained RNN with different memory
sizes and assessed the effect of memory on the RNN performance. As shown in Supplementary Fig.
16C, a memory depth of 2 is sufficient for our purposes, which captures 75% of known cycles.

Model evaluation

Leave-one-condition-out (LOCO) cross-validation. For model validation, we leave out profiles of a
condition from the dataset and build a model from the rest and prediction performance of the model is
tested from the condition left-out. This procedure repeats until all conditions are tested. To evaluate
model performance, we measure Pearson’s correlation coefficient (PCC) between predicted expres-
sion levels and average of known expression levels for profiles belonging to the test condition. Not all
conditions are "testable" as unknown as any of four types (i.e. strain information, medium, environ-
mental abiotic stresses, and genetic perturbations) representing test condition might not be present in
the training set. From the compendium, 262 are "testable" as unknown among 493 conditions. The-
ses conditions are classified into 6 groups based on presence of genetic perturbations and stresses
(Supplementary Fig. 28).

Baseline measurement. We defined three baselines for model performance evaluation. The first
baseline ("random baseline") provides the PCC between the average expression level for each gene
calculated from 10 random profiles in the training data, to the expression profiles of the test data. For
each comparison we report the "random baseline" calculated from 1000 times of repetitive sampling
without replacement of the 10-profile random set. The second baseline ("mean baseline") provides
the PCC between the average expression level of each gene calculated from all profiles in the training
data, to the expression profiles of the test data. The third baseline ("WT baseline") provides the PCC
between the average expression level for each gene calculated from all WT profiles in the training data,
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to the expression profiles of the test data. Again, we define as WT (wild-type) profiles the ones of the
MG1655 strain in LB or M9 medium, any carbon source, without any stresses or genetic perturbation.

3.3.4 Proteome module

The expression level for each of the 1,001 proteins is predicted through an ensemble method that inte-
grates information from four sources: the transcriptional regulatory network (TRN), the protein-protein
interaction (PPI) network, the co-expressed protein network (CPN) and other pathway information. Sup-
plementary Fig. 20 depicts the integration among these layers to derive the protein expression level.
More specifically:

• Transcriptional Regulatory Network (TRN). The transcriptional regulatory network was built based
on the RegulonDB database as described in Section 3.1.3. The protein level of a target gene in
a novel condition is predicted by LASSO regression [122] of the expression levels of genes that are
connected through a regulatory link to the target gene.
• Protein-Protein Interaction (PPI) Network. The PPI network was constructed from the five distinc-

tive sources that were described in Section 3.1.3. Similarly, the protein level of a target gene in a
novel condition is predicted by LASSO regression of the expression levels of genes whose respective
proteins are connected through a Protein-Protein interaction to the target protein.
• Co-expression protein network (CPN). The co-expressed network (70,710 interactions of 3,163

proteins was built from the core proteome dataset (Section 3.1.1), which represents 20 expression
profiles of 1,001 proteins, which are not used for proteome prediction. For two proteins to be con-
sidered co-expressed, their pairwise correlation should be larger than 0.7. Any given protein level in
a novel condition is predicted by LASSO regression of the protein expression levels of co-expressed
proteins with respect to the target protein.
• Pathway clustering. We cluster genes that are implicated in the same pathways, as represented in

the KEGG database. The protein level of a target gene in a novel condition is predicted by LASSO
regression of the expression levels of genes that are implicated in the same pathways as the target
gene.

Prior to building the prediction models, we apply min-max scaling of the proteome data for preprocess-
ing as in Section 3.3.3. The λ L1-regularization parameter for each linear function is selected based
on cross-validation. For evaluating prediction of proteome layer, LOCO cross-validation is used where
a profile is left out for testing, the rest is used for training and this procedure repeats until all profiles are
tested. PCC between predicted expression levels and known expression levels for all tested profiles is
used for a measure of evaluating the prediction performance.

We evaluated each of these methods individually, as well as their integration through an Ensemble
method where the protein expression level is the mean of the predicted expression level from each of
the four prediction modules. The evaluation was performed in an Ecomics-derived dataset of 18 profiles
(5 conditions) with expression levels in both the transcriptional (4,096 transcripts) and proteome layers
(1,001 proteins). The integration of four methods has the highest protein coverage and can predict
all 1001 proteins, while three of the four individual methods can predict a substantial lower number of
proteins (250 for TRN, 547 for KEGG, 1,000 for PPI, 847 for CPN). The prediction performance of the
integrated method (0.55±0.26) outperforms all individual methods (0.41±0.23 for TRN; 0.47±0.23 for
KEGG; 0.48±0.26 for PPI; 0.52±0.24 for CPN). Although we cannot rigorously compare the different
PCC among the different methods (they correspond to different sets and numbers of proteins), we can
evaluate the protein expression prediction for the top 50 most variable proteins that are common among
the five sets. In that case, the Ensemble method that integrates the four different prediction sources
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clearly outperforms all other combinations with PCC of 0.77±0.27 while the second best method is
CPN-based prediction, with PCC of 0.69±0.27. Additionally, predicting first the target gene expression
from the mRNA expression levels of the corresponding genes does not perform well, achieving a PCC of
0.34±0.18 in the general case and PCC of 0.18±0.51 for the 50 most variable proteins (Supplementary
Fig. 20).

3.3.5 Metabolome module

First, we investigated what information and from which layer (transcriptome, proteome) can lead to a
better predictor for the metabolome layer. For this, we used 33 profiles of 126 metabolites, 53 pro-
teins and 75 genes that constitute the core metabolism, in order to predict the concentration of each
metabolite. We used i) the expression levels of all 53 proteins and ii) the expression levels of all 75
genes, using constraint LASSO regression in both cases (Supplementary Fig. 15). As shown in
Supplementary Fig. 21A, the prediction performance is better in using (measured) protein expres-
sion levels (PCC 0.65±0.21) than by using gene expression levels (PCC 0.47±0.26). For predicting
concentrations of metabolites in non-core metabolism, we resort to inferring their levels from mRNA ex-
pression levels due to the paucity of profiles with both metabolome (including metabolites in non-core
metabolism) and proteome information (only 6 profiles). Variance analysis indicates that the prediction
of metabolite concentrations in non-core pathways are robust, with a variance of 0.02±0.01, compa-
rable to that of core metabolism (0.06±0.01), suggesting that such metabolites are highly predictable
even without the need of protein expression data (Supplementary Fig. 21B). For testing this, we use
115 profiles of 230 metabolites (non-core) and 4,096 genes. For each of metabolites, we train a linear
function using LASSO that predicts the concentration of a metabolite from transcriptional expression
levels. For metabolites having known enzyme-substrate relations, we predict its concentrations from
the mRNA expression levels of the related enzymes. For those with no such information, we fit from all
the genes by using LASSO, which allows variable selection. We perform leave-one-out cross-validation
from the data set to validate the prediction performance of the approach. The results (Supplementary
Fig. 21C) show that the prediction performance is PCC 0.87±0.16, although the baseline is also high
(PCC 0.77±0.17 for mean baseline and 0.70±0.13 for random baseline) because of the invariance of
metabolite concentrations in non-core. Finally, we predict the metabolome layer from two components
that i) predicts 126 metabolites from 75 protein expression levels in core metabolism and ii) predicts
230 metabolites from 4096 gene expression levels in non-core metabolism (Supplementary Fig. 15).

3.3.6 Fluxome module

Fluxes are predicted using Flux Balance Analysis (FBA), which is a mathematical approach for analyz-
ing the flow of metabolites through a metabolic network [132]. Basically, FBA can be formulated as the
following optimization problem:

maximize cTv

subject to Sv = 0

and li ≤ vi ≤ ui for all i

where c is a vector of coefficients and v is a reaction vector. S is stoichiometric matrix. We make
reaction constraints based on expression levels of related enzymes. Specifically, we change the lower
bounds of reactions by the following rule:
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{
li = 0 if mean(gi) ≤ t

li = −1000 otherwise

where gi is expression levels of enzymes in reaction i (ri). Threshold t is determined within the range
of {0.02, 0.04, 0.06, 0.08} that maximizes the prediction performance for growth rate in training data and
it was determined to be 0.04. The range was determined to be below 0.1 as the mean expression level
of genes was 0.10. For this, GPR (gene-protein-reaction) associations from BiGG database [81] are
retrieved (iJO1366). For exchange reactions for the metabolites present in LB medium, we followed the
reaction bounds from [133]. For anaerobic condition, exchange reaction of oxygen is lower-bounded
to zero. Bounds for all exchange reactions are listed in Supplementary Data 8. Expression levels of
enzymes are interrogated from proteome layer if measured and from transcriptome layer otherwise. If
any of enzymes in a reaction are not measured, then lower bound of the reaction is unconstrained.
Typically, a FBA solution is not one as multiple genome-wide fluxes might achieves the same objective.
From the multiple solutions, we advocate the flux distribution that minimizes total the total absolute flux
(MTF) [134] with the same objective value. To have the predicted growth rate from FBA comparable
to ones predicted from other layers, we built a linear transformation function between predicted growth
rate from FBA and measured growth rate for training conditions.

3.3.7 Model integration and phenome prediction

Predicting growth rate from a single layer We built 3 linear functions using LASSO to predict growth
rate from (a) condition features, (b) known expression levels of molecular species, and (c) integration of
both. We evaluate the predictive capacity of this method for the three layers of transcriptome, proteome,
and metabolome. In our evaluation, we keep only the profiles with exponential phase for which growth
rates are present in the compendium. This results to the following datasets:

• Transcriptome: 1,328 profiles of 4,096 genes (111 conditions)
• Proteome: 57 profiles of 410 proteins (33 conditions)
• Metabolome: 577 profiles of 171 metabolites (49 conditions)

The results show that for all layers, the integration of condition information (strain, medium, stress,
genetic perturbation) and expression profiles for a single layer predicts more accurately the growth rate
than using the condition input and the expression profiles independently (Supplementary Fig. 27).
The performance of models that solely use condition features is variable across different layers.

Prediction performance of the integrated model. We integrate all layers for a consensus prediction
of growth rate by using a weighted sum model, which was found to outperform other candidates in our
testing conditions. The final predicted growth rate is the weighted sum of the growth rate predicted in
each layer. The weight for each term is the normalized performance on predicting the growth rate for
each layer, measured by LOCO cross-validation during the training phase. As such:

gi =
L∑
l

wlgl (5)

where gi is the consensus growth rate from all five layers, L is a set of all five layers, wl is the weight
factor for layer l, gl is the growth rate predicted from layer l. The normalized training performance for
layer l is calculated by PCC between measured growth rate and predicted growth rate from layer l for all
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conditions in the training set normalized by sum of PCC for all l. Our results show that the performance
of the model integrating all five layers (PCC=0.6) performs better than any other alternative model (Fig.
22). The performance increases in cases where wild-type conditions are present in the training set.
Additionally, when the model is predicting unknown WT conditions, the PCC increases up to 0.76. We
also investigated individual cases to document the effect of each layer to prediction performance. In 53
cases, the distance between predicted and measured growth rate gradually decreases as each layer is
supplemented (R < 0). As shown in (Fig. 23), the largest PCC gains are with the introduction of the
transcriptome (increase from PCC=0.46 to 0.64) and fluxome layer (increase from PCC=0.65 to 0.70).
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3.4 Experimental Procedures

3.4.1 Targeted experimentation for RNA-Seq

For the compendium enrichment, three replicates of selected E. coli mutants Supplementary Table
2 from the Keio collection [135] were grown in minimal M9 salt medium with 0.4% (w/v) glucose as
carbon source. Cells were grown in 3 mL of media till mid stationary phase (approx. 8 hours) and then
mixed with 1.5 ml of chilled 5% phenol/ethanol (v/v). After centrifugation, cells were stored at -80C until
use, never more than one week. RNA was extracted using the RNeasy kit (Qiagen) and enriched with
MICROBExpress (Ambion). RNA fragmentation, cDNA production, A-tailing, linker ligation and PCR
enrichment were made using the KAPA Stranded RNA-Seq Library Preparation Kit (Kapa Biosystems).
Size selection of the final library was performed with Agencourt AMPure XP (Beckman Coulter). After
quality control, libraries were pooled and sequenced using an Illumina HiSeq 2500 sequencer.

3.4.2 Proteome profiling

E. coli MG1655 was grown in M9 with 0.4% glucose with and without 0.6% n-butanol for 12 hours (early
stationary). Bacteria were pelleted by centrifugation and the samples were analyzed in the Proteomics
Core at Genome Center (UC Davis). The processing steps of protein quantification are described in
the main text.

3.4.3 Growth experiments

Strains and media. Growth measurements were performed using different strains of the E. coli. E.
coli strains used were either from our lab collection or were gifted by different research laboratories.
E. coli strains were preserved in Luria Bertani broth supplemented with 15% glycerol. Specific media
were made as per requirement.

Lag phase, maximum growth rate and maximum cell density measurements. For the phenomics
layer, the growth curves were experimentally measured (Supplementary Data 7) at least in triplicates.
5 µl of the preserved E. coli cells were grown overnight in either 1 ml of 0.2% glycerol M9 medium
or 1 ml of the required medium (in the case of carbon shift) in an incubator shaker (Innova 44, New
Brunswick Scientific) operating at 175 rpm at 37C. Next day, 3 µl of the growing cultures were taken
and inoculated into 197 µl of specific media in a 96 well flat bottom plate (Costar). Cells were grown
in an incubator shaker (BioTek Synergy HT) operating at the required temperature. Cell densities were
measured at every 15 minutes. For anaerobic growth curves, a custom chamber was made, which
was saturated with the nitrogen. 96 well plate was placed inside the chamber and 3 µl of the growing
cultures were taken and inoculated into 197 µl of required media saturated previously with nitrogen.
Plate was sealed using adhesive tape sheets (OmniGenX Microplate Seal Pad) and cell densities were
measured at every 15 minutes. An automated script was written in the MATLAB to calculate the lag
phase, maximum growth rate and maximum cell density. The lag phase was defined as the duration to
achieve 5% of the maximum growth rate. Growth rates were determined by calculating the differential
between 10 to 90% of cell density using a virtual sliding window with the width of 1 hour and sliding
every 15 minutes.
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