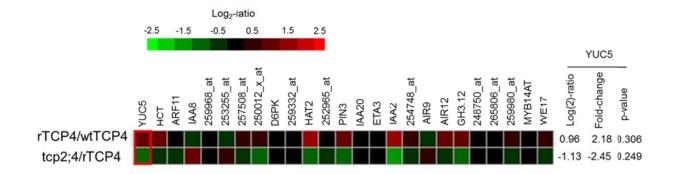
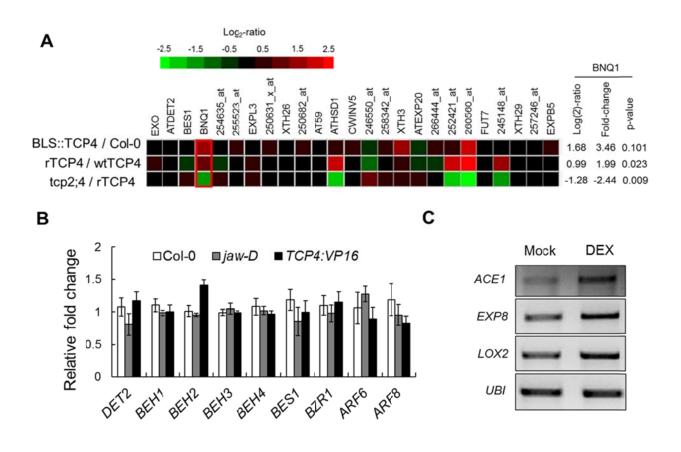
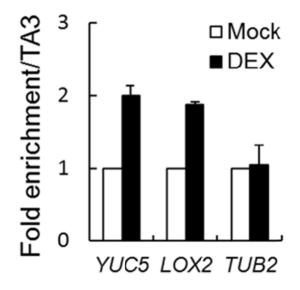
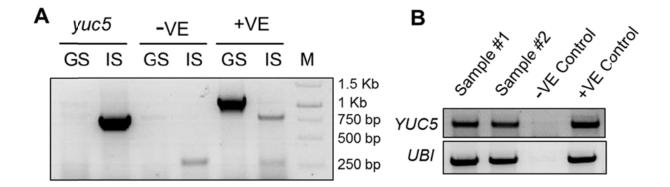
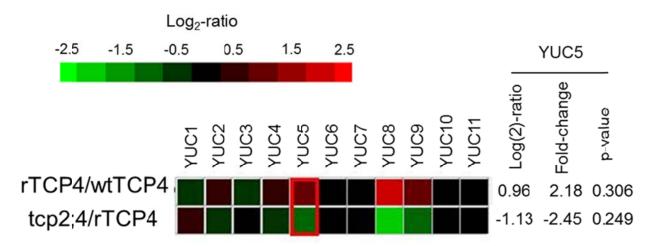

Supplemental Figure 1. DEX-induced TCP4 activity rescues *jaw-D* phenotypes. (A) and (B) Rosettes of 32-day-old Col-0;*ProTCP4:mTCP4:GR* plants (A) and *jaw-D*;*ProTCP4:mTCP4:GR* (B) plants grown in mock or in the presence of 12 μ M dexamethasone (DEX). (C) to (E) Mock and 12 μ M DEX-treated *jaw-D*;*GR* plants highlighting the stem length (C), cauline leaf size (D), and fruit morphology (E).

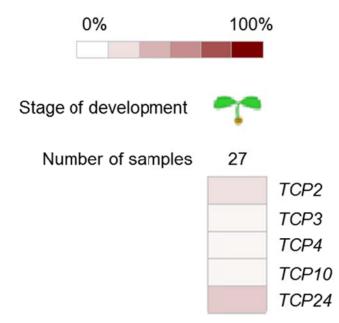

Supplemental Figure 2. Effect of TCP4 induction on hypocotyl length in seedlings grown in darkness. Five-day-old *jaw-D*;*ProTCP4:mTCP4:GR* (*jaw-D*;*GR*) seedlings of the indicated genotypes were grown in darkness with and without 12 μ M DEX (left) and their average hypocotyl lengths were recorded (right). Error bars indicate SD; sample number n=12 - 15.


Supplemental Figure 3. Altered auxin and BR responses in TCP4-mediated hypocotyl elongation. (A) and (B) average hypocotyl lengths of 7-day-old *jaw-D* and *jaw-D*;*ProTCP4:mTCP4:GR* (*jaw-D;GR*) seedlings grown with 12 μ M DEX and various concentrations of GA₃ (A) and epiBL (B). (C) Average hypocotyl lengths of 7-day-old *Pro35S:mTCP4:GR* seedlings, grown without (Mock) or with (DEX) 12 μ M DEX and various concentrations of picloram (PIC). Error bars indicate SD (n=10-15).


Supplemental Figure 4. GENEVESTIGATOR analysis of auxin-related genes in the *jaw-D;ProTCP4:mTCP4:GR* microarray. GENEVESTIGATOR (<u>https://genevestigator.com/gv/</u>) analysis comparing the expression levels of the auxin-related genes altered in the microarray experiment on the *jaw-D;ProTCP4:mTCP4:GR* seedlings compared with the previously reported transcriptome profiles of indole acetic acid (IAA)-treated and naphthaleneacetic acid (NAA)-treated seedlings. Top 14 correlated transcriptome profiles of IAA/NAA-treated microarrays are shown. An abridged version of this result is shown in Figure 3.


Supplemental Figure 5. GENEVESTIGATOR analysis of differentially expressed, auxinrelated genes in the *jaw-D;ProTCP4:mTCP4:GR* microarray. Comparison of differentiallyexpressed, auxin-related genes in the *jaw-D;GR* microarray with those in the *TCP4* microarrays available in the public database using the GENEVESTIGATOR tool (<u>https://genevestigator.com/gv/</u>). YUC5 is indicated with a red rectangle to highlight significant expression difference.


Supplemental Figure 6. Transcriptional analysis of cell expansion genes in the mutants of *TCP* **genes. (A)** Comparison of differentially expressed cell expansion genes in the *jaw-D;GR* microarray with those in previously reported *TCP4* microarrays available in the GENEVESTIGATOR database (*https://genevestigator.com/gv/*). The gene of interest, *BNQ1/PRE1*, is boxed. (B) RT-qPCR analysis of the relative transcript levels of BR biosynthesis/signaling genes in cDNA prepared from 9-day-old seedlings of the indicated genotypes. Transcript levels were normalized to *PP2A* or *TUB2*. Average values from biological triplicates are shown. Error bars indicate SD. (C) RT-PCR analysis of the indicated genes carried out on cDNA samples prepared from 9-day-old *jaw-D;GR* seedlings grown in continuous mock or continuous DEX. *LOX2* is a positive control and *UBI* (*UBIQUITIN10*) is a loading control.


Supplemental Figure 7. DEX-induced TCP4 promotes YUC5 promoter accessibility for transcription *in vivo*. Quantitative PCR results of the promoter regions of the indicated genes as analyzed by FAIRE experiment. Ten-day old seedlings of *Pro35S:mTCP4:GR* plants were treated with mock and 12 μ M DEX for 3 h and the YUC5 promoter was analyzed for accessibility for transcriptional activation. A direct target gene of TCP4, *LOX2*, was used as a positive control; *TUB2* was used as a negative control; and *TA3* was used as an internal control. This experiment was repeated twice and one set of representative data is shown. Error bars indicate SD (sample size, 3).

Supplemental Figure 8. Genotyping and characterization of *yuc5.* (A) EtBr-stained agarose gel showing the PCR-based genotyping of the *yuc5* T-DNA insertion line. GS indicates gene-specific primer combination; IS indicates T-DNA insertion-specific primer combination. The list of primers for GS and IS is provided in Supplemental Data Set 2, –VE and +VE indicate distilled water and Col-0 genomic DNA, respectively, as PCR templates. M, size markers. (B) RT-PCR analysis of *YUC5* transcript on RNA samples prepared from 9-day-old *jaw-D;ProTCP4:mTCP4:GR;ProDR5:GUS;yuc5* seedlings. *UBIQUITIN* (*UBI*) was used as the loading control, –VE and +VE indicate distilled water and wild type cDNA, respectively, as templates. Samples #1 and #2 indicate two independent samples used for RT-PCR analysis.

Supplemental Figure 9. GENEVESTIGATOR (<u>https://genevestigator.com/gv/</u>) analysis of YUC1 to YUC11 expression in the mutant lines of TCP genes. YUC5 is highlighted by a red box. Supplemental Data. Challa et al. (2016). Plant Cell 10.1105/tpc.16.00360

Supplemental Figure 10. GENEVESTIGATOR analysis of miR319-targetd *TCP* transcripts in wild-type hypocotyl. Expression analysis of miR319-targetd *TCPs* in publicly available hypocotyl microarrays by GENEVESTIGATOR (<u>https://genevestigator.com/gv/</u>). Number of microarray data sets used for this analysis and percentage of expression potential from 0 (white) to 100 (dark brown) are shown.

Supplemental Table 1. List of auxin-related genes differentially regulated after 2 and 4 h of DEX treatment in the *jaw-D;ProTCP4:mTCP4:GR* microarray. A 1-kb region upstream of the predicted transcriptional start site was scanned for the presence of TCP4 DNA-binding motifs. The known direct target of TCP4, *LOX2* (Schommer et al., 2008), is highlighted by a dashed rectangle. The transcription start site was defined based on TAIR database information (*www.arabidopsis.org*). NA indicates not analyzed.

Gene ID		Fold change after	r DEX treatment	TCP4 DNA-binding motif		
	Description	2 h	4 h	TGGNCC	GTGGNC	
AT5G43890	YUCCA5	3.0	3.6	+	-	
AT5G48930	HCT; Auxin homeostasis	3.8	2.3	+	-	
AT2G46530	ARF11	3.2	1.7	-	-	
AT2G22670	IAA8	2.5	1.9	+	+	
AT1G76530	Auxin efflux carrier	2.3	0.3	-	-	
AT4G34760	SAUR50	2.3	1.7	+	+	
AT5G18020	SAUR20	2.3	1.9	_	_	
AT1G29440	SAUR63	2.2	2.0	+	+	
AT5G18030	SAUR-like	2.0	1.3	+	+	
AT5G18060	SAUR23	2.0	1.3	-	_	
AT5G18010	SAUR19	1.9	1.2	_	_	
AT5G55910	D6PK; Polar auxin transport	1.8	-1.6	_	-	
AT5G18050	SAUR22	1.8	0.9	-	-	
AT3G03830	SAUR28	1.7	0	-	-+	
AT5G47370	HAT2	1.7	1.1	-	+	
AT4G38860	SAUR16	1.7	1.1	-	-	
AT1G70940	PIN3	1.6	2.0	-	_	
AT2G46990	IAA20	1.6	-0.2	-	+	
AT3G23030	IAA2	1.4	2.1	_	_	
AT4G12980	Auxin-responsive gene	1.2	1.6	+	_	
AT2G34680	AIR9	0.5	-2.1	-	_	
AT3G07390	AIR12	0	-1.7	_	_	
AT5G13320	GH3.12	-1.3	2.7	NA	NA	
AT5G47530	Auxin-responsive gene	-1.7	0	+	-	
AT2G18010	SAUR10	-2.2	1.4	-	-	
AT1G76520	Auxin efflux carrier	-2.3	-1.8	-	-	
AT2G31180	MYB14	-2.5	-2.2	+	-	
AT1G25220	ASB1	-2.8	-0.2	+	- -	
AT3G45140	LOX2	2.5	1.7	+	+ ;	

Supplemental Table 2. List of genes known to be involved in cell expansion and differentially expressed after 2 and 4 h of DEX induction in the *jaw-D;ProTCP4:mTCP4:GR* microarray. The 1-kb region upstream of the predicted transcription start site was used to analyze the TCP4 DNA-binding motif. The transcription start site was defined based on TAIR database information (*www.arabidopsis.org*).

		Fold change after	er DEX treatment	TCF4 DNA-binding motif		
Gene ID	Description	2 h	4 h	TGGNCC	GTGGNCC	
AT4G08950	EXO; Cell Expansion regulator	1.9	2.3	+	-	
AT2G38050	DET2; Cell Expansion regulator	1.6	1.9	-	-	
AT5G39860	PRE1; Cell Expansion regulator	3.2	0	-	+	
AT3G45960	EXLA3; Cell wall loosening	2.1	0	-	-	
AT4G28850	ATXTH26; Xyloglucosyl transferase	1.7	-4.4	-	-	
AT5G14920	GASA14; GA mediated cell	0	-2.5	+	_	
AT3G44990	elongation XTH31; XYLOGLUCAN	0	-1.6	+	_	
AT4G38210	EXPA20; Cell wall loosening	0	2.0	+	+	
AT1G14070	FUT7; Xyloglucan fucosyltransferase	-1.9	0	+	_	
AT4G18990	family XTH29; Xyloglucan	-2.8	0	-	_	
AT5G28646	WVD2; Cell Expansion	-2.3	-2.8	+	+	
AT3G60570	EXPB5; Cell wall loosening	-4.1	0	-	-	

Supplemental Data. Challa et al. (2016). Plant Cell 10.1105/tpc.16.00360

Supplemental Table 3. Transcript abundance of YUC genes in TCP mutant lines. Transcript abundances of the indicated YUCCA genes in 5-day-old *jaw-D;GR;DR5-GUS* and *jaw-D;GR;DR5-GUS;yuc5* seedlings treated with mock and 12 µm DEX. Statistical significance and p-values are shown; ns indicates not significant. Unpaired Student's *t*-test was used.

jaw-D;GR; ProDR5:GUS									
			YUC2	YUC3	YUC4	YUC5	YUC6	YUC8	YUC9
	Mock	AVER	7.04	3.44	6.25	7.60	3.11	3.47	6.52
		STDEV	0.10	0.13	0.22	0.17	0.07	0.04	0.11
	DEX	AVER	5.17	3.23	6.49	5.55	3.33	2.23	7.27
		STDEV	0.08	0.08	0.19	0.19	0.03	0.08	0.35
		p-value	< 0.0001	ns	ns	0.0002	ns	< 0.0001	0.02
jaw-D;GR; ProDR5:GUS;yuc5									
			YUC2	YUC3	YUC4	YUC5	YUC6	YUC8	YUC9
	Mock	AVER	7.44	3.66	6.25	3.06	4.17	2.71	6.78
		STDEV	0.09	0.11	0.14	0.07	0.05	0.16	0.29
	DEX	AVER	5.48	3.91	6.15	2.76	4.05	1.64	7.14
		STDEV	0.20	0.14	0.09	0.21	0.07	0.11	0.20
		p-value	0.0001	ns	ns	ns	ns	0.0008	ns

Supplemental References

Schommer, C., Palatnik, J.F., Aggarwal, P., Chetelat, A., Cubas, P., Farmer, E.E., Nath, U., and Weigel, D. (2008). Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol 6, e230.